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A cross-reactive colorimetric sensor array composed of 
solvatochromic dyes in semi-liquid matrices was used to 
successfully discriminate among eleven common solvents. The 
multidimensional array response is attributed to both 
chemical (i.e., analyte-dye interactions) and physical (i.e., spot 
blooming and refractive index alteration) changes in the 
sensor spot. 

Colorimetric sensor arrays use multiple chemically responsive dyes to 

generate a pattern of color changes that represent a composite, 

olfactory-like response unique to a given odorant: they are essentially 

“optoelectronic noses”.1-4 The color changes can be quantitatively 

measured through digital imaging of the array by comparing images 

before and during exposure (e.g., with a flatbed scanner or digital 

camera). We have developed colorimetric arrays to differentiate on 

the basis of chemical reactivity both single component analytes 

(including toxic industrial chemicals (TICs), VOCs, explosives)5-9 and 

complex mixtures (e.g., coffees,10 sodas,11 beers,12 and micro-

organisms13, 14). The colors of utilized dyes are affected by 

intermolecular interactions between analyte and dye, including 

Brönsted and Lewis acid-base, hydrogen bonding, dipolar, and π-π 

interactions. In general, these arrays were optimized for analytes with 

significant chemical reactivity (e.g., TICs). The use of a colorimetric 

sensor array to differentiate among poorly-reactive analytes (e.g., 

common laboratory solvents) below their saturation concentration 

has proved challenging.  

 Solvatochromic compounds change color in response to a 

change in polarity of the local environment, an effect caused by a 

polarity difference between the chromophore’s ground and excited 

state,15, 16 and are, therefore, commonly used to probe solvent 

polarity.15-20 Solvatochromic dyes can be broadly classified as 

exhibiting either positive solvatochromism, where the ground state is 

less polar than the excited state, or negative solvatochromism, where 

the ground state is more polar than the excited state.15 Historically, 

these color-changing dyes have been studied in liquid phase and 

characterized using UV-Vis absorption spectroscopy; however, some 

recent work has used individual solvatochromic dyes in solids (e.g., 

films of dyes entrapped in porous, semi-liquid, or polymer 

matrices).21-25  Prior colorimetric sensor arrays produced from our lab 

have included only one or two solvatochromic sensor spots, but the 

response of an array of solvatochromic dyes in the solid-state has not 

been previously examined.  

 We report here a colorimetric sensor array that utilizes 

solvatochromic dyes in semi-liquid matrices to differentiate eleven 

common organic solvents. Importantly, the solvatochromic dyes 

serve a dual function: (1) to change color with a change in local 

polarity and (2) to facilitate the measurement of physical changes in 

their matrix caused by solvent sorption. The array response can be 

monitored using an ordinary flatbed scanner, providing a convenient 

means of detection.4, 8, 26 We are also able to decouple these two 

types of response through a comparison of the RGB (red, green, and 

blue) reflectance with full spectral reflectometry data of 

representative sensor spots. This work demonstrates a novel method 

to discriminate among analytes that have limited chemical reactivity 

and also provides a cautionary tale for colorimetric sensing in 

general: observed changes in RGB values may reflect physical rather 

than chemical interactions between the sensor and the analyte, 

especially at high analyte concentrations. 

 Colorimetric sensor arrays were prepared as described 

elsewhere;1 briefly, solvatochromic dyes were dissolved in dilute 

solutions of a volatile solvent containing both the dye and a highly 

viscous liquid and then printed on porous polypropylene 

membranes using a robotic pin printer. After evaporation, the dyes 

were held in a semi-fluid state dissolved in the viscous matrix 

supported by the membrane. A summarized list of dyes is shown in 

Table S1. Seven commonly used solvatochromic compounds (four 

positive solvatochromic and three negative solvatochromic dyes19, 20, 

27, 28) were chosen. 

 Because solvatochromic compounds are sensitive to the polarity 

of the local environment, the starting color of a spot containing a 

Page 1 of 4 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



COMMUNICATION  Journal Name 

2 | J.  Name., 2012, 00, 1‐4  This journal is © The Royal Society of Chemistry 2012 

solvatochromic dye is highly dependent on the matrix (i.e., the dye’s 

local environment). In order to maximize interaction between 

analytes and a solvatochromic dye (or for that matter, any indicator), 

one must minimize interactions between the ground state of the dye 

and its surrounding matrix. The matrix, therefore, must be chosen 

carefully; a poorly matched matrix will diminish spot response. In 

choosing an appropriate matrix, the inherent chemical properties of 

the dye (e.g., ground state polarity, potential for hydrogen 

bonding)15, 29 must be considered.  

 Generally, positive solvatochromic dyes were dissolved in 

relatively polar matrices (i.e., glycerol or ionic liquid) and negative 

solvatochromic dyes were dissolved in relatively nonpolar matrices 

(i.e., methylsiloxanes), as listed in Table S2. To enhance chemical 

diversity of the responses of the sensors, dyes were dissolved in 

multiple matrices, i.e., polar, nonpolar, and medium polarity (e.g., 

benzyl butyl phthalate, BBP). In addition, matrices with differing 

intermolecular forces (e.g., H-bonding, dipole-dipole) will sorb 

different classes of analytes preferentially, thus affecting the 

response profile from each formulation. As given in Table S3, an array 

of 18 sensor spots using seven solvatochromic dyes among four 

matrices was generated. Our use of different formulations for the 

matrices of the solvatochromic dyes is analogous to the use of 

multiple polymers of different polarities in sensor arrays.30-33  

 Even in an instance where there is no direct dye-analyte 

interaction, a sensor spot may still show a change in RGB values 

through sorptive effects.  When an analyte is present at high 

concentration, its sorption into a semi-liquid matrix may change the 

properties of the matrix (e.g., viscosity, refractive index).  Viscosity 

changes may cause blooming of the spot, i.e., a diffusion of the spot 

edge, making the spot larger but less intensely colored.  Changes in 

the refractive index of the spot can change the intensity of light 

reflected from the surface.34, 35 These effects manifest as a change in 

color intensity (i.e., a change in RGB values from digital images of the 

spot). Changes in RGB values, whether due to wavelength shift of the 

dye, blooming of the sensor spot, or alteration of the spot’s refractive 

index, all may be useful to facilitate analyte identification and 

discrimination. The matrices used in this study were chosen to 

maximize both solvatochromic and sorptive responses. 

 For this work, eleven common solvents with polarities evenly 

distributed over a wide range of ET(30) values19 were chosen as 

analytes. Table S4 lists these analytes and their ET(30) values. Arrays 

were exposed to flowing gas (500 sccm) containing a given analyte at 

10% the saturation concentration in dry nitrogen. Images were 

processed according to previously described procedures;4, 7-10, 14, 26, 36 a 

more detailed explanation of experimental protocols and data 

processing can be found in the supplementary information. 

 Difference maps are a useful tool for qualitatively visualizing how 

an array changes color when exposed to a given analyte. 

Representative difference maps showing the unique response 

pattern to each analyte after 5 minutes exposure are shown in Figure 

1; responses were measured in quintuplicate on separate arrays. 

Using the raw digital data, a hierarchical cluster analysis (HCA) was 

performed to quantify differentiability among analytes (Figure 2). 

There is clear discrimination among all eleven solvents, showing no 

misclassifications for 62 trials. HCA generates a dendrogram that 

provides a quantitative analysis of response similarity among 

hierarchically-ranked clusters. Sensors with similar response patterns, 

as determined by the distance between individual trials in the 54 

dimensional space (i.e., ΔRGB values of 18 spots), will cluster 

together. Thus, the connectivity of an HCA diagram shows “what 

resembles what” and the Euclidean distance at which clusters are 

grouped shows “by how much.” 

 
Fig. 1 Difference maps showing the colorimetric sensor array response to eleven 

analytes  at  10%  of  their  saturation  vapor  pressure  after  5  min  of  exposure 

(averages of five trials each are shown). A color range of 1.5 ‐ 8.5 was expanded 

to 8‐bit color range (i.e., 0‐255) for visualization. A complete list of the 18 sensor 

spot formulations can be found in Table S3. 

 
Fig.  2  Hierarchical  cluster  analysis  of  the  colorimetric  array  response  to  11 

common  organic  solvents  and  the  control.  The  11  analytes  were  run  in 

quintuplicate  and  the  dry  N2  control  was  run  in  septuplicate.  The  HCA  used 

minimum  variance  (i.e., Ward’s method)  for  clustering.    No misclassifications 

were observed among the 62 trials. 

 Principal component analysis (PCA), when applied to chemical 

sensor arrays, gives an approximation of the dimensionality of the 

chemical properties space being probed by the array. Often, sensor 

arrays require only 1 or 2 dimensions to capture 95% or even 99% of 

the total variance among responses. This lack of dimensionality 

indicates the sensor array is actually probing only one or two 

chemical parameters with hydrophobicity typically predominant.  

This means that many so-called sensor arrays in the literature may 

physically be arrays (i.e., multiple sensors), but in fact statistically they 

are not truly arrays at all (i.e., the responses are one-dimensional). The 

Scree plot (Figure 3) shows that our solvatochromic sensor array
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requires a total of six dimensions to reach 95% variance and 

therefore probes a larger number of chemical interactions than most 

of the electronic nose literature. This high dimensionality is not 

surprising; multiple factors influence array response, including 

solvent polarity (i.e., solvatochromism), acid-base interactions (both 

Brønsted and Lewis), relative stability of dye-analyte interactions 

versus dye-matrix interactions, analyte-matrix affinity (i.e., partition 

coefficient), hydrogen bonding between dyes and analytes, and the 

physical properties of the matrix after analyte sorption. 

 
Fig. 3 Scree plot of the principal components from PCA from 11 analytes and a N2 

control. Six dimensions are required to define 95% of the total variance. 

 To decouple the changes in RGB values caused by a wavelength 

shift (i.e., due to analyte-dye interaction) from those caused by 

sorptive effects (e.g., refraction index changes or spot blooming), we 

have analyzed the full spectral reflectometric response of two 

representative spots (spot #15, Reichardt’s dye in BBP, and spot #3, 

Nile red in BBP) using a diffuse reflectance probe. Figure 4 shows the 

pseudo-absorbance spectra in Kubelka-Munk (K-M)37 units and raw 

images of representative sensor spots that exhibit color changes 

caused by either (1) a solvatochromic wavelength shift (Figure 4a,b, 

spot #15 exposed to ethanol) or (2) sorptive effects (Figure 4c,d, spot 

#3 exposed to benzene). When a sensor spot acts as a solvatochromic 

probe, a color change is observed in the raw images and a 

wavelength shift is seen in the absorbance spectrum. When only spot 

blooming or refraction effects are present, the peak wavelength is 

unchanged, and only a change in absorbance intensity is observed. 

The raw images in Figure 4d show a blurring of the spot, especially 

around the edges, due to the blooming of the dye spot caused by 

analyte sorption, but refractive index effects are also present.  

 This multidimensional array response has been further 

demonstrated by comparing the array response of analytes with 

similar polarities (i.e., ET(30) values). Our solvatochromic array showed 

clearly differentiable responses when exposed to three analytes with 

ET(30) values of ≈ 40 kcal·mol-1 (pyridine, cyclohexanone, and 2,4-

dimethyl-3-pentanol) and three analytes (decane, cyclohexane, and 

2-methylbutane) with ET(30) values of ≈ 31 kcal·mol-1 (Figures S1 and 

S2). The difference maps showed no strong correlation between 

response and ET(30),  and similar polarity analytes do not necessarily 

cluster together. These results confirm that our colorimetric array is 

probing more than just analyte polarity. Importantly, these arrays 

clearly show both chemical (i.e., color changes from dye-analtye 

interactions) and physical (e.g., dye diffusion) changes of the sensor 

spots when exposed to solvent vapors as shown in Figure S3.  

 At high analyte concentrations (10% of saturation vapor 

pressure), unexpected contributions to the array response come from 

physical, sorptive changes in the sensor spot caused by the sorption 

of analytes into the semi-liquid matrices. These include both spot 

blooming (i.e., dye diffusion) and alteration of the index of refraction 

(i.e., changes in scattering and therefore reflectometry). This work not 

only describes a novel method to discriminate among common 

organic solvents, but also demonstrates that observed changes in 

RGB values may reflect physical rather than chemical interactions 

between the sensor and the analyte, especially at high analyte 

concentrations. 

 
Fig. 4 (a) Diffuse reflectance spectra and (b) raw images of Reichardt’s dye in BBP 

(Spot #15) before  (black) and after  (red) 5 minutes exposure  to 10%  saturated 

ethanol vapor showing the wavelength shift. (c) Diffuse reflectance spectra and 

(d)  raw  images  of  Nile  red  in  BBP  (Spot  #3)  before  (black)  and  after  (red)  5 

minutes exposure to 10% saturated benzene vapor. Both spots exhibit changes 

in RGB values under  the  respective experimental conditions:  in Reichardt’s dye 

this  is due mostly  to solvatochromic shifts  in wavelength of absorbance, but  in 

Nile red it is due only to sorptive effects. 

Conclusions 

We have examined solvatochromic dye-matrix combinations printed 

on membranes as inexpensive, disposable colorimetric sensor arrays 

and demonstrated their ability to discriminate among eleven 
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common solvents at 10% saturation concentration. Hierarchical 

cluster analysis shows no misclassifications among 62 trials, and PCA 

shows the colorimetric sensor array has high dimensionality, 

demonstrating the potential to discriminate among even closely 

related analytes. This observed high dimensionality is not surprising, 

as the composite array response reflects not only changes in spots’ 

absorbance maxima (e.g., from a change in local polarity), but also 

changes in the intensity of reflectance (e.g., from spot blooming or 

index of refraction changes). Although these effects can be 

decoupled using full spectral data, care must be taken in interpreting 

ΔRGB values, particularly at high analyte concentrations:  apparent 

changes in RGB values may be due both analyte-dye interactions 

(which will change both intensity and wavelength of light 

absorbance) and to changes caused by analyte sorption (which 

include both refractive index changes and blooming of semi-fluid 

spots). 
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