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Abstract 11 

Baseline shifts exist in many types of Raman spectrometers. Acquired spectra 12 

normally contain desired signal as well as undesirable elements such as background 13 

noise. In this paper, an improved asymmetric least squares (IAsLS) has been proposed 14 

for baseline correction of Raman spectra. The baseline correction algorithm is 15 

initiated by the raw spectrum baseline, and this baseline can be estimated by 16 

polynomial fitting method. For the simulated Raman spectra, the performance of 17 

proposed algorithm is evaluated and compared with that of asymmetric least squares 18 

(AsLS) and Jiang’s method. The results showed that it is improved by sixteen fold 19 

and nine fold respectively. This proposed IAsLS method is successfully applied to 20 

practical Raman spectral data and the results in the paper indicate that the baseline of 21 

Raman spectra can be automatically subtracted. 22 

  23 

Keywords: Baseline correction; Polynomial fitting; Improved asymmetric least 24 

squares; Raman spectroscopy 25 

 26 

1. Introduction 27 

 28 

                                                             
Abbreviations: IAsLS, Improved asymmetric least squares; AsLS, Asymmetric least 

squares; RMSE, Root Mean Square Error; JAsLS, Jiang’s asymmetric least squares 

baseline correction method 
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Raman spectroscopy is a rapid analytical technology and it provides detailed 29 

spectroscopic fingerprint information of target molecules. This technique is powerful 30 

and non-destructive, which requires only minimal sample preparation and it can 31 

realize the online analysis. Therefore, it is widely applied in food, materials, chemistry, 32 

biochemistry and other fields for qualitative or quantitative analytical purposes. 33 

However, in many types of Raman spectrometers, existences of unstable baselines are 34 

usually observed.1-3 Obtained spectra often consist of desired signal as well as 35 

undesirable elements such as background noise from sample holder, instrument and 36 

sample themselves. The baseline may lead to serious problems if the data recorder 37 

reaches the detection limits during the practical operation. Moreover, the baseline 38 

correction is important since this step extracts the true Raman peak intensities, which 39 

is necessary for further numeric processing. Meanwhile, the unique strict 40 

requirements come with the different baseline correction methods. 41 

Specifically, the baseline correction methods vary according to the precision acquired, 42 

patterns of losing and computing time obtained.4-7 Therefore, an algorithm can be 43 

applied for the selection of a baseline correction method which is suitable for a given 44 

Raman spectra. 45 

A large number of baseline correction methods are utilized by the research scientists, 46 

such as differencing and filtering, interpolation fitting, manual or automatic 47 

polynomial, using an asymmetric function 8, 9 and the combination of methods which 48 

are mentioned above.10 Currently, the baseline correction methods used are 49 

semi-manual, subjective, time consuming and lack of repeatability. The linear and 50 

constant drift can be eliminated by using the differencing method. 11 However, the 51 

differencing method may amplify the high frequency noise in Raman spectrum as 52 

well. Secondly, the interpolation fitting method requires the automatic selection of the 53 

interpolation node and this is dependent on the artificial experience.12, 13The baseline 54 

fitting is not the same in different interpolation functions. For the case of wavelet 55 

transform, 14, 15 it is important to choose an optimal decomposition way, appropriate 56 

wavelet and the threshold values. These values can be employed to distinguish the 57 

high frequency noise, low frequency baseline and middle frequency signals. Both 58 

manual and automatic polynomial fitting method 16require the user to manually 59 

identify the ‘non-Raman’ locations, determine the order of polynomial, then the 60 

baseline curve is formed by fitting these locations. The asymmetric least squares 61 

(AsLS) 17combine a smoother with asymmetric weighting of deviations from the trend 62 

of smooth to form an effective baseline estimation method. However, the limitation of 63 

this algorithm is that only the smoothness constraint with the second derivative is 64 

considered. In practical, the method requires the baseline fitting the raw data well, and 65 

the first derivative is very close. Therefore, based on the AsLS, Jiang proposed an 66 

asymmetric least squares which considered the first derivative constraint term and the 67 

background values as the initial baseline as well (it is described in reference 18 and 68 

abbreviated as JAsLS). 69 

An extensive literature review has been provided by Eilers and Schulze et al., 19, 70 
20which summarized the preprocessing methods for the typical spectral backgrounds, 71 

without focusing on any particular instrumental method. Based on the advantages of 72 
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AsLS and polynomial fitting, an improved asymmetric least squares (IAsLS) is 73 

proposed in this paper. And then, this hypothesized method is employed to remove the 74 

background noise of practical Raman spectral. 75 

2. Theory 76 

2.1 The asymmetric least squares (AsLS) 77 

Based on the Whittaker smoother, 20 the asymmetric least squares (AsLS) is proposed 78 

for background removal by Eilers.19 A given vector 1 2{ , ,..., }iy y y y  is defined as 79 

i  observed frequency domain spectral intensities. And the smoothing series 80 

1 2{ , ,..., }iz z z z
 
are faithful to y . Then, the penalized least squares function is 81 

minimized: 82 

2 2 2( ) ( )i i i

i i

F y z z     (1) 83 

with 2

1 1 2 1 2( ) ( ) 2i i i i i i i iz z z z z z z z            ,  1,2,3,...,i m . The parameter 84 

  is introduced to tune the balance between the smoothness and fitness. Finally, a 85 

vector w  is defined as weights of fitness and the minimized function is introduced 86 

as follows: 87 

2 2 2( ) ( )i i i i

i i

F w y z z     (2) 88 

The minimization of equation (2) can lead to the following equations: 89 

( )TW D D z Wy   (3) 90 

with ( )W diag w , D  is second order differential matrix: 2Dz z  . 91 

Generally, a lighter smoothing is capable of removing the noise, otherwise, the 92 

stronger smoothing will eliminated true signal. In order to estimate the true 93 

background, much more attention should be paid to the deviations in positive 94 

direction for baseline correction. However, the weights of both negative and positive 95 

residuals y z  are the same while using the Whittaker smoother. Therefore, a key 96 

parameter of asymmetric least squares for baseline correction, (0 1)p p  , is 97 

introduced and computed as follows: iw p
 
if i iy z

 
and 1iw p 

 
otherwise. 98 

2.2 The improved asymmetric least squares (IAsLS) 99 

The limitation of AsLS is that it only considers the smoothness constraint with the 100 

second derivative. In practical, on the premise of the baseline smoothness, the 101 

baseline correction method requires the baseline is well fitted, and the first derivatives 102 

for baseline data are close to each other. Therefore, the penalized least squares 103 

function of the improved asymmetric least squares proposed in this paper is 104 

minimized and shown as follows: 105 
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2 2 2 2

1( ) ( ( )) ( )i i i i i

i i i

F y z y z z          (4) 106 

where 1 1 1 1( ) ( ) ( ) ( )i i i i i i i i i iy z y z y z y y z z             , 107 

2

1 1 2 1 2( ) ( ) 2i i i i i i i iz z z z z z z z            . The first two part in F measure the fit 108 

to the signal and fit to the first derivative of the signal respectively, however, the rest 109 

part is a penalty on non-smooth behavior of z . The balance between the three parts 110 

is tuned by the parameters 1  
and  . Finally, a vector w  of weights and 111 

minimizes is introduced as follows: 112 

2 2 2 2

1[ ( )] ( ( )) ( )i i i i i i

i i i

F w y z y z z          (5) 113 

The minimization of equation (5) can lead to the following equations: 114 

1 1 1 1 1 1( ) ( )T T T T TW W D D D D z W W D D y      (6)

 

115 

with ( )W diag w , and the weight coefficient w  is defined the same as AsLS. 116 

1 ( )D y z  
 
and 2Dz z   are first and second order differential matrix 117 

respectively. 118 

Because of the mutual interaction of weights and smooth curve, the solution for the 119 

equations seems complicated. However, it can be transformed into two easy 120 

computations in iterative application. At the same time, the estimation values of initial 121 

baseline background for the raw spectrum are very important for the improved 122 

asymmetric least squares algorithms. Compared with background values estimated 123 

using in JAsLS method, the initial baseline background is estimated by polynomial 124 

fitting method in this paper. The flow chart of IAsLS algorithm is shown in Figure 1. 125 

Initial baseline of the raw spectrum y  is fitted by second order polynomials, say 126 

(0)z . According to (0)z , it is easy to compute new weights, say (0)w . Based on these 127 

weights, a new estimate of z  is obtained by solving equation (6). And then, we 128 

repeat these steps until the weights stay without changing anymore.  129 

Eilers19 reported that, for initial baseline estimation, the algorithm above can achieve 130 

convergence in about 5 to 10 iterations. However, it may not be able to estimate the 131 

signal background completely. Hence, the proposed algorithm is working iteratively. 132 

The residual of baseline reflected in the spectral background. Therefore, the spectrum 133 

is updated by the residual spectrum in the next iteration, and then repeats the 134 

estimation of the baseline with polynomial fitting. While the residual of baseline is 135 

almost unchanged in two iterations continuously, then the algorithm terminated. 136 

Using this method, the algorithm convergence can be obtained as the iterations always 137 

go downhill the gradient direction. And it is described by simulated spectra in details 138 

in Figure 3. 139 
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 140 

Figure 1 The flow chart of IAsLS algorithm 141 

2.3 Programming and Software 142 

All programs are written using Matlab R2011b and run under Windows 7 on a 143 

personal computer (RAM 4G, CPU 2.83GHz).The real Raman spectra were obtained 144 

from an Ocean Optic Peak Seeker Pro Raman spectrometer 25 equipped with a 145 

TE-cooled CCD detector, a 785 nm radiation from a He-Ne laser with a power of 300 146 

mW for sample excitation. 147 

3. Applications 148 

Normally, there are many types of background origin including Rayleigh scattering, 149 

long, short Stokes shift fluorescence, sample holder and instrument effects in Raman 150 

spectra. The fluorescence effects exist as three smooth features which are as to a 151 

function of Raman shifts. These features include offset, linear baselines and 152 

exponential curves. Sometimes, the fluorescence background is so strong that it 153 

overlaps with the peaks of Raman. Furthermore, removing the fluorescence 154 

background with high intensity will lead to the lower signal-to-noise ratio, because 155 

the Raman peaks could probably be weakened as well. The baseline shifts could be 156 

different from spectrum to spectrum, even for the same samples. Therefore, 157 

inconsistent baselines may lead to increasing of complexity and decreasing of 158 

applicability of mathematical model for qualitative and quantitative analysis. 159 

To obtain a better performance of baseline correction algorithm, we computed the 160 

optimal values for parameters ( p , 1  
and  ). With the true baseline, say b , as a 161 

reference. The Root Mean Square Error (RMSE) is minimized using the parameters 162 
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p , 1  
and   which are varied on a fine grid as follows: 163 

0 2( ) /i i

i

RMSE b b n  (7)

 

164 

As we don’t know b  in reality, but it can provide us a value for the optimal 165 

performance case, and it is worthwhile for us to find optimal parameters for 166 

algorithms if RMSE  can be made small. 167 

The simulation was carried out in order to imitate real spectral data sets that contain 168 

various backgrounds and Raman signals. A broader Gaussian peak was treated as 169 

curved background, a linear function was treated as sloping background, and a 170 

narrower Gaussian peak was treated as the spectra of interest. The simulated Raman 171 

spectrum consisted of 1024 channels. The amplitudes of simulate spectrum were 0.25, 172 

0.1, 0.12, 0.25, 0.1, 0.13. The slope of the linear part of the baseline was set to 173 

0.00001. The amplitudes of curves background were 0.15, 0.20 (baseline 1) and 0.15, 174 

0.30 (baseline 2) respectively. The two simulated spectra which include representative 175 

features such as overlapping peaks and high fluorescence background respectively are 176 

shown in Figure 2. 177 

 178 

Figure 2 The simulated spectra with complex baseline background 179 

(a) baseline 1 (b) baseline 2 180 

 181 

Figure 3 Iteratively estimated baseline by IAsLS of simulated Raman spectra 182 

First, the convergence of IAsLS baseline correction algorithm is shown in Figure 183 

3.The two iterations and the final results of the IAsLS algorithm on the simulated 184 

Raman spectra are demonstrated, and convergence occurs after 2 iterations. The initial 185 

estimated baselines, which are fitted by the second order polynomials, are strongly 186 
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improved by the new iterations. Therefore, the convergence of IAsLS baseline 187 

correction method is verified. 188 

And then, considering the range of the parameters in reference, 18 by choosing proper 189 

parameters (
410  , 2

1 10  , 0.001p  ), the performance of IAsLS baseline 190 

correction is compared with AsLS and JAsLS, and the results are shown in Figure 4. 191 

It is found that the background of raw spectrum is over-fitted by the AsLS algorithms 192 

and the intensity of spectrum is weakened as well (500-600 cm-1 in baseline 1 and 193 

baseline 2). In addition, the JAsLS method cannot fits background well at 194 

800-1000cm-1 (baseline 1) and 0-100 cm-1 (baseline 2), 500-700 cm-1 (baseline 2), 195 

however, it fits similarly to the IAsLS method at 100-800cm-1 (baseline 1) and 196 

100-500 cm-1 (baseline 2), 700-800cm-1 (baseline 2). Finally, in summary, using the 197 

proposed IAsLS method, the baseline background can be fitted well at whole Raman 198 

spectrum range. 199 

 200 

Figure 4 The performance of baseline correction based on AsLS, JAsLS and IAsLS. 201 

(a) baseline 1 (b) baseline 2 202 

Table 1 The performance of different baseline correction algorithms 203 

Algorithms Parameters 
Baseline 1 Baseline 2 

Time(s) Iterations RMSE Time(s) Iterations RMSE 

AsLS 410 

2

1 10 

0.001p   

0.0468 —— 0.0064 0.0156 —— 0.0064 

JAsLS 0.1092 3 0.0032 0.0156 2 0.0038 

IAsLS 0.2652 2 0.0006 0.2964 2 0.0004 

In addition, compared with three algorithms in Table 1, the computation time of AsLS 204 

is equal or shorter, but its RMSE is the largest. And, the computation time of JAsLS 205 

and IAsLS are equal or longer compared with AsLS. However, they are all less than 206 

one second that it doesn’t affect the offline or online baseline correction of Raman 207 

spectra. The RMSEs of the proposed IAsLS algorithm are the least, only 0.0006 208 

(baseline 1) and 0.0004 (baseline 2) respectively. They are reduced by five fold and 209 

eleven fold comparing with JAsLS and AsLS respectively in simulated Raman 210 

spectrum (baseline 1), nine fold and sixteen fold comparing with JAsLS and AsLS 211 

respectively in simulated Raman spectrum (baseline 2). At the same time, iterations of 212 
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the IAsLS method are less than JAsLS (baseline 1). The simulation shows that, with 213 

proper parameters, the obtained results are quite near to the true baseline. Therefore, 214 

the validity of the IAsLS method is approved. 215 

In practical, we only have the experimental data which can guide us in choosing of 216 

suitable values for parameters p , 1  
and  . Simultaneously, it is difficult for us to 217 

find a fail-safe cross-validation algorithm yet. Therefore, we report here of our 218 

experience with relatively ad-hoc computations. These can assist us to set 219 

approximately optimal parameters. Using the true baseline b , the simulated 220 

spectrum (baseline 1) as a reference, we varied p , 1  
and   on a fine grid and the 221 

RMSE is calculated afterwards to obtain an appropriate range of parameters. 222 

For each pair of parameters ( p , 1  
and  ), a baseline was estimated and the RMSE 223 

of the proposed method was computed. Simulation results for choosing of suitable 224 

values for parameters p , 1  
and   are shown in electronic supplementary 225 

information (Figure S1-Figure S4). The simulation shows that, in order to obtain the 226 

optimal performance, the value of p  should be set to less than 0.1, and the range of 227 

  value to 102 to 106, and the range of 1  value to less than 10-4. 228 

Now, we demonstrate the two applications of the IAsLS baseline correction procedure. 229 

The examples given are of different complexity (overlapping peaks and high 230 

fluorescence background) and which illustrate the performance and limitations of the 231 

algorithm. 232 

 233 

Figure 5 Original spectrum and the estimated baseline of dimethoate solution by 234 

IAsLS baseline correction method (
210  ,

5

1 10  , 0.001p  ) 235 
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 236 

Figure 6 Original spectrum and the estimated baseline of solid Rhodamine6G by 237 

IAsLS baseline correction method (
210  ,

5

1 10  , 0.01p  ) 238 

Figure 5 shows that the IAsLS baseline correction result of spectrum for dimethoate 239 

solution, while 
210  , 5

1 10  , 0.001p  . The raw spectrum consisting of 1024 240 

Raman shift units was obtained from the Raman spectrometer. The spectrum exhibits 241 

a linear baseline which can be attributed to the glass substrate. The spectrum for 242 

dimethoate solution with much overlapping peaks can be corrected well by IAsLS 243 

compared with other baseline correction methods (Figure S5). Then, the IAsLS 244 

baseline correction result of spectrum for solid Rhodamine6G are shown in Figure 6, 245 

while 
210  , 5

1 10  , 0.01p  . The spectrum exhibits a baseline disturbance 246 

that can be attributed to the fluorescence background of sample. The results show that 247 

IAsLS is able to remove the fluorescence signal better comparing with the other two 248 

methods, but not over-fitted. Above all, both of these irrelevant spectral disturbances 249 

can be removed well by the IAsLS baseline correction. 250 

4. Conclusion 251 

In this paper, we present an iterative method to estimate the backgrounds of Raman 252 

spectra. The simulation results show that the background of raw spectrum is 253 

over-fitted by the AsLS algorithms and the intensity of spectrum is weakened as well. 254 

In addition, the JAsLS method cannot fits background well at 800-1000cm-1 and 255 

0-100 cm-1 (baseline 2),500-700 cm-1(baseline 2) on simulated spectra respectively. 256 

However, it fits similarly to the IAsLS method at 100-800cm-1(baseline 1) and 257 

100-500 cm-1 (baseline 2), 700-800cm-1(baseline 2). Finally, using the IAsLS method, 258 

the baseline background can be fitted well over the whole Raman spectrum range. 259 

When the appropriate parameters were given, the simulation results indicate that the 260 

performance of IAsLS algorithm is improved by nine fold and sixteen fold comparing 261 

with that of JAsLS and AsLS respectively for the simulated Raman spectra. The 262 

actual Raman spectra experiments show that Raman peaks are eliminated 263 

automatically and only the baseline is subtracted. Furthermore, the position and shape 264 

of peak can be maintained as original form with this proposed method. 265 

 266 
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