Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

Analytical Methods

Graphical Abstract: A schematic diagram for cadmium ion imprinted polymer

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

1	New magnetic polymeric nanoparticles for extraction of trace cadmium ions;
2	determination of cadmium content in diesel oil samples
3	
4	
5	Homeira Ebrahimzadeh ^a *, Mansoure. Kasaeian ^a , Azita Khalilzadeh ^b , Elahe Moazzen ^a
6	^a Department of Chemistry, Shahid Beheshti University, G.C., Tehran 1983963113, Iran
7	^b Department of Chemistry, Islamic Azad University, North Branch, Tehran, Iran
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	* Corresponding author. Tel.: +98 21 29902891; Fax: +98 21 22403041.
18	E-mail address: H-Ebrahim@sbu.ac.ir (H. Ebrahimzadeh).
	1

Analytical Methods

19 Abstract

A novel highly selective magnetic sorbent was synthesized for rapid preconcentration of Cd(II) ions. A cadmium-imprinted polymer was grafted on Fe₃O₄ nanoparticles to give the magnetic property to the sorbent. The grafting was characterized by IR spectroscopy, XRD patterns, scanning electron microscopy and differential thermal analysis. The effects of sample pH, eluent factors (type, concentration and volume) and the time of adsorption and desorption were investigated. The retained cadmium determination was performed by flame atomic absorption Spectroscopy. The limit of detection and relative standard deviation values were 0.09 μ g L⁻¹ and 1.7 %, respectively, under optimum conditions. The accuracy of the method was confirmed using standard materials. Finally, it was applied to the determination of Cd(II) in used and non-used diesel oils.

30 Keywords: Cadmium determination; Magnetic nano-particles; Ion imprinted polymer

Analytical Methods Accepted Manuscript

6

39 1. Introduction

Cadmium is one of the most toxic heavy metals in the environment, even in low concentrations.¹ It inters human body through food chain and the accumulation in the human organs is more serious than other creatures.² Cd (II) can cause some devastating health problems such as subversion of nervous system, stomachache, vomiting, decrease of safety, cell damage and cancer.³ In this regard, the world health organization (WHO) recommended a maximum of 3 ppb Cd (II) in their guidelines for drinking water quality.⁴ Therefore, extraction, pre concentration and determination of trace cadmium in samples that are influencing our environment are of a great importance and need a special attention. Many spectrophotometric techniques such as Inductively Coupled Plasma-Mass Spectrometry (ICP-MS),⁵⁻⁶ Atomic Absorption Spectrometry (AAS)⁷⁻⁸ and Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES)⁹ have been applied for quantitative and qualitative determination and separation of Cd (II) in complex matrixes. Among the methods, Flame Atomic Absorption Spectrometry (FAAS) has become a standard analytical tool for determination of various heavy metals due to its advantages such as simplicity in operation and low cost of analysis¹⁰.

Despite the advantages of the technique, this method has also some disadvantages such as higher limit of detection (LOD) than the usual concentrations in real samples, and the matrix interfering effects of the working media.¹¹ These reasons make it essential to have a preconcentration step prior to the main determination by FAAS. Different preconcentration methods like Cloud Point Extraction (CPE),¹² coprecipitation,¹³ liquid phase micro extraction,¹⁴ Liquid–Liquid Extraction (LLE),¹⁵ Solid–Liquid Extraction (SLE)¹⁶ and Solid-Phase Extraction (SPE)¹⁷⁻¹⁸ have been used for the enrichment of cadmium. One of widely used and fast emerging pre-concentrative separation techniques for this purpose is SPE due to the following advantages. These include

Analytical Methods

higher enrichment factors, absence of emulsion, safety with respect to hazardous samples,
minimal costs due to low consumption of reagents, flexibility, and ease of automation.¹⁹⁻²⁰
Various sorbets such as silica gel,²¹ chelating fibers²² and chelating resins,²³ etc, have been
reported as solid phases. However these sorbents still suffer from lack of selectivity.²⁴

Ion imprinting technique is a powerful tool for preparing high selective sorbent used for extraction and preconcentration of variety of ions. The high selectivity of ion Imprinted Polymers (IIP) arises from the specificity of interaction between the ligand which is present in the polymer pores' surface, with the metal ions.²⁵⁻²⁹ The coordination number, the charge, and the size of the metal ions are some factors used for selective removal, separation, pre concentration and extraction of the target metal ions.³⁰ However low surface area and difficulty in separation, are the failures of these polymers as a sorbent in SPE.³¹ The magnetic properties of Fe_3O_4 nanoparticles makes this oxide capable of being collected easily by a magnet; in addition, this material has high thermal and mechanical stability (decreased susceptibility to swelling and shrinking) and high surface area (up to 400 m^2g^{-1}).³² These merits make the nanoparticles a suitable support, to be grafted by IIP so that we could gain a magnetic sorbent with high efficiency in extraction due to the high active surface area and high selectivity.33

In this study, a new Cd (II)-imprinted polymer was grafted on Fe₃o₄ nanoparticles as a new sorbent for selective removal of trace Cd (II) from aqueous solutions. The kinetics (adsorption and desorption time), maximum capacity and selectivity of this new sorbents for Cd (II), beside other figures of merit, were investigated. Finally the method was successfully applied for determination of Cd (II) in diesel oil samples after extraction induct by emulsion breaking (EIEB).

2. Experimental

86 2.1. Apparatus

IR spectra were recorded by a BOMEM/MB series spectrometer. X-ray diffraction patterns were obtained on a STOE diffractometer with Cu K_a radiation. Thermal gravimetric and differential thermal analysis (TG/DTA) was carried out on a Bahr STA-503 instrument under air atmosphere. The elemental analysis was performed with a Thermo Finnigan Flash-2000 microanalyzer (Italy). Cadmium concentrations were determined by an AA-680 Shimadzu (Kyoto, Japan) flame atomic absorption spectrometer in an air-acetylene flame, according to the user's manual, provided by the manufacturer. A cadmium hollow cathode lamp was used as the radiation source with a wavelength of 228.8 nm. All pH measurements were performed at 25 ± 1 °C with a digital WTW Metrohm 827 Ion Analyzer (Herisau, Switzerland), equipped with a combined glass-calomel electrode. Magnetic separation was carried out by a super magnet with 1.4 Tesla magnetic field ($10 \times 5 \times 4$ cm). Morphology of particles was observed on a Philips XL-30 scanning electron microscope (SEM). Specific surface area was measured by nitrogen adsorption technique using a Micrometitis ASPS 2010 analyzer.

100 2.2. Reagents and materials

All reagents used were of the analytical grade and were used without further purification. A 1000 μ g mL⁻¹ standard solution of Cd (II) was purchased from Aldrich Company. HCl, HNO₃, HClO₄, H₂SO₄, Na₃C₃H₅O(CO₂)₃, Na₂HPO4, NaH₂PO₄, CH₃COOH, FeCl₃.6H₂O and FeCl₂.4H₂O were purchased from Merck Company (<u>http://merck.de</u>) (Darmstadt, Germany). Ethylene glycol dimethacrylate (EGDMA) was obtained from Fluka Company (Buchs, Switzerland). 2,2'-Azobisisobutyronitrile (AIBN) was obtained from Acros Organics Company (New Jersey, USA).

The working solutions of Cd (II) were obtained by diluting the standard solution with buffer, and pH adjustments were also performed with the appropriate buffer solutions. For pH of 3 to 4, a mixture of Na₃C₃H₅O(CO₂)₃/ HCl (trisodium citrate/hydrochloric acid) was used. A solution of CH₃COOH/ NaCH₃COO was used to adjust pH 4-6, while a buffer solution containing $Na_{2}HPO_{4}$ NaH₂PO₄ was used for pH 6-8. All the required solutions were prepared using deionized water provided by a Milli-Q (Millipore, Bedford, MA, USA) purification system. Standard material samples (NIST 1571 and NIST 1572) with certified cadmium content were obtained from National Institute of Standards and Technology.

116 2.3. Preparation of Fe_3O_4 nano particles

Fe₃O₄ nano particles were synthesized according to previously reported method.³⁴ Briefly, 10.4 g of FeCl₃.6H₂O and 4.0 g of FeCl₂.4H₂O were dissolved in 100 mL of deionized water, degassed with nitrogen gas for 15 min and heated to 80 °C. Then, 15 mL of NH₄OH (32% solution) was added dropwise to the solution. After 15 min, the solid was separated by a magnet and washed three times with 0.1 mol L⁻¹ NaCl solution. The formation of nanoparticles was confirmed by IR spectroscopy and X-ray powder diffraction. Single point BET analysis showed a surface area of 317 m² g⁻¹ for Fe₃O₄ nanoparticle. Analytical Methods Accepted Manuscript

124 2.4. Preparation of vinyl functionalized Fe_3O_4

Vinyl functionalization of Fe_3O_4 NPs was performed by the reaction of silan agents with Fe_3O_4 NPs according to our recent report.³⁵ In this approach, 1.0 g of prepared Fe_3O_4 NPs was suspended in 50 mL of toluene, afterward 2.0 mL of 3-vinyletriethoxy silane was added to the solution and the mixture was stirred for 24 h. The solid-phase was separated from the solvent by

Analytical Methods Accepted Manuscript

a magnet and washed 3 times with 50 mL of ethanol and then dried at room temperature. The vinyl functionalization of Fe_3O_4 NPs was confirmed by IR spectroscopy and elemental analysis. Elemental analysis shows 0.69 mmol g⁻¹ vinyl coated on this sorbent (C=2.47 %, H=0.34%).

133 2.5. Preparation of magnetic Cd (II)-IIP nano particles

In order to prepare Cd (II) imprinted polymer, firstly, the required ligand was synthesized through following process. 1 mmol (4-chlorobenzohydrazide) was added to vinyl chloride (1 mmol) in 50 mL methanol and triethylamine mixture (1:1, V:V), and then stirred for 24 h. Afterward, in order to prepare the cadmium complex, 1 mmol of Cd (II) and 1 mmol of the prepared ligand were mixed with methanol and stirred for 1 h in order to complete the complexation reaction. The vinyl functionalized Fe₃O₄ NPs were then mixed with the solution followed by adding 1 mL EGDMA, as cross-linking agent, and purging N₂ gas for 10 min to remove oxygen from the reaction mixture. Then 0.38 g AIBN, as initiator, was added and polymerization reaction was carried out in the oil bath at 70 °C for 24 h. The synthesized polymer was firstly washed with distilled water and then with optimized eluent (4 mL of 0.1 M HClO₄ solution), in order to remove the cadmium ions and make the sorbent ready for extraction. In order to confirm the removal of cadmium ions, the amount of Cd(II) was determined by FAAS after treatment with piranha solution ($H_2SO_4+H_2O_2$). Piranha solution dissolves the organic parts of these particles and releases Cd(II) ions in solution, which can be determined by FAAS. This sorbent was characterized by XRD pattern, IR spectroscopy, thermal analysis and SEM micrograph. A schematic diagram for this synthesis is represented in Fig. 1.

2.6. Extraction process

2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
19	
20	
21	
∠ I 20	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
33	
34	
25	
30	
36	
37	
38	
39	
40	
<u>41</u>	
12	
42	
43	
44	
45	
46	
47	
48	
<u>10</u>	
50	
51	
52	
53	
54	
55	
56	
50	
5/ 52	
58	
59	

60

151 50 mL of aqueous solution containing Cd (II) is equilibrated with 0.05 g of the magnetic Cd-IIP 152 nano particles for 4 min shaking. Then the sorbent containing retained ions, is collected with a 153 super magnet and subsequently the ions are eluted with 4 mL of 0.1 M HClO₄ solution. The Cd 154 (II) ions in the elution solution are then determined by FAAS. The used IIP could be reused for 155 the next experiments after washing with the optimized eluent.

157

156

2.7. Standard reference materials digestion

Standard reference materials were digested with 6 mL of HCl (37%) and 2 mL of HNO₃ (65%)
in a microwave digestion system. Digestions were carried out for 2 min at 250 W, 2 min at 0 W,
6 min at 250 W, 5 min at 400 W, 8 min at 550 W and then vented for 8 min. Afterward, the
residues of digestion were diluted with deionized water.

162

163 *2.8. Diesel oil extraction as a real sample*

The cadmium ions in the used and un-used diesel oil were extracted through an extraction induct 164 by emulsion breaking (EIEB) according to previously reported paper.³⁶ According to this 165 method, the oil was mixed with acidic triton X-100 solution in a capped plastic tube and stirred 166 vigorously. After formation of emulsion, the tube was transferred to the temperature-controlled 167 water bath kept at the temperature 75 °C and it was heated until the emulsion breaking. The 168 result of the emulsion breaking was three well separated phases, among which the acidic aqueous 169 170 phase contains the extracted metals. The proposed enrichment method was used for selective determination of Cd (II) in the aqueous phase of used and un-used diesel oil. 171

Analytical Methods Accepted Manuscript

3. Result and discussion

3.1. Sorbent characterization

Formation of Fe₃O₄ NPs was confirmed by X-ray powder diffraction. Single point BET analysis showed 317 m² g⁻¹ specific area for synthesized Fe₃O₄ nano-particles. Modification of these particles with vinyl groups was performed by direct method for functionalization of Fe₃O₄ with triethoxysilan agents.³¹. The reaction of vinyl functionalized Fe_3O_4 as a monomer with cadmium complex as another monomer in presence of an initiator (AIBN) and EGDMA as cross linking agent cause formation of this sorbent. A schematic diagram of the synthesis route is shown in Fig. 1. Formation of this magnetic ion imprinted polymer was confirmed by IR spectroscopy, high-angle X-ray powder diffraction, SEM micrograph and thermal analysis. The C-H aromatic, C-H aliphatic, C=O, C=N and C=C vibrations were appear in IR spectrum at 3021, 2919, 1738, 1639 and 1633 cm^{-1} .

In order to investigate the presence of Fe_3O_4 in the structure of polymer, the XRD pattern of this composite was recorded (Fig. 2). According to the XRD pattern, the Fe_3O_4 structure has been remained unchanged after functionalization. On the other word the Fe_3O_4 was not decomposed and did not convert to Fe_2O_3 . The average crystallite size of IIP nanoparticles was estimated from the XRD pattern using Scherrer formula:

$$D = \frac{k\lambda}{\beta\cos\theta}$$

189 where D is the average crystallite size, λ is the X-ray wavelength (1.5406 Å), β is the full-width 190 at half maximum (FWHM) and θ is the diffraction angle. Here K = 0.9 is for spherical shape. So 191 the crystallite size of IIP nanoparticles was computed from XRD pattern and found to be about

192 <u>61 nm.</u> According to this analysis, it could be concluded that the size of particles are in the range193 of nanometer.

For further investigation of the size and morphology of the synthesized sorbent, the SEM micrograph of this sorbent was recorded. According to the SEM micrograph, the particles had approximately 60 nm diameter and the morphology is spherical (Fig. 3).

In order to investigate the thermal stability of this sorbent, the TGA/DTA analysis was recorded under air atmosphere. As the curves in Fig. 4 show, this magnetic sorbent is stable up to 200 °C and about 23 % of this sorbent is polymer.

3.2. Optimization of parameters

In order to achieve the best performance, the separation/preconcentration procedure and the effective factors such as pH of the sample solution, type, concentration and volume of eluent, desorption and desorption time and maximum adsorption capacity were optimized. Different important figures of merit such as selectivity of the magnetic Cd (II)-IIP nano particles, LOD and recovery were also investigated. Analytical Methods Accepted Manuscript

3.2.1 Effect of pH

The effect of variety of pH values on Cd (II) adsorption was investigated using batch procedure. For this purpose, pH of sample solutions was adjusted to pH 3-8 and the extraction procedure was applied on these solutions. 0.01 g polymer was added to 20 mL of 5 mg L^{-1} solutions of Cd(II) with different pHs. After following the amount of cadmium ions in eluent by FAAS, it was revealed that he best pH of adsorption is 7. This fact can be explained as follow. In low pHs, the active sites of the ligands are protonated and are not able to coordinate to the cadmium ion

Analytical Methods Accepted Manuscript

anymore, which decrease the recovery. In high pHs, the cadmium ions turn to cadmium hydroxyl
and do not retain on the sorbent anymore and as consequence the recovery decreases. The results
of the experiment can be seen in Fig. 5.

3.2.2 Sorption time

Since the short analysis time reduces the analytical efficiency and the long analysis times are not desired, optimizing the sorption time is essential. In order to study the effect of adsorption time, 0.01 g of polymer was added to 20 mL of 5 mg L⁻¹ solution of Cd(II) and the extraction procedure was performed in different time durations(1, 2, 3, 4, 5 min). Then sorbents were isolated by placing a magnet and the pre concentrated analytes in eluents were determined by FAAS. As the results show in Fig. 6, the optimum adsorption time was found to be 4 min.

3.2.3 Type, concentration and volume of eluent

In order to obtain the most efficient removal of the ions from the sorbent, type, concentration and volume of eluent solution were optimized. Different acids including $HCIO_4$, HNO_3 , HCl, H_2SO_4 were tested for desorption of Cd (II) ions. For this purpose, after adsorption of Cd (II) ions according to mentioned procedure, the sorbent was isolated by placing a magnet and suspended in 10 mL of each acid. After eluting the adsorbed ions with different acids and also their different concentrations, the Cd (II) content of each eluent was measured by FAAS. The results (Table 1) showed that 0.01 M $HCIO_4$ led to the most efficient and complete elution. Finally the elution

tests were done in different volumes of 0.01 M HClO₄. The results showed that the optimum
volume of the eluent was also revealed to be 4 mL.

3.2.4 Desorption time

In this study, time of desorption of the retained Cd (II) ions, was studied through a batch experiment. For this purpose, 4 mL of eluent was added to 0.01g of the sorbent and the mixture was shaken. This experiment was performed with different shaking times: 5, 10, 15, 20, 25, 30, 40, 50 and 60 min. After determination of eluted cadmium ions by FAAS, as it can be seen in the Fig. 7, the most efficient adsorption time was found to be 50 min.

243 3.3. Maximum adsorption Capacity

In order to determine the sorbent maximum capacity, 0.01 g of prepared polymer was added to 10 mg solution of Cd (II) (pH=7). After shaking for 4 min and collecting the sorbent by the magnet, the cadmium ions in the elution solution were determined by FAAS. The maximum adsorption capacity was found to be 52.6 mg g⁻¹ (0.47 mmol g⁻¹). Analytical Methods Accepted Manuscript

249 3.4. Selectivity of the magnetic Cd (II) IIP against other cations

Effect of a variety of cations usually found in natural samples, on the determination of Cd (II) was studied. As their chloride salts, various concentrations of Na⁺, K⁺, Cs⁺, Mg²⁺, Ca²⁺, Fe²⁺, Mn²⁺, Zn²⁺, Co²⁺, Cu²⁺, Pb²⁺, Ni²⁺ and Cr³⁺ were added to individual cadmium-containing solutions listed in Table 2. As shown in Table 2, the vast majority of transition metals do not interfere the concentrations encountered in nature, and the method is selective toward cadmium

Analytical Methods Accepted Manuscript

extraction at pH=7. Furthermore, extraction was not affected by high concentrations of alkaline and alkaline earth metals. This high selectivity could be because of imprinting technique, which produces very selective sites that are Cd(II) ions size and attract the ions only. <u>Also the</u> <u>imprinting factor was evaluated. The imprinting factor (IF) is defined as:</u>

$$IF = \frac{B_{IIP}}{B_{NIP}}$$

259 where B_{IIP} and B_{NIP} depict the binding capacity of the ion imprinted polymer and the non-260 imprinted polymer, respectively. According to this equation the IF was 3.1.

3.5. Figures of merit

In order to determine the limit of detection (LOD) of the presented method, adsorption procedure was performed using 500 mL blank solution (n=10) under optimal experimental conditions. LOD value for cadmium ions on the magnetic sorbent was determined to be 0.09 ng mL⁻¹. The results were obtained from the relationship expressing $C_{\text{LOD}} = 3S_b/m$, where m is the amount of slope of the calibration curve (meter).³⁷ Dynamic linear range of the proposed solid phase extraction method was 0.8- 60 μ g L⁻¹. The relative standard deviation (RSD) for this method was calculated to be 1.7 with recovery more than 98.3 %. The break through volume was investigated by adding 10 mg of magnetic cadmium IIP into 100, 200, 500, 750 and 1000 mL of a solution containing 0.1 mg Cd (II) ions. The break through volume was calculated to be more than 750 so the enrichment factor is more than 184. Determination of cadmium ions using the developed magnetic SPE was compared to some of the different separation and preconcentration procedures.³⁴⁻³⁷ This method is to provide a cleaner extract that is free of matrix interferences

Page 15 of 33

1

Analytical Methods

2		
3 4	274	with high selectivity and preconcentration factor. Therefore, SPE was modified to enhance
5 6 7	275	selectivity and sensitivity.
8 9	276	The results in Tables 3 indicate that this method possesses good sensitivity, low LOD and high
10 11	277	enrichment factor, which is probably because of the large surface area and extraction efficiency.
12 13 14 15	278	
16 17 18	279	3.6. Validation of the method
19 20	280	In order to investigate the accuracy of the proposed method, this technique was applied to several
21 22 22	281	reference materials containing certified cadmium amounts. As the results in Table 4 show, there
23 24 25	282	is a good agreement between the certified amounts and this method results. Therefore, this
26 27	283	sorbent could be used as a promising solid-phase for extraction and determination of cadmium
28 29 30	284	ions with high accurate results.
31 32 33	285	
34 35	286	3.7. Real samples analysis
36 37 28	287	The proposed method was applied for determination of trace levels of cadmium ions in used and
39 40	288	un-used oil samples. In this regard, after sample preparation by EIEB procedure, the sample
41 42	289	solution, which is the acidic aqueous phase containing the extracted metals, was adjusted to pH =
43 44 45	290	7. Afterward, the amount of cadmium ions was determined in eluent by FAAS after
46 47	291	preconcentration by extraction procedure using the magnetic IIP. As the results in Table 5 show,
48 49	292	this method is considered to be a reliable and fast method for Cd(II) determination in oil
50 51 52	293	samples. This table shows the results of cadmium ions determination using FAAS, before
53 54	294	applying the preconcentration step (direct injection), and after preconcentration using proposed
55 56		
57 58		
59 60		14

S

Analytical Methods Accepted Manuscript

295 method. The spiking process was also performed in two ways: after extraction induct by EIEB296 (in acidic solution) and before extraction induct by EIEB (in oil sample).

297 The results in Table 5 demonstrate that the method has a high recovery for ultra-trace amount of298 cadmium in diesel oil samples with such a complex matrixes.

299 The recovery is defined as following equation:

 $%R = \frac{C_{found} - C_{real}}{C_{aadded}} \times 100$ Eq.1

Where C_{found} , C_{real} , and C_{added} are the concentrations of analyte after addition of known amount of standard in the real sample, the concentration of analyte in real sample and the concentration of known amount of standard which was spiked to the real sample, respectively.

3.8. Reusability

The stability of this magnetic IIP was investigated by successive sorption and elution cycles of 100 mL sample solutions containing cadmium ions at the optimum conditions. Afterward, the retained metal ions were eluted by 4 mL of 0.01 mol L^{-1} of HClO₄ solution. The results show that the sorbent is stable up to fourteen adsorption-desorption cycles.

4. Conclusion

In this work, a novel ion imprinted polymer grafted on magnetic NPs was synthesized in orderto enrich trace levels of cadmium ions in aqueous samples. High surface area, ease of separation

1		
2 3 4	317	due to being magnetic, selectivity and accuracy of the IIP has made it a suitable and reliable
5 6 7	318	sorbent for this purpose. These novel magnetic polymer particles were also used for accurate and
8 9	319	selective preconcentration and determination of cadmium ions in diesel oil samples after EIEB
10 11	320	and prior to FAAS. The results confirmed that this sorbent could be used successfully for
12 13 14	321	selective extraction of cadmium ions from variety of real sample including oil and aqueous
15 16	322	samples.
17 18 19	323	
20 21	324	
22 23	325	
24 25 26	326	
27 28	327	
29 30 31	328	
32 33	329	
34 35 26	330	
30 37 38	331	
39 40	332	
41 42 43	333	
44 45	334	
46 47 48	335	
49 50	336	
51 52	337	
53 54 55	338	
56 57	339	
58 59		
60		16

References: [1] P. Françoise, S.E. Kreps, M. Bachelet, P. Hainaut, P. Bakonyi, B.S. Polla, Rev. Environ. Health., 2000, 15, 273. [2] B. Varga, B. Zsolnai, K. Paksy, M. Náray, G. Ungváry, Reprod. Toxicol., 1993, 7, 225. [3] L. Järup, A. Akesson, Toxicol. Appl. Pharm., 2009, 238, 201. [4] W.H.O. Staff, Guidelines for drinking-water quality: Surveillance and control of community supplies, second ed., 1997. [5] R.J. Cassella, D.M. Brum, C.F. Lima, L.F.S. Caldas, C.E.R. De Paula, Anal. Chim. Acta, 2011, 690, 79. [6] E.M. Becker, M.B. Dessuy, W. Boschetti, M.G.R. Vale, S.L. Ferreira, B. Welz, Spectrochim. Acta Part B., 2012, 71, 102. [7] R. Porra, W. Thompson, P. Kriedemann, *Biochim. Biophys. Acta*, 1989, **975**, 384. [8] B. Bernas, Anal. Chem., 1968, 40, 1682. [9] M. Zougagh, A. Torres, J. Cano Pavón, *Talanta*, 2002, 56, 753. [10] M. Melo, S. Ferreira, R. Santelli, *Microchem. J.*, 2000, **65**, 59. [11] B. F. Senkal, I. Muharrem, Y. Erdem, Y. Mehmet, *Talanta*, 2007, **72**, 962. [12] J Manzoori, G. Karim-Nezhad, Anal. Chim. Acta, 2004, 521, 173. [13] T. Oymak, S. Tokalioğlu, V. Yilmaz, S. Kartal, D. Aydın, Food Chem., 113, 2009, 1314. [14] D. Lambropoulou, T. Albanis, J. Biochem. Biophys. Meth., 2007, 70, 195. [15] A. Richard, T. Wayne, Anal. Chem., 1999, **71**, 652. [16] M. Tuzen, K. Parlar, M. Soylak, J. Hazard. Mater., 2005, **121**, 79. [17] M. Hennion, J. Chromatogr. A, 1999, 856, 3. [18] M. Lehotay, J. Stajnbaher, F. Schenck, J. AOAC. Int., 2003, 86, 412.

1

Analytical Methods

2		
3 4	363	[19] M. Soylak, L. Elçi, M. Doğan, Anal. Lett., 2000, 33 , 513.
5 6 7	364	[20] T. Saitoh, S. Suzuki, M. Hiraide, J. Chromatogr. A, 2005, 1097, 179.
7 8 9	365	[21] G. Fang, J. Tan, X. Yan, Anal. Chem., 2005, 77, 1734.
10 11	366	[22] K. Lee, Y. Muraok, M. Oshim, S. Motomizu, Anal. Sci., 2004, 20, 183.
12 13	367	[23] I. Narin, M. Tuzen, M. Soylak, Talanta, 2004, 63 , 411.
14 15 16	368	[24] F. Turiel, A. Martín-Esteban, J. Chromatogr. A, 2007, 1152, 32.
17 18	369	[25] F. Qiao, H. Sun, H. Yan, K. Row, Chromatographia, 2006, 64, 625.
19 20	370	[26] M. Shamsipur, H.R. Rajabi, Microchim. Acta, 2013, 180, 243.
21 22 23	371	[27] M. Shamsipur, H.R. Rajabi, M.H. Beyzavi, H. Sharghi, Microchim. Acta, 2013, 180, 791.
24 25	372	[28] H.R. Rajabi, M. Shamsipur, S.M. Pourmortazavi, Mater. Sci. Eng. C, 2013, 33, 3374.
26 27 28	373	[29] H. Ebrahimzadeh , M. Behbahani, Y. Yamini, L. Adlnasab, A. A. Asgharinezhad, Reactive
20 29 30	374	& Functional Polymers, 2013, 73 , 23–29
31 32	375	[30] T. Rao, R. Kala, S. Daniel, Anal. Chim. Acta, 2006, 578 , 105.
33 34 35	376	[31] L. Yan, L. Zhanchao, W. Yun, D. Jiangdong, G. Jie, X. Jimin, Y. Yongsheng, Microchim.
36 37	377	Acta, 2011, 172 , 309.
38 39	378	[32] T. Yang, C. Shen, Z. Li, H. Zhang, C. Xiao, J. Phys. Chem. B, 2005, 109, 23233.
40 41 42	379	[33] J. Liu, Z. Zhao, G. Jiang, Environ. Sci. Technol., 2008, 42, 6949.
43 44	380	[34] X. Liu, Z. Ma, J. Xing, H. Liu, J. Magn. Magn. Mater., 2004, 270, 1.
45 46 47	381	[35] O. Sadeghi, M.M. Amini , M. Feiz Bakhsh Bazargani, A. Mehrani, A. Aghabali, M. Adineh,
47 48 49	382	V. Amani, Kh. Mehrani, J. Inorg. Organomet. Polym., 2012, 22, 530.
50 51	383	[36] R. Cassella, D. Brum, C. Lima, L. Caldas, C. Paula, Anal. Chim. Acta, 2011, 690, 79.
52 53 54	384	[37] H. Ebrahimzadeh, N. Tavassoli, O. Sadeghi, M.M. Amini , M. Jamali, Microchim. Acta,
55 56 57 58	385	2011, 172 , 479.
59 60		18

1		
2 3 4	386	[
5 6	387	
7 8 9	388	[4
10 11	389	[•
12 13	390	[4
14 15 16	391	
17 18	392	[4
19 20 21	393	2
21 22 23	394	
24 25 26 27	395	
28 29 30	396	
31 32 33	397	
34 35 36	398	
37 38 39 40	399	
41 42 43	400	
44 45 46	401	
47 48 49	402	
50 51 52	403	
53 54 55 56	404	
57 58 59 60		

		та		T 1 (1001 30	(10
386	[38] Z. Fang,	T. Guo,	B. Welz,	Talanta,	1991, 38 ,	613.

- 387 [39] M. Esra, T. Mustafa, S. Mustafa, Anal. Chim. Acta, 2006, **578**, 213.
- 388 [40] L. Edson, D. Paulo, J. Hazard. Mater., 2009, **161**, 142.
- 389 [41] L.Edson, D.Paulo, F.Maria, J. Hazard. Mater., 2009, **171**, 1133.
- [42] M. Behbahani, M. Barati, M. Kalate Bojdi, A.R. Pourali, A. Bagheri, N. Akbari Ghareh
 Tapeh, Microchim. Acta, 2013, 180, 1117.
- 392 [43] M. Gawin, J. Konefał, B. Trzewik, S. Walas, A. Tobiasz, H. Mrowiec, E. Witek, Talanta,
- **393** 2010, **80**, 1305.

1

Analytical Methods

2 3 4	
5 6 7 8	
9 10 11	
12 13 14	
15 16 17 18	
19 20 21	
22 23	
24 25 26	
27 28 29	
30 31 32	
33 34 35	
36 37 38	
39 40	
42 43	
44 45 46	
47 48 49	
50 51 52	
53 54 55	
56 57 58	
59 60	

405	Figure legends:
406	Figure 1. A schematic diagram for synthesis of cadmium ion imprinted polymer.
407	Figure 2: XRD pattern of synthesized cadmium ion imprinted polymer.
408	Figure 3. SEM micrograph of synthesized cadmium ion imprinted polymer.
409	Figure 4. Thermal analysis of synthesized cadmium ion imprinted polymer
410	Figure 5. Effect of pH on cadmium recovery. (sample volume: 20 mL, sample concentration: 5
411	mg L^{-1} of cadmium ions, eluent: 0.01mol L^{-1} HClO ₄ , volume of eluent: 4 mL, time of
412	adsorption: 4 min, time of desorption: 50 min)
413	Figure 6. Effect of adsorption time on cadmium recovery. (sample volume: 20 mL, sample
414	concentration: 5 mg L^{-1} of cadmium ions, eluent: 0.01mol L^{-1} HClO ₄ , volume of eluent: 4 mL,
415	time of desorption: 50 min, pH:7)
416	Figure 7. Effect of desorption time on cadmium recovery. (sample volume: 20 mL, sample
417	concentration: 5 mg L^{-1} of cadmium ions, eluent: 0.01mol L^{-1} HClO ₄ , volume of eluent: 4 mL,
418	time of adsorption: 4 min, pH:7)
419	
420	
421	
422	
423	

	Eluent	Volume (mL)	Concentration (mol L ⁻¹)	% Recovery
	HCl	10	0.001	67.1
	HNO ₃	10	0.001	48.9
	H_2SO_4	10	0.001	37.5
	HClO ₄	10	0.001	73.6
	HClO ₄	10	0.01	99.4
	HClO ₄	8	0.01	98.7
	HClO ₄	6	0.01	99.2
	HClO ₄	4	0.01	98.8
	HClO ₄	2	0.01	93.1
425				
426				
427				
428				
429				
430				
431				
432				
433				
			21	

Table 1. Effect of type, concentration and volume of eluent on recovery of cadmium ions

Image instruction Recovery % Na ⁺ 2000 98.3 K+ 2000 99.2 Ca ²⁺ 2000 99.8 Mg ⁺² 2000 98.6 Zn ²⁺ 1000 97.1 Ni ⁺² 1000 97.5 Cu ⁺² 1000 98.3 Co ⁺² 500 96.8 Fe ⁺² 500 96.8 Mn ⁺² 500 96.7 Ma ⁺² 2000 96.7		Interfering	Tolerable Concentration	_
Na ⁺ 2000 98.3 K+ 2000 99.2 Ca ²⁺ 2000 99.8 Mg ⁺² 2000 98.6 Zn ²⁺ 1000 97.1 Ni ⁺² 1000 97.5 Cu ⁺² 1000 98.3 Co ⁺² 500 96.8 Fe ⁺² 500 96.8 Mn ⁺² 500 96.7 35 36 33 38 39 40 41 42 42		ions	Ratio X/Cd	Recovery %
K+ 2000 99.2 Ca ²⁺ 2000 98.6 Mg ⁺² 2000 97.1 Ni ⁺² 1000 97.5 Cu ⁺² 1000 98.3 Co ⁺² 500 96.8 Fe ⁺² 500 98.5 Mn ⁺² 500 97.9 Pb ⁺² 200 96.7	-	Na ⁺	2000	98.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		K+	2000	99.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ca ²⁺	2000	99.8
		Mg^{+2}	2000	98.6
Ni ⁺² 1000 97.5 Cu ⁺² 1000 98.3 Co ⁺² 500 96.8 Fe ⁺² 500 98.5 Mn ⁺² 500 97.9 Pb ⁺² 200 96.7 Pb ⁺² 200 96.7 336 337 338 339 440 441 442		Zn^{2+}	1000	97.1
$ \begin{array}{cccc} Cu^{+2} & 1000 & 98.3 \\ Co^{+2} & 500 & 96.8 \\ Fe^{+2} & 500 & 97.9 \\ Pb^{+2} & 200 & 96.7 \\ \end{array} $		Ni ⁺²	1000	97.5
Co ⁺² 500 96.8 Fe ⁺² 500 98.5 Mn ⁺² 500 97.9 Pb ⁺² 200 96.7		Cu^{+2}	1000	98.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Co^{+2}	500	96.8
Mn ⁺² 500 97.9 Pb ⁺² 200 96.7 335 336 337 338 339 440 441 442		Fe ⁺²	500	98.5
Pb ⁺² 200 96.7 935 936 937 938 940 941 942		Mn^{+2}	500	97.9
 35 36 37 38 39 40 41 42 		Pb^{+2}	200	96.7
336 337 338 339 440 441 442 442	135			
137 138 139 140 141	136			
138 139 140 141	137			
139 140 141 142	138			
40 41 42	139			
41	140			
42	141			
	142			

2 3 4	444	Table 3. Comparison of the separat	ion and prec	concentration pro	cedures for cadmi	um
5 6	445	determination				
7 8 0		procedure	^a PF	RSD	DL	Ref.
10 11		FAAS-FI	25	13.0%	0.30 µg L ⁻¹	[38]
1 2 13 14		SPE-FAAS	50	5.0%	0.43 µg L ⁻¹	[39]
1 <u>4</u> 15 16		FI-CPE-AAS	20	3.2%	0.75 μg L ⁻¹	[40]
1 7 18 10		CPE-ICP		2.6%	1.00 μg L ⁻¹	[41]
20 21	Nano	sized Cd(II)-imprinted polymer-FAAS	300	4.2 %	$0.2 \ \mu g \ L^{-1}$	[42]
2 <u>2</u> 23		Cd (II)-FI-FAAS	117	2.9 %	0.11 μg L ⁻¹	[43]
24 25 26		IIP-FAAS	184	1.7%	0.09 μg L ⁻¹	This worl
27 28	446	^a Preconcentration factor				C
29 30 31	447					AC
32 33	448					ls
34 35 36	449					100
37 38	450					eth
39 40 41	451					Σ
42 43	452					Ca
44 45 46	453					J ti
47 48 ⊿0	454					na
50 51	455					V
52 53 54	456					
55 56 57 58	457					
59 60			23			

	Sample	Uint	Ion	Concentration		Recovery	Relative
				Certified	Found	(70)	CITOI (70)
	NIST 1571 (Orchard Leaves)	mg kg ⁻¹	Cd(II)	0.10	0.104	104.0	3.8
	NIST 1572 (Citrus Leaves)	mg kg ⁻¹	Cd(II)	0.03	0.029	96.6	3.2
459							
460							
461							
462							
463							
464							
465							
466							
467							
468							
469							
470							
471							
472							
473							
474							
475							
476							
477							

5					
6		sample	Added	Found	Recovery%
<i>(</i>		-	$(\mu g L^{-1})$	(μg L ⁻¹)	
8		Used oil	0	3.61	-
9		(direct spike to oil)	10	10.46	68.5
10		(^b direct to FAAS)			
11		Used oil	0	3.21	
12		(direct spike to oil)	10	12.31	90.9
13		(^a Preconcentration then FAAS)			
14		Unused oil	0	4.27	- 0
15		(direct spike to oil)	10	11.54	72.7
16		(^b direct to FAAS)			
17		Unused oil	0	5.01	
18		(direct spike to oil)	10	13.94	91.3
19		(^a Preconcentration then FAAS)			
20		Liquid phase of used oil	0	3.012	· · · ·
21		(spike to aqueous phase)	10	12.71	97
22		(^a Preconcentration then FAAS)			
23		Liquid phase of unused oil	0	5.01	
24		(spike to aqueous phase)	10	14.6	95.9
25		(^a Preconcentration then FAAS)			t
26	479	^a Preconcentration with magnetic polymeric	nanoparticles		
27			I		Ū
28	480	^b EIEB method			Ö
29					C)
30	481				
31	101				
32					(0)
33	107				
34	402				0
35					0
36					
37	483				
38					Ű
39					5
40	484				
41					
42					
43	485				C)
44					
45					
46	106				_
47	400				
48					ï
49					
50	487				4
51					
52					
53	488				
54					
55					
56	489				
57					
58					
59			~-		
60			25		

Table 5. The results of determination of cadmium in real samples

1 2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 14 15 16 17 18 9 20 21 22	507	<section-header><section-header></section-header></section-header>	
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	509	SEM MAG: 50.00 kx SEM HV: 15.00 kV Date(m/d/): 04/20/13 Vac: HiVac RMRC	
	510		
	010		
	511		
	512		
	513		
	514		
40 41	515		
42 43	516		
44 45	517		
46 47 48 49 50 51 52 53 54	518		
	519		
	520		
	521		
55 56 57 58 59 60	522		28

 $\begin{array}{r} 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\\ 59\\ \end{array}$

