This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
graphical abstract
75x53mm (300 x 300 DPI)
Novel sandwich electrochemiluminescence aptasensor based on molybdenum disulfide nanosheets–graphene composites and Au nanoparticles for signal amplification

Yan–Ming Liua, Min Zhoua, Ying–Ying Liua, Ke–Jing Huanga, Jun–Tao Caoa, Jing–Jing Zhangb, Gu–Fang Shib, Yong–Hong Chenb

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

In this work, we constructed a novel sandwich electrochemiluminescence (ECL) aptasensor for sensitive detection of thrombin based on molybdenum disulfide nanosheets–graphene (MoS\textsubscript{2}–GR) composites and Au nanoparticles. In the protocol, MoS\textsubscript{2}–GR composites were firstly synthesized and assembled on the glassy carbon electrode (GCE) to promote the electron transfer. Subsequently, gold nanoparticles (AuNPs) were covered on the electrode to improve the immobilized amount of aptamer1 (Apt1) and could further amplify the ECL signal as well. Afterwards, Apt1 was conjugated to the electrode via Au–S bond. Finally, the target thrombin and the quantum dots labeled aptamer2 (QDs–Apt2) as signal probe were successively attached to the GCE to fabricate a sandwich ECL aptasensor. With the excellent features of the MoS\textsubscript{2}–GR composites, AuNPs, and sandwich structure, multiple signal amplification for the ECL aptasensor has been achieved. The ECL intensity depended linearly on the logarithm of the thrombin concentration in the range from 0.02 to 5.0 pM and a detection limit of 1.3 fM (S/N = 3). Furthermore, the aptasensor was successfully applied to the determination of thrombin in human plasma with the recoveries of 90.0–102.4% and the RSDs of 2.1–3.7%. The protocol could serve as a new tool for protein detection in biochemical analysis.

Introduction

Aptamers are single–stranded oligonucleotides that are being used in various novel scientific fields as recognition probes, such as protein analysis, disease diagnosis and development of biosensor.1, 2 Aptamers have many advantages over traditional recognition molecules, for example simpler synthesis, easier storage, better reproducibility, lower cost, higher specificity, and wider applicability.3, 4 Aptamers can be also easily chemically modified with signal moieties and further enhance their biochemical stability. Numerous aptamer–based biosensors (aptasensors) have been documented for detection of small molecules,5 metal ions,6 and proteins.7 The different detection techniques for aptasensors were utilized including fluorescence,8 colorimetry,9 chemiluminescence,10 and electrochemiluminescence (ECL).11 Among them, ECL aptasensor has attracted much attention because of its better sensitivity, selectivity, and wider linear range.12, 13 Wang et al. developed a label–free bifunctional ECL aptasensor for detection of adenosine and lysozyme.14 Yu et al. reported an ECL aptasensor for tumor cells assay with a detection limit of 78 cells mL−1.15

ECL is a powerful detection technique due to its remarkable features, for example high sensitivity, low background, simple instrumentation and rapidity. The ECL has been applied in the analysis of macrolide antibiotics,16 anesthetics,17 and hemoglobin.18 ECL sensors based on quantum dots (QDs)19, 20 have been developed for the detection of metal ions,21 DNA molecular,22, 23 amino acid,24 and protein.25 CdSe–ZnS core–shell QDs, one kind of biocompatible semiconductor nanoparticles, has been used in the detection of protein26 and cancer cells.27

Most recently, the 2D nanomaterials, especially layered transition–metal dichalcogenides, have attracted great interests in the fields of electrochemistry because of their excellent electrochemical performance, especially in the fields of catalysts, sensors, electrode materials for capacitors, and lithium–ion batteries. MoS\textsubscript{2}, a typical family member of transition–metal dichalcogenides, has a sandwich structure similar to GR, which consists of three stacked atom layers (S–Mo–S) held together by Van der Waals force.28 Due to the distinctive layer structure and electronic properties, MoS\textsubscript{2} has been used in many fields, including electrode materials for lithium battery29 and capacitor30 and potential hydrogen storage media.31 However, few attentions have been put into its application as an electrode material for sensors because the electronic conductivity of MoS\textsubscript{2} is still lower compared to graphite/graphene. The combination of MoS\textsubscript{2} and other conducting materials may overcome this deficiency, such as graphene (GR).

GR, a flat monolayer of carbon atoms bonded through sp2 hybridization, has many outstanding properties comprising good
Thrombin is a kind of important enzyme in blood responsible for coagulation and related to many physiological processes. It plays a major role in a number of cardio-vascular diseases, and it is thought to regulate many processes in inflammation and tissue repair at the vessel wall. Many methods for thrombin detection have been developed. Sun et al. fabricated an electrochemical aptasensor for thrombin detection with the detection limit of 1.56 × 10^{-14} M. Wang et al. described a Ru(phen)

52

-based ECL aptasensor for thrombin detection with a detection limit of 4.0 × 10^{-15} M.

In this work, a novel, facile and ultrasensitive ECL aptasensor was constructed based on MoS\textsubscript{2}–GR composites for thrombin detection. The aptasensor with sandwich structure was designed by self-assembling method via thrombin–aptamer recognition reaction. With the excellent features of the MoS\textsubscript{2}–GR composites, AuNPs, and sandwich structure, the as-prepared ECL aptasensor exhibits highly ECL response and good stability. The results obtained indicate that the constructed aptasensor could be used for the sensitive and selective detection of thrombin.

Experimental

Reagents and materials.

Human thrombin was purchased from Sigma–Aldrich (St. Louis, MO, USA). Two DNA sequences (Apt1, 5′–SH–(CH\textsubscript{2})\textsubscript{6}–TTT TTT TTT TTT TGG TGG TGT GGT AGG GCA GGT TGG–3′; Apt2, 5′–NH\textsubscript{2}–(CH\textsubscript{2})\textsubscript{6}–TTT TTA GTC CGT GGT AGG GCA GGT TGG–3′; Apt2). GGT GAC T–3′) were obtained from Sangon Biotechnology Co., Ltd. (Shanghai, China). Hydrogen tetra chloroaurate (III) trihydrate (HAuCl\textsubscript{4}•3H\textsubscript{2}O) was from Alfa Aesar. 6–Mercapto–1–hexanol (MCH) was from Tianjin Heowns Biochem LLC (Tianjin, China). Graphite powder, Na\textsubscript{2}MoO\textsubscript{4}•2H\textsubscript{2}O, and L–cysteine were from Shanghai Chemical Reagent Corporation (Shanghai, China). The carboxyl–modified core–shell CdSe–ZnS QDs were from Wuhan Jiayuan Quantum Dots Co., Ltd. (Wuhan, China). All reagents were of analytical–reagent grade. The water (18.2 M\textsubscript{2}O cm) was used with an ultrapure water system (Kangning Water Treatment Solution Provider, China).

Apparatus.

Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements were carried out with a RST5200 electrochemical workstation (Zhengzhou Shiruisi Technology Co., Ltd., China). The ECL signal was collected with the photomultiplier tube (PMT, CR 120, Binsong Photonics, China) and BPCL ultra weak luminescence analyzer (Institute of Biophysics, Chinese Academy of Science, Beijing, China) and then recorded and processed with a computer using BPCL software. All electrochemical experiments were performed with a conventional three–electrode system. The morphologies of the composites were recorded on a JEM–2100 transmission electron microscope (TEM) and a Hitachi S–4800 scanning electron microscope (SEM). X–ray powder diffraction (XRD) pattern was operated on a Japan Rigaku/Max–A X–ray diffractometer equipped with graphite monochromatized high–intensity Cu Ka radiation (\(\lambda = 1.54178 \text{ Å}\)). Raman spectrum was executed on an England RENISHAW–INVIA Raman spectrometer with 514.5 nm laser and spectra range 80–9400 cm\(^{-1}\).

Preparation of graphene oxide (GO), MoS\textsubscript{2}–GR composites and MoS\textsubscript{2}

In a typical experiment, GO was prepared by the modified Hummer’s method. MoS\textsubscript{2}–GR composites were prepared by L–cysteine–assisted solution–phase method according to our previous work. 60 mg GO was dissolved in 50 mL water and then 0.3 g Na\textsubscript{2}MoO\textsubscript{4}•2H\textsubscript{2}O was added. After ultrasonication for 20 min, the pH of the solution was adjusted to 6.5 with 0.1 mol\textsubscript{L}^{-1} NaOH and then addition of 0.8 g of L–cysteine and 30 mL water. The above mixture was transferred into a 100 mL Teflon–lined stainless steel autoclave and heated at 180 °C for 48 h. After cooling naturally, the black precipitates were collected by centrifugation, washed with water and ethanol, and dried in a vacuum oven at 80 °C for 24 h. Besides, the preparation of MoS\textsubscript{2} was similar with MoS\textsubscript{2}–GR without addition of GO.

Preparation of QDs–aptamer conjugates.

CdSe–ZnS QDs were conjugated to Apt2 using the N–(3–dimethylaminopropyl)–N′–ethylcarbodiimide hydrochloride (EDC) and N–hydroxy–succinimide (NHS) as coupling agent. First, 5 µL 8 µM QDs was mixed with 80 µL 10 mM pH 7.4 PBS containing 1 mM EDC and 5 mM NHS, and reacted for 0.5 h at room temperature to activate the carboxyl–terminated surface of the CdSe–ZnS QDs. Then, 5 µL 10 µM Apt2 was added to the above mixture and reacted for 2 h at room temperature. The products were purified by dialyzing against water with a cellulose ester membrane bag. Then QDs–Apt2 was obtained and stored at 4 °C before use.

Fabrication of the ECL aptasensor.

The ECL aptasensor was fabricated based on MoS\textsubscript{2}–GR composites by layer–by–layer self–assembly method. The MoS\textsubscript{2}–GR composites could significantly improve the loading capacity and conductivity of the GCE. AuNPs was prepared according to our previous work. The GCE (3–mm–diameter) was polished with 1, 0.3, and 0.05 µm alumina slurries sequentially. After sonication in ethanol and water in turn, the GCE was allowed to dry at room temperature. Then, 10 µL MoS\textsubscript{2}–GR composites was trickled onto the GCE, then dried and soaked in 3–aminopropyltriethoxysilane (APTS) solution (2%, v/v) for 0.5 h to introduce the amine functional groups. Prepared in this way, the substrate surface was covered with positively charged APTS that readily adsorbed AuNPs with negative charge. After immersed into the AuNPs solution for 2 h, 5 µL Apt1 was dropped on the modified GCE to form Au–S bond. Subsequently, the electrode was rinsed with 10 mM pH 7.4 PBS and treated with 1 mM pH 7.4 MCH solution containing 10 mM PBS and 1 M NaCl to block up the nonspecifically bound oligonucleotides. Later, 10 µL thrombin was dropped onto the surface of the modified GCE and incubation at 37 °C for 1 h. After washed with
Tris–HCl and dried, the GCE was immediately covered with 5 µL QDs–Apt2 solution at room temperature for 2 h. The above process is described in Scheme 1.

Results and discussion

Characterization of MoS$_2$–GR.

The MoS$_2$–GR composites were well characterized by SEM, TEM, XRD and Raman. SEM image of GR sheets (Fig. 1A) reveals that the sheets are thin and smooth. It also can be seen that the single layered GR displays transparent two-dimensional sheets structure look like thin silk veil waves from the TEM image of GR in Fig. 1B. The SEM image of the MoS$_2$–GR composites shown in Fig. 1C reveals that the composites aggregate into particles with a few hundred nanometer in size with a 3D architecture. This 3D structure increases both the loading capacity for guest molecules and the stability of composites due to superstrength of GR. From the TEM image of MoS$_2$–GR composites (Fig. 1D), it can be observed that the layered MoS$_2$ is supported on the single layered GR surface and no apparent aggregation of the layered MoS$_2$. The HRTEM image of MoS$_2$–GR inset in Fig. 1D shows that a series of parallel lines embedded in the surface, indicating that the layer structure of the products is overlapped each other. The numbers of layer are between 3 and 17.

The XRD patterns of layered MoS$_2$–GR composites (curve a) and MoS$_2$ (curve b) were illustrated in Fig. 2A. For MoS$_2$–GR composites, the peak at 24.1$^\circ$ is corresponding to the (002) crystal plane of GR, and the peak at 14.4$^\circ$, 38.7$^\circ$ and 60.9$^\circ$ could be well-assigned to the (002), (100) and (110) planes of MoS$_2$, respectively. When 2θ = 14.4$^\circ$, the interlayer distance is estimated to be 0.62 nm (2dsinθ = nλ). The characteristic peaks of MoS$_2$–GR composites also appear in Raman spectra. As shown in Fig. 2B, the peaks at 379 cm$^{-1}$ and 404 cm$^{-1}$ for MoS$_2$–GR in curve a are attributed to the MoS$_2$ (curve b) and peaks at 1327 cm$^{-1}$ and 1598 cm$^{-1}$ are assigned to the D and G peaks of GR (curve c), respectively. These results indicate that the MoS$_2$–GR composites have been synthesized successfully.

![Scheme 1 Schematic diagram of the fabrication process of the ECL aptasensor.](Image)

The electrochemical and ECL behavior.

CV is an effective and convenient tool to investigate the changes of the electrode behavior after modified different materials. The CV curves of stepwise modified electrodes were shown in Fig. 3A. When the bare GCE (curve a) was firstly treated with MoS$_2$–GR, the peak current obviously increased due to the good conductivity of MoS$_2$–GR (curve b). The peak current further increased with AuNPs modification (curve c). When Apt1 was immobilized on the as–prepared GCE surface, the peak current decreased (curve d) because the aptamer can hinder the electron transfer. And the peak currents of both thrombin/Apt1/AuNPs/MoS$_2$–GR/GCE (curve e) and QDs–Apt2/thrombin/Apt1/AuNPs/MoS$_2$–GR/GCE (curve f) were further decreased. The decrease is ascribed to the addition of thrombin and Apt2 with nonconductive properties. The results indicate that the aptasensor is well fabricated.

EIS experiments were carried out to give further information on the impedance changes of the electrode surface in the modification process. The electrode impedance can be calculated on the basis of the Randles equivalent circuit shown in Figure 3B (inset). In the terms of EIS, Fe(CN)$_6^{3-/-4-}$ was utilized as the redox probe and the semicircle diameter in the impedance spectrum equals the electron–transfer resistance, R_ct. It is observed that the electron transfer resistance of the bare GCE was about 50 Ω (curve a). When the bare GCE was modified with MoS$_2$–GR and AuNPs sequentially, the resistance values decreased to 35 Ω (curve b), and 30 Ω (curve c), respectively, implying that the MoS$_2$–GR and AuNPs were excellent electric conducting materials and accelerated the electron transfer. After the...
immobilization of Apt1, thrombin and QDs–Apt2 successively, the resistance values increased to 110 Ω (curve d), 200 Ω (curve e) and 320 Ω (curve f), respectively, this was because the introduction of Apt1, thrombin and QDs–Apt2 greatly inhibits the electron transfer of the redox probe on the electrode surface. The results obtained by EIS method are consistent with those from CV measurement, confirming the successful fabrication of the electrode device.

In this work, we constructed a sandwich–type ECL aptasensor based on CdSe–ZnS QDs to detect thrombin. ECL signal at each immobilization step was also recorded and illustrated in Fig. 3C. QDs used in this work are a good ECL emission reagent. Thrombin has two binding sites and it could be able to link two aptamers. The carboxyl–modified QDs could be conjugated with amino–group–modified Apt2 by coupling agent to form QDs–Apt2. In the absence of QDs–Apt2, thrombin bound to the Apt1 produces a weak ECL signal (Fig. 3C(a–c)). However, in the presence of QDs–Apt2, QDs–Apt2 used as ECL signal reporter could bind to thrombin and produce an obviously increased ECL signal (Fig. 3C(f)). In addition, the increase of ECL signal depends on the amount of QDs–Apt2, which is proportional to the logarithm of thrombin concentration from the analytical process. In comparison with GR based aptasensor, the enhanced. The result indicates that MoS$_2$–GR composites were more powerful for the ECL biosensing, due to its large loading capacity and excellent conductivity.

The ultrasensitive detection of thrombin.

The fabricated ECL aptasensor was used to detect different concentration of thrombin (see Fig. 3D). In quantitative analysis, the linear range could be determined by the relation between signal intensity and concentration of analytes28,40 or the relation between signal intensity and logarithm of concentration of analytes26,44. In this work, we found that the ECL intensity is proportional to the logarithm of thrombin from 0.02 to 5.0 pM with a lower detection limit of 1.3 nM ($S/N = 3$). The linear equation was $I = 33925.33 + 2364.12 \log C$, and the correlation coefficient is 0.993. Compared with other sensors reported previously (Table 1), the layered MoS$_2$–GR composites is firstly used to construct the ECL aptasensor and the proposed ECL aptasensor exhibits a lower detection limit and wider linear range. The stability of the aptasensor was tested. Fig. 4A exhibits the ECL intensities of the aptasensor under consecutive potential scans from 0 to –1.7 V for 12 circles. The ECL signals are very high and stable (RSD, 1.1%), suggesting that this aptasensor is very suitable for ECL detection. To investigate the selectivity of the aptasensor, control experiments were performed using three similar proteins: 2.0 × 10$^{-3}$ M HSA (column a), 1.0 × 10$^{-6}$ M

<table>
<thead>
<tr>
<th>Sensors fabricated</th>
<th>Linear range (nM)</th>
<th>Detection limit (pM)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>aptamer/thrombin/aptamer–AuNPs</td>
<td>0.1–75</td>
<td>100</td>
<td>43</td>
</tr>
<tr>
<td>QDs/probe II/thrombin</td>
<td>27.2–545</td>
<td>2720</td>
<td>26</td>
</tr>
<tr>
<td>thrombin/TBA’/CM–PEG–CM/APTES/GCE</td>
<td>0.001–160</td>
<td>0.0156</td>
<td>37</td>
</tr>
<tr>
<td>thrombin/Fo’–Ru(phen)z²/+</td>
<td>0.0009–0.226</td>
<td>0.40</td>
<td>37</td>
</tr>
<tr>
<td>TBA’/GO–GCE</td>
<td>0.00001–5</td>
<td>0.0033</td>
<td>44</td>
</tr>
<tr>
<td>AuNCs–TBA’II–SI/thrombin/</td>
<td>0.00001–5</td>
<td>0.0033</td>
<td>44</td>
</tr>
<tr>
<td>TBA’I/BSA/Au electrode</td>
<td>0.25–80</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>MB⁺–(THR–1)/thrombin/BSA/NaYF₄:Yb,Er: UCNPn</td>
<td>2.5–90</td>
<td>1500</td>
<td>46</td>
</tr>
<tr>
<td>QDs–Apt2/thrombin</td>
<td>0.0002–0.0005</td>
<td>0.0013</td>
<td>This work</td>
</tr>
<tr>
<td>Apt1/AuNPs/MoS₂–GR/GCE</td>
<td>0.0005</td>
<td>0.0013</td>
<td>This work</td>
</tr>
</tbody>
</table>
| a: TBA, thrombin–binding aptamer.
| c: Fo, functional oligonucleotide.
| d: AuNPs, gold nanoclusters.
| e: MB, magnetic beads.
| f: THR–1, 5′–biotin GGT TGG TGT TGG
| g: ZnPc(OAr), Tetra–a–(2,4-di-tert-butylenoxy)–phthalocyaninato zinc
| h: THR–1, 5′–COOH AGT CCG TGG TAG GGC TTG GGG TGA CT
| i: Au NRs, gold nanorods |
j UCNPs, upconversion nanoparticles

Fig. 4 The stability of the ECL aptasensor (A) and selectivity of the ECL aptasensor to the interfering proteins (B): 2.0 × 10^{-5} M HSA (column a), 1.0 × 10^{-6} M BSA (column b), 2.0 × 10^{-5} M human IgG (column c), 5 pM thrombin (column d), and the mixture of four proteins (column e). The ECL conditions are the same as in Fig. 3.

BSA (column b), and 2.0 × 10^{-5} M human IgG (column c) to replace 5 pM thrombin (column d) separately (Fig. 4B). Only weak ECL responses could be produced by replacing thrombin with HSA, BSA, and human IgG. The cross selectivity of the aptasensor in a mixture of above four different proteins was also examined (column e). The ECL response of thrombin in the mixture of four proteins had little difference with that in the pure thrombin solution, indicative of the good selectivity and accuracy of the prepared aptasensor.

Applications of the ECL aptasensor in human plasma analysis.

The applicability of the ECL aptasensor was evaluated by analyzing eight human plasma samples provided by Xinyang Central Hospital. The patients were divided into two groups, three non–traumatic injury patients (sample No. 1–3 in Table 2) and five traumatic injury patients (sample No. 4–8 in Table 2).

The results from Table 2 showed that the contents of thrombin from traumatic injury patients are much higher than from non–traumatic injury patients. The recoveries of thrombin in plasma sample were also investigated. Three different concentrations of thrombin (0.04, 0.5, and 2.0 pM) were added into human plasma sample with recoveries of 90.0%, 92.4%, and 102.4%, respectively. The RSDs were less than 3.7%. These results demonstrate that the prepared ECL aptasensor is suitable for the analysis of thrombin in real biological samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Thrombin content (pM)</th>
<th>Sample</th>
<th>Thrombin content (pM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.02</td>
<td>5</td>
<td>3.3</td>
</tr>
<tr>
<td>2</td>
<td>0.032</td>
<td>6</td>
<td>1.2</td>
</tr>
<tr>
<td>3</td>
<td>0.024</td>
<td>7</td>
<td>1.9</td>
</tr>
<tr>
<td>4</td>
<td>2.1</td>
<td>8</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Conclusions

A novel and ultrasensitive ECL aptasensor was constructed based on layered MoS2–GR composites and AuNPs for thrombin detection. Several advantages of this protocol with multiple signal amplification should be highlighted. Firstly, the 3D architecture of biointerface based on MoS2–GR composites employed in the aptasensor could significantly improve the loading capacity and conductivity of GCE. Secondly, AuNPs assembled on the interface could conjugate the aptamer and greatly enhance the ECL signals. Thirdly, by coupling with the layered MoS2–GR composites based biointerface and the QD–aptamer nanoprobe, the fabricated sandwich-type ECL aptasensor exhibits attractive performances for detection of thrombin with very low detection limit, good selectivity, and acceptable stability. The protocol presents a new method for detection of proteins (e.g., tumor marker) in biological samples.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant 21375114, 21075106, U1304214) and the Foundation of Henan Educational Committee (14A150013).

Notes and references

References