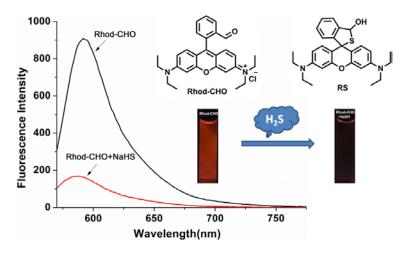

Analytical Methods

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.


Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

A Rhodamine-Formaldehyde Probe Fluorescently Discriminate H_2S from Biothiols

Xufeng Hou, a,b Xinling Guo, Azhaoyang Luo, Huijun Zhao, Bing Chen, Jin Zhao, Jianghong Wang A,*

^b School of Chemistry and Chemical Engineering, Xuchang University, Xuchang, 461000, P. R. China.

A novel mechanism-based fluorescent probe **Rhod-CHO** which involved the initial nucleophilic addition of H_2S to aldehyde followed by the subsequent intramolecular nucleophilic addition process.

^a Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, People's Republic of China;

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

2 3

4

5

6 7

8

9 10

11 12 13

14 15

16 17

18

19

20

21

22

23

24 25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

ARTICLE TYPE

A Rhodamine-Formaldehyde Probe Fluorescently Discriminate H₂S from Biothiols

Xufeng Hou, ab Xinling Guo, Zhaoyang Luo, Huijun Zhao, Bing Chen, Jin Zhao and Jianhong

5 Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX DOI: 10.1039/b000000x

A new rhodamine-formaldehyde probe based on fluorescence on-off strategy for hydrogen sulfide detection was developed. The probe shows a fast and highly selective response to 10 hydrogen sulfide over other reactive thiol-containing species both in aqueous media and in living cell system. Its potential utility for biological applications was confirmed by fluorescence imaging of H₂S in live cells.

Biological SH-containing molecules, such as cysteine (Cys), 15 homocysteine (Hcy), glutathione (GSH) and hydrogen sulfide (H₂S), elicit diverse physiological responses in cellular processes. For instance, endogenous biothiols, that is, Cys, Hcy, and GSH, are of crucial importance in maintaining redox balance of biological systems, while abnormal level of these biothiols is 20 closely associated with a variety of diseases such as cancer, AIDS, cardiovascular and Alzheimer's diseases, Parkinson's disease and neurodegenerative diseases.² In addition, H₂S, the gasotransmitter endogenously generated from L-cysteine in mammalian cells, is recently recognized as a signaling molecule exhibiting significant 25 effects in both the cardiovascular and neuronal systems, 1b,3 and it is also believed to be related with diseases such as diabetes, Alzheimer's disease and Down's syndrome.⁴ Therefore, developing efficient methods for SH-containing molecules detection is of great importance and helpful to elucidate the 30 physiological and pathological roles of biological thiols.

Recently, fluorescence bioimaging based on chemical probe has become a powerful tool for biomolecules detection in living systems owing to its high sensitivity, selectivity and especially, non-destructive intracellular detection.⁵ To date, various 35 fluorescence probes have been developed for H₂S and biothiols individually. In general, the design strategies of these probes are mainly based on the characteristic chemical reactions of H2S or biothiols such as nucleophilic attack to unsaturated double bonds or aldehyde, 6 reducing azides or nitro groups, 7 binding affinity 40 towards metal ions, 8 thiolysis of dinitrophenyl ether, 9 and so on. Only a few fluorescence probes discriminating H₂S from biothiols (i.e. Cys, Hcy and GSH) in biological systems have been reported so far. 6a-b,7a-b,8c,10 However, there exist some limitations in discriminating H₂S from biothiols because of the 45 similarity in reactivity. For example, as a reductant, the amine reaction product generated from H₂S or thiol-mediated reduction is nondistinctive, thereby causing non-specific detection of the fluorescence probe. As for the nucleophilicity of both H₂S and

Scheme 1. Synthesis of fluorescent rhodamine-formaldehyde probe (Rhod-

biothiols, the initial nucleophilic addition to the electrophilic center can occur equally, thus resulting in intricate fluorescence changes, decreasing the H₂S detection capacity. In view of these facts, the development of innovative chemical probes that 65 effectively differentiate H₂S from biothiols is eagerly needed. Therefore in recent years, intelligent mechanism-based chemical probes for H₂S selective detection have been increasingly reported. Xian et al. reported the fluorescein-based H₂S detection probe which undergone the nucleophilic attack of H2S to 70 disulfide bond followed by intramolecular nucleophilic addition of adjacent ester group to release the fluorophore. 6c,11 Similarly, Qian et al. conjugated the adjacent disulfide benzoic moiety with 2-(2'-hydroxyphenyl)-benzothiazole and achieved specific detection of H₂S.^{10b} He, Zhao and Jiao et al. respectively used the 75 aldehyde and α,β -unsaturated acrylate moiety (ortho to each other) as H₂S trap and elucidated the mechanism in which the initial nucleophilic addition of H2S to the electrophilic center produced a thiol intermediate and the subsequent thiol nucleophilic attack to aldehyde resulted in cyclization, thus inducing fluorescence 80 change and detecting H₂S. ^{6a,6b} Following the above mechanism, biothiols such as Cys, Hcy and GSH, owing to the lack of dual nucleophilicity, would not proceed. In view of these, further design strategies based on the dual nucleophilicity of H₂S are highly required.

Herein, we present the design and biological application of a fluorescent rhodamine-formaldehyde probe (Rhod-CHO, Scheme 1). It includes a H₂S trap group formaldehyde and a fluorescent reporter rhodamine. The probe was synthesized as shown in Scheme 1, and the structure was confirmed by ¹H NMR, ₉₀ ¹³C NMR, and HRMS spectra (ESI, †).

The rhodamine scaffold has excellent fluorescence

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44 45

46

47

48

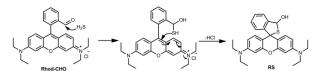
49

50

51

52

53


54

55

56

57

58 59 60

Scheme 2. The proposed detection mechanism of Rhod-CHO for H₂S.

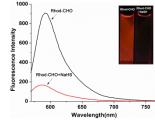


Fig. 1 Fluorescence spectra of Rhod-CHO (10 μM) in PBS (20 mM, pH 7.4, 15 1% CH₃CN, v/v) upon titration with NaHS (100 μM). λ_{ex}: 560 nm. Slits: 5/5 nm. Inset: The visual fluorescence color of Rhod-CHO (10 μ M) before (left) and after (right) addition of 10 equiv. of NaHS (UV lamp, 365 nm). characteristics, high quantum yield, favourable membrane permeability and good solubility in aqueous phosphate-buffered 20 solution. 12 In practice, it can transform reversibly between the nonfluorescent spirocyclic form and the fluorescent open-ring form. 13 We speculate that, in **Rhod-CHO** probe, the initial nucleophilic addition of H₂S to aldehyde will produced a thiol intermediate, and then intramolecular nucleophilic attack of the 25 SH-containing compound on xanthene framework results in the nonfluorescent spirocyclic form. As for other biothiols (i.e. Cys, Hcy and GSH), owing to the lack of dual nucleophilicity, the second nucleophilic attack will not perform. Furthermore, the relatively high pKa values of these endogenous biothiols 30 compared with H₂S in physiological media (pKa: for Cys, Hcy and GSH, ≥ 8.5 ; for H₂S, ca. 7.0)^{16d,11} will make them be inefficient in nucleophilicity. Because the probe Rhod-CHO exists as fluorescent open-ring form, such addition-cyclization cascade reaction induced by H₂S will make the probe exhibit "on-35 off" type fluorogenic behavior. Therefore we anticipate that the

To verify the proposed detection mechanism, we examined the 40 reactivity of probe **Rhod-CHO** (10 μM) towards NaHS (a commonly employed H₂S donor) in phosphate buffer (20 mM, pH 7.4, containing 1% CH₃CN) at 25 °C. As shown in Fig. 1, free

Rhod-CHO probe will discriminate H₂S from biothiols with high

selectivity. The proposed detection mechanism of probe Rhod-

CHO for H_2S is depicted in Scheme 2.

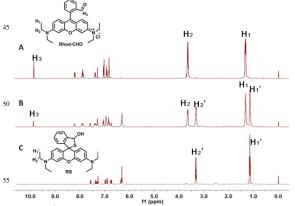


Fig. 2 ¹H NMR titration experiment in CDCl₃. A) Rhod-CHO; B) Rhod-CHO + NaHS; C) Compound RS.

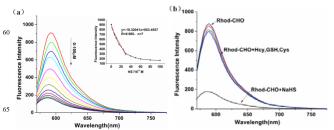


Fig. 3 (a) Fluorescence spectra of Rhod-CHO (10 µM) in PBS (20 mM, pH 7.4, 1% CH₃CN, v/v) upon titration with NaHS from 0-100 μ M. λ_{ex} : 560 nm. Slits: 5/5 nm. Inset: The linear relationship between the fluorescence intensity 70 and the concentration of NaHS (0-30 μM). (b) Fluorescence spectra of Rhod-CHO (10 µM) in PBS (20 mM, pH 7.40, 1% CH₃CN, v/v) upon addition of 10 equiv. of Hcy, GSH, Cys and NaHS. λex: 560 nm. Slits: 5/5 nm.

Rhod-CHO displayed strong fluorescence band at 592 nm (fluorescence quantum yield, 0.541). Upon addition of H₂S, the 75 fluorescence intensity at 592 nm dramatically decreased with a slight blue-shift of emission. The result was attributed to the consumption of the open-ring fluorophore and simultaneous generation of spirocyclic. Moreover, the H₂S- induced fluorescence quenching was obviously observed under UV lamp 80 (365 nm) (Fig. 1, inset). This mechanism was proved by ¹H NMR titration experiment (Fig. 2). The ¹H NMR spectrum of Rhod-CHO in CDCl₃ completely turned into the same spectrum as spirocyclic compound RS in the presence of NaHS, and during the course of transformation, i.e. 10 min after addition of NaHS, 85 the coexistence of both Rhod-CHO and RS was found in the NMR spectrum (Fig. 2B). For example, the aldehyde proton (CHO), methylene proton (CH₂) and methyl proton (CH₃), which belonged to Rhod-CHO and RS respectively, appeared simultaneously in the spectrum (Fig. 2B), and this clearly 90 indicated the transition. In addition, the structure of spirocyclic compound RS was confirmed by ¹H NMR, ¹³C NMR, and HRMS spectra (ESI, †). These results coincide with our proposed mechanism mentioned above.

Next, we investigate on the sensitivity and the selectivity of 95 Rhod-CHO in response to H₂S. The reactivity of Rhod-CHO (10 µM) towards different concentrations of NaHS was examined in phosphate buffer (20 mM, pH 7.4, containing 1% CH₃CN) at 25 °C. As shown in Fig. 3a, upon addition of increasing amount of NaHS into the Rhod-CHO solution, the fluorescence intensity 100 at 592 nm sharply decreased. A linear relationship was found between the fluorescence quenching and the concentration of NaHS in the range of 0 to 30 µM (Fig. 3a, inset), with the detection limit being 0.12 µM. The results demonstrate that hydrogen sulfide could induce fluorescence quenching of Rhod-105 CHO in a concentration-dependent manner. The reaction time profile of Rhod-CHO and H2S was detected in PBS buffer solution (20 mM, pH 7.4, 1% CH₃CN, v/v) and the results showed that there was a linear response within 5 min and the fluorescence intensity decreased with nonlinearity in the range of 110 5 to 20 min (Fig. S3). To evaluate the selectivity, we examined the effect of other biologically relevant analytes on **Rhod-CHO**. As shown in Fig. 3b, compared to H_2S , the addition of 10 equiv. of Cys, Hcy and GSH induce much smaller fluorescence quenching. Moreover, other biologically relevant species such as 115 HSO_3^- , AcO^- , $S_2O_3^{2-}$, SO_4^{2-} , CO_3^{2-} , Cu^{2+} , Zn^{2+} and Hg^{2+} , performed in a similar way (Fig. S4). Therefore these results

confirmed the sensitive and selective nature of Rhod-CHO towards H₂S.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

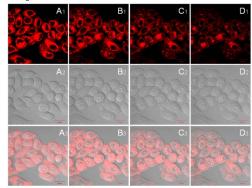


Fig. 4 Confocal fluorescence images of living HepG2 cells incubated with NaHS at different time fluorescence image (A1, B1, C1, D1), bright field image (A₂, B₂, C₂, D₂) and overlayed image (A₃, B₃, C₃, D₃). (A) The cells incubated with Rhod-CHO (5 µM) for 30 min in the presence of 20 mM PBS (pH 7.4), incubation was performed at 37 °C under a humidified atmosphere containing 20 5% CO₂. (B) The cells pre-treated with 5 μM Rhod-CHO for 30 min, and incubated with 100 µM NaHS for 5 min at 37 °C, (C) The cells pre-treated with 5 µM Rhod-CHO for 30 min, and incubated with 100 µM NaHS for 10 min at 37 °C. (D) The cells pre-treated with 5 μ M Rhod-CHO for 30 min, and incubated with 100 μM NaHS for 20 min at 37 °C. Scale bar: 20 μm

With these data in hand, we perform the confocal fluorescence imaging of Rhod-CHO in biological system. HepG2 cells, incubated with Rhod-CHO (5 µM) in culture medium for 30 min at 37 °C, exhibited strong fluorescence (Fig. 4A₁). By contrast, the fluorescence intensity decreased gradually after the cells were 30 further incubated with NaHS (50 μM) for 20 min (Fig. 4B₁, C₁ and D₁), indicating the potential application of **Rhod-CHO** in visualizing H₂S levels of living cell.

In conclusion, a mechanism-based fluorescent Rhod-CHO for H₂S selective detection was developed. The probe exerts highly 35 sensitive and selective "on-off" fluorescence detection towards H₂S over other biothiols such as Cys, Hcy and GSH. Preliminary fluorescence imaging in living cells indicates its potential for biological applications. Moreover, the interesting reaction mechanism may provide new design strategy for fluorescent 40 probes for H₂S selective detection.

We are grateful for the financial support from the National Natural Science Foundation of China (Nos. 21272056 and U1304202) and the Key Scientific and Technological Projects of Henan province (Nos. 112300413224 and 102102310195).

45 Notes and references

- ^a Key Laboratory of Natural Medicines and Immunotechnology of Henan Province, Henan University, Kaifeng 475004, China. Fax: +86 371 2286 4665; Tel: +86 371 2286 4665; E-mail: hdky@henu.edu.cn
- 50 b School of Chemistry and Chemical Engineering, Xuchang University, Xuchang, 461000, P. R. China.
- † Electronic Supplementary Information (ESI) available: Electronic Supplementary Information (ESI) available: Experimental procedures, supplemental spectra, and the ¹H-, ¹³C-NMR, and HRMS spectrum. See 55 DOI: 10.1039/b000000x/
- (a) C. E. Paulsen and K. S. Carroll, ACS Chem. Biol., 2010, 5, 47; (b) L. Li, P. Rose and P. K. Moore, Annu. Rev. Pharmacol. Toxicol., 2011, 51, 169; (c) M. M. Gadalla and S. H. Snyder, J. Neurochem., 2010, 113, 14.

- (a) H. Refsum, P. M. Ueland, O. Nygard and S. E. Vollset, Annu. Rev. Med., 1998, 49, 31; (b) S. Shahrokhian, Anal. Chem., 2001, 73. 5972; (c) S. Y. Zhang, C. N. Ong and H. M. Shen, Cancer Lett., 2004, 208, 143; (d) K. S. Jensen, R. E. Hansen and J. R. Winther, Antioxid. Redox Signal., 2009, 11, 1047.
- (a) K. Abe and H. Kimura, J. Neurosci., 1996, 16, 1066; (b) K. R. Olson, Antioxid. Redox Signal., 2012, 17, 32; (c) H. Kimura, Amino Acids, 2011, 41, 113.
- (a) K. Eto, T. Asada, K. Arima, T. Makifuchi and H. Kimura, Biochem. Biophys. Res. Commun., 2002, 293, 1485; (b) P. Kamoun, M. C. Belardinelli, A. Chabli, K. Lallouchi and B. Chadefaux-Vekemans, Am. J. Med. Genet. A, 2003, 116A, 310.
- (a) Y. Yang, Q. Zhao, W. Feng and F. Y. Li, Chem. Rev., 2013, 113, 192; (b) X. Chen, Y. Zhou, X. Peng and J. Yoon, Chem. Soc. Rev., 2010, 39, 2120; (c) N. Kumar, V. Bhalla and M. Kumar, Coordination Chem. Rev., 2013, 257, 2335; (d) J. Chan, S. C. Dodani and C. J. Chang, Nat. Chem., 2012, 4, 973; (e) L. Yuan, W. Lin, K. Zheng, L. He and W. Huang, Chem. Soc. Rev., 2013, 42,
 - (a) Y. Qian, J. Karpus, O. Kabil, S. Y. Zhang, H. L. Zhu, R. Banerjee, J. Zhao and C. He, Nat. Commun., 2011, 2, 495; (b) Y. Qian, L. Zhang, S. Ding, X. Deng, C. He, X. E. Zheng, H. L. Zhu and J. Zhao, Chem. Sci., 2012, 3, 2920; (c) C. Liu, J. Pan, S. Li, Y. Zhao, L. Y. Wu, C. E. Berkman, A. R. Whorton and M. Xian, Angew. Chem. Int. Ed., 2011, 50, 10327; (d) Y. C. Chen, C. C. Zhu, Z. H. Yang, J. J. Chen, Y. F. He, Y. Jiao, W. J. He, L. Qiu, J. J. Cen and Z. J. Guo, Angew. Chem. Int. Ed., 2013, 52, 1688; (e) X. Wang, J. Sun, W. Zhang, X. Ma, J. Lv and B. Tang, Chem. Sci., 2013, 4, 2551; (f) K. S. Lee, T. K. Kim, J. H. Lee, H. J. Kim and J. I. Hong, Chem. Commun., 2008, 44, 6173; (g) X. Q. Chen, S. K. Ko, M. J. Kim, I. Shin and J. Y. Yoon, Chem. Commun., 2010, 46, 2751; (h) L. Yuan, W. Y. Lin and Y. T. Yang, Chem. Commun., 2011, 47, 6275; (i) G. J. Kim, K. Lee, H. Kwon and H. J. Kim, Org. Lett., 2011, 13, 2799; (j) H. S. Jung, K. C. Ko, G. H. Kim, A. R. Lee, Y. C. Na, C. Kang, J. Y. Lee and J. S. Kim, Org. Lett., 2011, 13, 1498; (k) Y. Q. Sun, M. L. Chen, J. Liu, X. Lv, J. F. Li and W. Guo, Chem. Commun., 2011, 47, 11029.
- (a) A. R. Lippert, R. J. New and C. J. Chang, J. Am. Chem. Soc., 2011, 133, 10078; (b) Z. Wu, Z. Li, L. Yang, J. Han and S. Han, Chem. Commun., 2012, 48, 10120; (c) R. Wang, F. Yu, L. Chen, H. Chen, L. Wang and W. Zhang, Chem. Commun., 2012, 48, 11757; (d) W. Xuan, R. Pan, Y. Cao, K. Liu and W. Wang, Chem. Commun., 2012, 48, 10669; (e) L. A. Montoya and M. D. Pluth, Chem. Commun., 2012, 48, 4767; (f) W. Sun, J. Fan, C. Hu, J. Cao, H. Zhang, X. Xiong, J. Wang, C. Shuang, S. Sun and X. Peng, Chem. Commun., 2013, 49, 3890.
- (a) M. G. Choi, S. Cha, H. Lee, H. L. Jeon and S. K. Chang, Chem. Commun., 2009, 47, 7390;(b) K. Sasakura, K. Hanaoka, N. Shibuya, Y. Mikami, Y. Kimura, T. Komatsu, T. Ueno, T. Terai, H. Kimura and T. Nagano, J. Am. Chem. Soc., 2011, 133, 18003; (c) X. Qu, C. Li, H. Chen, J. Mack, Z. Guo and Z. Shen, Chem. Commun., 2013, 49, 7510.
- (a) X. Cao, W. Lin, K. Zheng and L. He, Chem. Commun. 2012, 48, 10529; (b) T. Liu, Z. Xu, D. R. Spring and J. Cui, Org. Lett., 2013, 15, 2310; (c) J. Wang, W. Lin and W. Li, Biomaterials, 2013, 34, 7429
- (a) J. Zhang, Y. Q. Sun, J. Liu, Y. Shi and W. Guo, Chem. Commun., 2013, 49, 11305; (b) Z. Xu, L. Xu, J. Zhou, Y. Xu, W. Zhu and X. Qian, Chem. Commun., 2012, 48, 10871; (c) S. K. Das, C. S. Lim, S. Y. Yang, J. H. Han and B. R. Cho, Chem. Commun., 2012, 48, 8395. C. Liu, B. Peng, S. Li, C. M. Park, A. R. Whorton and M. Xian, Org.
- Lett., 2012, 14, 2184. (a) X. Chen, T. Pradhan, F. Wang, J. S. Kim and J. Yoon, Chem.

Rev., 2012, 112, 1910; (b) Y. Q. Sun, J. Liu, X. Lv, Y. Liu, Y. Zhao

- and W. Guo, Angew. Chem., Int. Ed., 2012, 51, 7634; (c) H. Zheng, X. Q. Zhan, Q. N. Bian and X. J. Zhang, Chem. Commun., 2013, 49,
 - 13 (a) W. Shi and H. Ma, Chem. Commun., 2012, 48, 8732; (b) T. Peng and D. Yang, Org. Lett., 2010, 12, 496.