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Abstract 15 

The applications of metabolomics as a methodology for providing better treatment and understanding 16 

human disease continue to expand rapidly. In this review, covering the last two years, the focus is on liquid 17 

chromatography-mass spectrometry (LC-MS) profiling of metabolites in urine. In LC-MS based 18 

metabolomics there are still problems with regard to: chromatographic separation, peak picking and 19 

alignment, metabolite identification, metabolite coverage, instrument sensitivity and data interpretation 20 

and in the case of urine sample normalisation. Progress has been made with regard to all of these issues 21 

during the period of the review. Of particular interest are the increasing use of orthogonal chromatographic 22 

methods for optimal metabolite coverage and the increasing adoption of receiver operator characteristic 23 

(ROC) curves for biomarker validation. 24 

Introduction 25 

The numbers of publications involving global profiling of low MW (<1000 amu) metabolites are increasing 26 

rapidly. In relation to human beings such studies focus on: diagnosis of disease, understanding disease, risk 27 

stratification, personalised medicine, monitoring the success of disease treatments and drug discovery. In 28 

human studies urine is a convenient bio-fluid for metabolomics studies for several reasons: it can be 29 

collected non-invasively; it is available in large quantities; collected continuously over a period it provides a 30 

complete metabolic profile unlike blood which provides a snapshot; it shows a different metabolome from 31 

blood; sample handling is simple since there is no need to remove protein. A major drawback of is the 32 

difficulty in standardising urinary metabolite concentrations which might vary significantly due to varying 33 

personal hydration status.  In the past urine has been standardised to creatinine but this may not be 34 

completely reliable
1
. 35 

             A comprehensive list of the metabolites in urine has been compiled. By using several analytical 36 

platforms it was possible to identify 449 and quantify 378 metabolites in urine 
2
. The platforms detected 37 

(quantified) metabolites as follows: 209 (209) NMR, 179 (85) by GC-MS, 127 (127) by DFI/LC-MS/MS, 40 38 

(40) by ICP-MS and 10 (10) by HPLC.  Several previously unknown urinary metabolites were identified. A 39 

literature review led to the identification and annotation of another 2206 metabolites 40 

(http://www.urinemetabolome.ca). The methods used were complementary but for coverage, high 41 
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throughput and ease of use NMR was rated the highest. Within the two years covered by this review, there 42 

have been eleven reviews of the topic 
3-13

. The key issues in LC-MS based metabolomics studies remain: 43 

instrument sensitivity and selectivity; chromatographic selectivity 
14

; optimal data extraction which includes 44 

alignment and picking of real peaks, metabolite identification 
15 

and data interpretation.  Two terms are 45 

used frequently in metabolomics reports. The term feature is used to describe a clear chromatographic 46 

peak to which an identity cannot be always assigned. A feature is not necessarily a metabolite but can be 47 

due to an adduct, fragment or isotope peak relating to another metabolite.  The other term is putative 48 

identification or annotation  which corresponds to MSI level 2 identification16.  Most of the literature 49 

reviewed below utilised high resolution mass spectrometry and within this frame of reference putative 50 

identification or annotation indicates that a metabolite has an exact mass linked to a defined elemental 51 

composition that also matches a metabolite in a data base.  In order to achieve MSI level 1 identification of 52 

a metabolite, an additional orthogonal method should be used   such as comparison of its chromatographic 53 

retention time with that of an authentic standard or comparison of  the MS/MS fragmentation pattern of 54 

the metabolite with that of an authentic standard or against a spectral database
16

.   Table 1 summarises 55 

studies over the last two years which have carried out metabolomic profiling of urine in order to find 56 

biomarkers of health or disease
17-65

 . As can be seen from the table there is no standard approach and 57 

sometimes complete details of the methodology are not given. Some key references are discussed further 58 

below. 59 

Chromatography Methods 60 

Chromatographic separation is important even when high resolution mass spectrometry detection, which 61 

gives a defined elemental composition, is used since isomers have to be separated in order to achieve 62 

definitive identification of a unique metabolite. The majority of studies shown in table 1 have utilised 63 

reversed phase chromatography (RPC) alone. For best metabolite coverage orthogonal methods, which use 64 

hydrophilic interaction chromatography (HILIC) and RPC, are required. Thus far only a limited range of HILIC 65 

columns are available in small particle UPLC format but in chromatography selectivity is much more 66 

significant than efficiency14. The different chromatographic methods used in metabolomics have been 67 

reviewed 
14

. Zhang et al analysed human urine plus 173 standards on a C18 column, a ZICHILIC column, a 68 
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ZICpHILIC column and a Cogent Diamond Hydride column. The numbers of putatively identified metabolites 69 

in urine were as follows: C18 column 564, ZICpHILIC column 789, ZICHILIC column 824 and Cogent column 70 

570 
66

.  The ZICpHILIC column gave the best overall coverage; the C18 column produced the lowest number 71 

(8%) of unique metabolites detected by that method alone.  Roux et al analysed urine on a C18 UPLC 72 

column or a pentafluorophenyl (PFP) column. Most of the polar compounds in urine eluted at or close to 73 

the void volume of the C18 column whereas the PFP column was able to separate polar isomeric 74 

compounds. Putative identification of 384 metabolites was made and 192 were matched against reference 75 

compounds 67. Kloos et al also made the similar observations when comparing orthogonal methods68 . 76 

Many compounds, apart from dietary xenobiotics and their metabolites, in urine are very polar and thus 77 

will not retain strongly on a C18 column. Early eluting compounds are more likely to be subject to ion 78 

suppression which compromises quantitative estimation and in addition isomers of polar compounds are 79 

not separated on RP columns.  80 

Optimisation of Mass Spectrometer Performance  81 

The mass spectrometers used in the various studies are summarised in table 1. The majority of studies 82 

utilised time of flight (TOF) instruments, some used Orbitrap Fourier transform instruments and a few used 83 

targeted tandem MS/MS methods. A quantitative targeted metabolomics approach monitoring 134 urinary 84 

metabolites was used to study T-cell mediated rejection (TCMR) after kidney transplantation and the 85 

method was as effective in assessing the risk of rejection as an invasive microarray analysis 
41

. Targeted 86 

methods usually follow from biomarker discovery methods based on high resolution methods using TOF or 87 

Orbitrap analysis. In these cases the primary identification of metabolites relies on an accurate masses 88 

being obtained and matched against a database such as the Human Metabolome Data Base (HMDB)
69

 for 89 

corresponding masses. In human metabolomics studies if the mass deviation of the proposed mass is < 3 90 

ppm from that of a known, non-xenobiotic, compound it is likely that, based on the elements C,H,N,O,S,P, 91 

the only competing metabolite ids produced will result from isomers
15

.  Older TOF instruments tend to 92 

produce poorer mass accuracy than that of Orbitraps of a similar age. For instance a recent study reported 93 

between laboratory mass accuracy of ±12 ppm for a variety UPLC TOF platforms70 .  Juo et al used sodium 94 

formate cluster ions post-acquisition to improve retrospectively to improve mass accuracy on a TOF 95 
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instrument so that it routinely had a deviation of < 4ppm 71. The more recently released TOF systems can 96 

produce the same mass accuracy as the older generation Orbitraps
72

 which routinely work to sub 3 ppm 97 

accuracy. 98 

Instrument Sensitivity and Metabolite Coverage  99 

By far the most commonly used ionisation technique in LC-MS is ESI. However, there are many metabolites 100 

which are either not ionised under ESI conditions or have poor ionisation efficiencies and thus are not 101 

readily detected. In addition many compounds such as hormones are present at low levels and thus are 102 

difficult to detect with untargeted methods. It was found that post column infusion of 2-(2-methoxyethoxy) 103 

ethanol improved ESI–MS sensitivity in negative ion mode up to 60 fold 
73

. Analyte response in negative ion 104 

mode was investigated and it was concluded that the best additive for sensitivity was 1 mM acetic acid 
74

. A 105 

series of papers have looked at stable isotope tagging to improve method precision and sensitivity. The 106 

general approach is to tag a pooled sample of urine with a stable isotope labelled tag and then match 107 

individual samples tagged with unlabelled tag against the pooled standard thus giving improved precision. 108 

In addition, selective derivatisation can be used to assist in characterising new metabolites. Liu et al used a 109 

stable isotope labelled tag in combination with precursor ion scan to identify or putatively identify 103 110 

thiols in urine 
75

. Several other papers have utilised the peak pairs generated from tagging with labelled and 111 

unlabelled reagent to improve sensitivity, via improved ionisation efficiency, and improved specificity, 112 

which is conferred by the  co-elution of labelled and unlabelled metabolites 
76,77

 
78

.   A software tool was 113 

developed for the analysis of biological samples tagged with unlabelled and labelled dansyl chloride ( 114 

www.mycompoundid.org/IsoMS )
79

 115 

Feature Selection 116 

Features are extracted from high resolution mass spectrometric data with a certain mass and retention 117 

time width e.g. ±10 ppm and ±0.5min. This generates extracted ion chromatograms containing peaks which 118 

can be linked to the accurate mass responsible for generating the peak. The initial problem the software 119 

has to deal with is to align chromatographic peaks efficiently since there are always slight variations in 120 

retention time from run to run and this can result in some peaks with the same exact mass and very close 121 

retention times being  collected as different features. This can compromise the statistics applied post-122 
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extraction and result in, for instance, missing values. Table 1 summarises the software packages used for 123 

data extraction in the studies covered by this review. Many of these are provided by vendors but there are 124 

popular packages such as XCMS
80

 and MZMine
81

 which are freely available. Chen et al compared three 125 

popular software packages for their effectiveness in peak finding, filtering, alignment, de-noising, and 126 

normalization. None of the data extraction packages picked exactly the same set of marker compounds and 127 

thus they concluded data pre-processing should be carried out with more than one package for optimal 128 

results 
82

.  Zheng et al defined a reliability index to reflect the linear correlation between metabolite 129 

concentration and peak area and found that it was improved 9.5 times for a standard mixture and 14.5 130 

times for human urine data with the optimised parameter settings in XCMS being calculated by 131 

experimental design approaches
83

. There is no perfect data extraction software as evidenced by the 132 

continual refinement of packages by vendors. It is important to roughly check the raw data, particularly 133 

when key marker compounds are being proposed, avoiding the false positive outcomes generated by poor 134 

chromatographic signals.  Some examples of how inappropriate data extraction can occur as a result of 135 

poor chromatography have recently been presented
84

. Optimal setting of MS acquisition parameters can 136 

have a bearing on the performance of the data extraction software. Mattarucchi et al found that feature 137 

selection was improved on an Acquity UPLC system coupled to a Q-TOF Premier mass spectrometer 138 

(Waters) as follows: metabolic profiles were acquired in triplicate with a scan time of 0.6 s and the samples 139 

were run in random order, which is standard practise. The application of this strategy reduced the number 140 

missing values in data sets 85 A procedure using pseudocolor plots was used analysis of LC/MS data 141 

providing an alternative approach to traditional untargeted metabolomics workflow and eliminating 142 

alignment and pre-processing of spectra 
86

.  143 

Data Normalisation 144 

The variation in the biological sample is much greater than instrumental variation although this may 145 

become significant over very long runs and is compensated for by randomising sample order and using 146 

pooled samples to correct data 
3,9,12, 23, 87

.  Urine strength varies and several parameters have been used to 147 

normalise it including creatinine concentration, osmolality and specific gravity. Creatinine normalisation has 148 

traditionally been the most popular but it is not always reliable because many exogenous factors (e.g. 149 
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disease states) could affect the excretion of creatinine1. As shown in table 1 nearly 50% of the studies do 150 

not state that the data were normalised and only ten used creatinine and in most cases details of the 151 

creatinine normalisation process were not given. Creatinine can be determined from its mass spectrometry 152 

signal but one has to be careful that its signal is not outside the linear range of the instrument since it is 153 

much more abundant than the majority of compounds in urine. Thus getting an accurate measure of it 154 

might entail doubling up sample runs so that a more concentrated sample is run for maximum coverage 155 

and a diluted sample is run for creatinine determination. An alternative is to use the spectrophotometric 156 

methods which have been used for years in clinical practice but are not necessarily completely specific for 157 

creatinine. Another popular method for sample normalisation is to use MS Total Useful Signals (MSTUS) 158 

and this was used by nearly half the studies shown in table 1. This technique proposed by Warrack et al
88

 159 

carries out subtraction of all the background signals in the mass spectrometer present in blank runs and 160 

retains the useful signals associated with the samples. However, there does seem to be a problem with this 161 

in that abundant metabolites such as creatinine tend to fluctuate throughout the day. Even the use of 24 162 

hour samples is not fool proof because levels creatinine, metabolites in the purine pathway
89

, 163 

acylcarnitines90 and many others91 depend on the level of physical activity day to day. Thus for instance a 164 

relatively active control group and a more sedentary patient group could have quite different profiles 165 

resulting from different levels of physical activity. Application of OPLS-DA to urine samples from prostate 166 

cancer patients and controls gave the best discrimination when MSTUS or creatinine were used as 167 

normalisation methods compared to osmolality or no normalisation23. A new normalisation strategy was 168 

demonstrated by Wu et al. where the total concentration of metabolites was determined by a LC-UV 169 

measurement of each urine sample following dansylation labelling and subsequently was utilised to adjust 170 

the sample loading amount in a LC-HRMS analysis for standardisation of urinary metabolite 171 

concentrations
92

. In a comparative study of different normalisation methods OPLS-DA was applied to reveal 172 

the discriminant MS features between cohorts with high and low/zero dietary intake of certain food. 173 

Normalisation to specific gravity prior to LC-HRMS analysis showed the most significant improvement in the 174 

number of total discriminant MS features recovered in comparison to that obtained without 175 

normalisation
93

.  176 
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Statistical Methods 177 

As detailed in table 1 a range different statistical methods are used in modelling of data sets and good 178 

coverage of these methods has been provided by several recent reviews
94-97

. The simplest statistics used to 179 

discriminate control and affected groups is based on univariate statistics with determination of difference 180 

based on a t test, a Wilcoxon rank test or ANOVA. Unsupervised multivariate methods such as principle 181 

components analysis (PCA) enable classification of samples sets which, in the case of metabolomics studies, 182 

may be based on data reduction for a large number of variables into a few key components . Supervised 183 

multivariate methods such as PLS-DA and OPLS-DA have been widely employed in biomarker discovery 184 

study. It is important to bear in mind that these methods can suffer from over-fitting caused by allowing 185 

too many variables relative to the number of observations. . Therefore an internal (a subset from within the 186 

sample set used for generating the model) or external (using a new sample set) cross-validation (CV) should 187 

be carried out in order to evaluate the model reliability.   Such models provide a useful method for 188 

targeting significant biomarkers and once a set of candidate biomarkers has been compiled it is preferable 189 

to construct a ROC curve. ROC curves, which have been widely used in clinical chemistry, are generated by 190 

using a non-parametric statistical method and provide a method for checking the sensitivity and specificity 191 

of a set of biomarkers for diagnostic applications.  ROC curves are increasingly being used to check the 192 

robustness of biomarkers discovered in metabolomics studies 
17-19,22,23,31,38-40,55.

 and their applications have 193 

been recently addressed in a tutorial paper
96

. Problems with the application of univariate statistics to 194 

metabolomics data sets arise from multiple sampling. Thus when comparing data sets for treatments and 195 

controls,   which contain hundreds metabolites, it is probable that some metabolites will be significantly 196 

different by chance. Correction for the possibility of false positives using the Bonferroni correction or the 197 

Benjamin-Hochberg false discovery rate is not widely carried out as judged from the papers we have 198 

reviewed.  This may in part be because it is difficult to define the number of variables which are being 199 

employed from the thousands of metabolites available in theory.  If several biochemically related 200 

metabolites are altered between a treatment and its control then this can improve confidence in the 201 

robustness of an observation. For instance several metabolites in one pathway might be up or down 202 

regulated but in many studies this is not the case. Zhang et al applied a range of chemometric methods to 203 
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LCMS data in order find biomarkers for patients with hepatitis C virus and map them onto Kegg pathways 204 

but on close examination of this paper there is no strong association with a particular pathway
42

. Perhaps 205 

by far the best way to avoid false positives is to repeat the experiment using the same sample size drawn 206 

from the population of interest
96

. 207 

 208 

Metabolite Identification 209 

LC-MS methods can be classified as either targeted or untargeted. Targeted methods are generally based 210 

on tandem mass spectrometry using low resolution trap instruments or triple quadrupole instruments. 211 

Targeted methods use a set of authentic standards to standardise both chromatographic retention times 212 

and the fragments produced in the collision cell of the mass spectrometer. One can consider the 213 

compounds being monitored by these methods to be characterised to MSI level 1
16

. Targeted methods are 214 

usually also designed to produce quantitative data.  The work flow in high resolution mass spectrometry 215 

methods based on HRMS (e.g. TOF or  Orbitrap) methods is more complex. Using such methods it is more 216 

likely that potential biomarkers will be observed for which authentic standards are not available or which 217 

are unknown compounds. The first pass in global metabolomics screens based on HRMS generates a list of 218 

features and then the accurate masses of these features can be searched against a database containing the 219 

accurate masses of metabolites.  This generates a list of metabolites which are present in sample. These 220 

metabolites can be considered to be putatively identified at this stage to MSI level 2
16

 since there may be 221 

several isomers for a particular elemental composition. Usually mature global screening methodologies will 222 

have lists of retention times for common metabolites and this information can be incorporated into the 223 

database search so that both exact mass and chromatographic retention time are matched to a metabolite 224 

in order to give MSI level 1 confidence whenever a complete match is achieved. Sometimes in addition to 225 

this MS/MS or MS
n
 fragmentation of a metabolite is carried out and is matched against that of a 226 

corresponding standard which increases confidence of identification still further. Authentic standards are 227 

not always available for a metabolite or an important marker feature may be completely unknown. In this 228 

case MS/MS is the only option for achieving MSI level 1 identification and may only allow partial 229 

characterisation. In a study by Dai et al software was produced for capturing ion pairs produced by 230 
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predictable neutral losses (glucuronide, sulphate etc.) following ion source fragmentation and was used to 231 

explore unknown metabolites in the urinary metabolome. In the samples studied  phase II conjugation 232 

reactions were severely impaired in patients with liver cirrhosis 
42

. One method for characterising 233 

unknowns is to predict metabolites. In silico prediction of the metabolism of 75 green tea components was 234 

carried and predicted 27245 metabolites and led to the identification of 74 known metabolites and 26 new 235 

metabolites of green tea in urine 
32

 . Some good examples of the use of MS/MS or MS
2
 for the identification 236 

of unknown compounds are covered by several papers within this review  
23, 34, 45,67

. 237 
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Table 1 Summary of urinary metabolomics studies screening for biomarkers from 2012-2014. Small <30 Medium 30-100 Large >100. MSTUS=MS Total Useful 

Signals, TIC total ion current, N/A not applied. PCA principal components analysis, (O)PLS-DA (orthogonal) partial least squares discriminant analysis, UVA 

univariate analysis, ROC receiver operator characteristic. 

Application  Sample size 

Analytical 

platform/Separation 

techniques Data processing software Normalisation 

Statistical Methods 

Urogenital Cancer 

    

 

Kidney cancer
17 

Medium UPLC-IT/RP not mentioned MSTUS 

UVA 

Kidney and Bladder 

cancer
18 

Medium HPLC-QTOF/RP+HILIC Profile Analysis (Bruker) MSTUS 

PCA, OPLS-DA, UVA and ROC 

Bladder cancer
19 

Large HPLC-QTOF/RP  MZMine 2 MSTUS 

OPLS-DA, UVA and ROC 

Bladder cancer
20 

Medium HPLC-QTOF/RP XCMS 

13C-labeled Universal 

Metabolome Standard 

(UMS) 

PCA, OPLS-DA and ROC 

Bladder cancer
21 

Medium 

HPLC-QTOF/RP + CE-

QTOF MassHunter (Agilent) Creatinine 

PCA, OPLS-DA and UVA 

Bladder, Kidney and 

Prostate cancer
22 

Large HPLC-QQQ/RP 

targeted analysis of 

nucleosides Creatinine 

PCA, PLS-DA and UVA 

Prostate cancer
23 

Medium 

HPLC-

Orbitrap/RP+HILIC MZMine 2 

Creatinine, MSTUS and 

osmolality 

PCA, OPLS-DA, UVA and ROC 

Cervical cancer
24 

Medium HPLC-QTOF/RP 

MarkerVeiw (AB Sciex), 

XCMS and MZMine 2 Creatinine 

PCA, OPLS-DA, UVA and ROC 

Cervical cancer
25 

Medium HPLC-QTOF/RP MassHunter (Agilent) TIC 

PLS and UVA 

Ovarian cancer
26 

Large UPLC-QTOF/RP XCMS MSTUS 

PCA, PLS-DA and UVA 

Ovarian cancer
27 

Medium UPLC-QTOF/RP+HILIC MarkerLynx (Waters) MSTUS 

PCA/PLS-DA/OSC-DA 

Bladder cancer
28 

Medium UPLC-QTOF/RP MassHunter (Agilent) Creatinine 

OPLS-DA 
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Non-urogenital Cancer 

    

 

Liver cancer
29 

Medium UPLC-QTOF/RP MarkerLynx (Waters) N/A 

OPLS-DA 

Liver cancer
30 

Small UPLC-QTOF/RP XCMS online N/A 

PCA and UVA 

Stomach cancer
31 

Medium HPLC-QTOF/RP MassHunter (Agilent) N/A 

PCA 

Lung cancer
32 

Medium UPLC-QTOF/RP MarkerLynx (Waters) MSTUS and creatinine 

OPLS-DA, UVA and ROC 

Other Disease 

    

 

Asthma
33 

Medium UPLC-QTOF/RP MarkerLynx (Waters) MSTUS 

OPLS-DA 

Xanthinuria
34 

Medium HPLC-Orbitrap/HILIC SIEVE (Thermo) N/A 

UVA 

Idiopathic nephrotic 

syndrome
35 

Small UPLC-QTOF/RP Comet (Nonliner Dynamics) TIC 

OPLS-DA 

Rheumatoid arthritis
36 

Medium HPLC-Orbitrap SIEVE (Thermo) N/A 

Nonlinear Principal Component 

Analysis (NPCA) and PLS-DA 

Jaundice syndrome
37 

Medium UPLC-QTOF/RP MarkerLynx (Waters) TIC 

OPLS-DA and HCA 

Metabolic syndrome
38 

Medium UPLC-QTOF/RP Profile Analysis (Bruker) Creatine 

PCA, OPLS-DA and UVA 

Liver-stagnation/spleen-

deficiency syndrome 
39 

Medium UPLC-QTOF/RP MarkerLynx (Waters) N/A 

PCA, OPLS-DA, HCA, ROC and 

UVA 

Male infertility
40 

Large HPLC-QTOF/RP Profile Analysis (Bruker) MSTUS 

OPLS-DA, ROC and UVA  

T-cell mediated rejection
41 

Medium 

Targeted analysis 

QTRAP Quantitative method Creatinine 

PLS-DA, ROC, Wilcoxon rank 

test 

Hepatitis C
42 

Small HPLC-QTOF/RP EZ Info Software (Waters) N/A 

PCA/OPLS/Mann Whitney 

Liver cirrhosis
43

  Medium UPLC-Orbitrap/RP MS Finder software  MSTUS 

PCA/t test/Non parametric test 

Toxicity/metabolism 
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Dioxin exposure
44 

Small UPLC-QTOF/RP MarkerLynx (Waters) MSTUS 

OPLS-DA and UVA 

Procainamide
45 

Small UPLC-QTOF/RP MarkerLynx (Waters) N/A 

OPLS-DA and UVA 

Renal clearance rate
46 

Small UPLC-Orbitrap/RP MZMine 2 N/A 

UVA 

Radiation
47 

Medium UPLC-TOF/RP MarkerLynx (Waters) Creatinine 

PCA and UVA 

Sports 

    

 

Doping control
48 

Medium UPLC-QTOF/RP Profile Analysis (Bruker) N/A 

PCA, OPLS-DA and UVA 

Tetrahydrocannabinol
49 

Small UPLC-TOF/RP MarkerLynx (Waters) N/A 

ANOVA/PLSDA/OPLS 

Treatment 

    

 

Chinese herbal formula
50

  Medium UPLC-QTOF/RP MarkerLynx (Waters) MSTUS 

PCA, OPLS-DA and UVA 

Chinese  herbal formula 
51 

Medium HPLC-Orbitrap/RP SIEVE (Thermo) N/A 

OPLS-DA and UVA 

Standard therapy for TB
52 

Medium HPLC-QTOF/RP MassHunter (Agilent) Creatinine 

PCA and UVA 

Chinese herbal formula
53

  Small UPLC-QTOF/RP MarkerLynx (Waters) TIC 

PCA, OPLS-DA and UVA 

Schizophrenia 

risperidone
54

  Medium UPLC-QTOF/RP MarkerLynx (Waters) TIC 

OPLS-DA and UVA 

Food and nutrition 

    

 

Cocoa
55 

Small HPLC-QTOF/RP MarkerView (AB Sciex) N/A 

OPLS-DA and UVA 

Coffee
56 

Medium  UPLC-QTOF/RP XCMS N/A 

PLS-DA, ROC and UVA 

Fruits and vegetable
57

 

consumption vs basal  Medium HPLC-Orbitrap/RP msInspect N/A 

PCA and UVA 

Citrus juice
58

  Small HPLC-QTOF/RP Profile Analysis (Bruker) Largest peak 

PCA 

Citrus fruit
59 

Large  UPLC-QTOF/RP MarkerLynx (Waters) N/A 

PCA, HCA, PLS-DA and UVA 

Aronia-citrus juice
60

  Medium HPLC-QTOF/RP MarkerView (AB Sciex) N/A 

OPLS-DA and UVA 
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Pu-erh Tea
61 

Small UPLC-QTOF/RP MarkerLynx (Waters) N/A 

PCA, OPLS-DA and UVA 

Goji Tea
62 

Small HPLC-QTOF/RP Profile Analysis (Bruker) N/A 

PCA, PLS-DA and UVA 

Green tea
63 

Small HPLC-Orbitrap/RP MAGMa N/A 

N/A 

vitamin E capsules
64 

Small UPLC-QTOF/RP MarkerLynx (Waters) Internal standard 

PCA, OPLS-DA and UVA 

Dietary pattern
65 

Large UPLC-QTOF/RP Mzmine 2 MSTUS 

PCA, PLS-DA and UVA 
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Conclusion 

It is apparent that LC-MS profiling of metabolites urine has the potential to improve diagnosis of treatment 

of disease. It is less invasive to collect than plasma and is available in larger volumes than plasma so that for 

trace metabolites a concentration step is an option. Instrumental methods in clinical biochemistry have a 

mixed history and have found some niche applications such as in monitoring in-born errors of metabolism. 

However, where a limited range of biomarkers were being screened in rare conditions instruments were 

often deemed too expensive buy and run. By using metabolomics methods markers for many diseases can 

be screened for with same platform. If targeted MS methods are used run times for biomarker screening 

may be reduced to a minute or two per sample. In addition dipstick tests for new biomarkers discovered by 

metabolomics screens might be produced. Thus clinical metabolomics has a promising future. 
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