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Raman microspectroscopy has been investigated for some time for use in label-free cell sorting 

devices. These approaches require coupling of the Raman spectrometer to complex data mining 

algorithms for identification of cellular subtypes such as the leukocyte subpopulations of 

lymphocytes and monocytes. In this study, three distinct multivariate classification approaches, 

(PCA-LDA, SVMs and Random Forests) are developed and tested on their ability to classify 

the cellular subtype in extracted peripheral blood mononuclear cells (T-cell lymphocytes from 

myeloid cells), and are evaluated in terms of their respective classification performance. A 

strategy for optimisation of each of the classification algorithm is presented with emphasis on 

reduction of model complexity in each of the algorithms. The relative classification 

performance and performance characteristics are highlighted, overall suggesting the radial 

basis function SVM as a robust option for classification of leukocytes with Raman 

microspectroscopy. 

 

Introduction: 
Raman spectroscopy has been used extensively in the analysis 

of various biological materials, with prevailing issues 

surrounding appropriate implementation and interpretation of 

data mining approaches1–3. As Raman spectroscopy provides a 

biochemical fingerprint of the sample and contains multiple 

overlapping vibrational signals from molecularly distinct 

biochemical species, spectral decomposition and data mining 

approaches are required to remove spectral redundancy and 

maximize the information extracted from the spectral data4. 

Examples of the successes of this approach are demonstrations 

of the ability of the method to perform classifications of 

different cell types5,6 and the creation of diagnostic approaches 

distinguishing normal from cancer subtypes7–9 for various 

cancers including those of the cervix3,9,10, prostate 8,11, lung12 

and oesophagus13,14. Regression algorithms have also 

demonstrated the ability to predict metabolite concentrations in 

both blood cells and serum15,16 delivering advantages in clinical 

medicine. The modality has also been shown to be capable of 

screening activated versus non-activated lymphocytes through 

identification of shifts in spectral bands associated with 

immunoglobin formation17. Coupling of Raman spectroscopy to 

micro-fluidic platforms and optical trapping has also 

demonstrated its potential for label-free cell sorting18.   

Development of these types of applications of Raman 

spectroscopy calls for robust and complex statistical methods to 

generate classification models with generalizability to unseen 

test sets. Various approaches are available employing 

algorithms which differ mainly in the configuration of the 

separation or classification hyperplane between the classes.  

Principal component analysis (PCA) -linear discriminant 

analysis (LDA) is one example of an algorithm which develops 

a linear classification hyperplane, where pre-processing by 

PCA is used for dimensionality reduction prior to input of 

spectral data to the algorithm8,19,20.  

Support vector machines (SVM) is a class of statistical learning 

algorithm which allows the development of both linear and 

non-linear classification hyperplanes21. A non-linear kernel 

mapping is applied to the input space in the special case of the 

development of non-linear classification hyperplanes, where the 

data points are remapped into feature space in which the data 

are linearly separable. It is here where the SVM then finds the 

best separating hyperplane for the classification22. Multiple 

kernel mappings are generally available and are evaluated 

separately23.   

Random forests are a non-linear classification approach which 

employ majority voting from the classification outcomes of 

each individual decision tree to reduce the classification error 

from any individual classifier. Decision trees are top down 

classification methods where each attribute of the sampled 

dataset is tested for its ability to discriminate between target 

variables. These attributes are ranked and the top ranking 

attributes are used for the initial decisions with the lower 
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ranked attributes used for decisions further down the tree. Tree 

nodes define ‘splitting criteria’ on which the classifier 

discriminates classes until finally all data records (spectra) are 

placed in leaf nodes representing their final class24,25. 

Classifications from PCA-LDA, SVMs and Random forests 

typically yield high predictability, although all require careful 

optimisation to prevent over fitting. The classification of 

haematological cell subtypes using Raman spectroscopy is 

challenging due to the overlapping nature of spectral band and 

the similarity in biochemical species seen in each leukocyte cell 

subclass. Although classification of haematological cell 

subtypes may be challenging, Bankapur et al showed that there 

were several Raman bands that differed in the spectral 

fingerprint of granulocytes and lymphocytes, and that could be 

used to discriminate between both populations of cells, while 

the spectrum of a red blood cell was drastically different from 

either white blood cell subtypes6. Ramoji et al demonstrated 

that it was possible to discriminate between lymphocytes and 

neutrophils using Raman spectroscopy coupled with PCA and 

Hierarchical cluster analysis5. Their model achieved an 

accuracy of 81% when applied to a single completely different 

donor in the testing set.  

Creation of predictive models for the development of clinically 

relevant applications such as disease detection, diagnosis, 

estimation of metabolite concentration and identification of 

cellular subtypes must undergo rigorous procedures prior to 

acceptance of a technique’s validity. Efforts have been made to 

standardise the procedure in which such applications are 

developed and validated to a clinical standard. Typically this 

procedure consists of two stages: exploratory studies and 

diagnosis studies and are extensively reviewed by Trevisan et 

al in 26. Baker et al describe the development of FTIR 

spectroscopy for classification or diagnosis of biological 

materials, while detailing the performance of classification 

methods on FTIR spectral datasets27. The diagnosis of ovarian 

and endometrial cancers from patient plasma and serum using 

ATR-FTIR was described by Gajjar et al28. The authors 

performed an exhaustive search of classification methods for 

each cancer type and found that no single classification method 

performed consistently better across all diagnostic systems.  

 

In this study of Raman spectral data from peripheral blood 

mononuclear cells (PBMCs) is used for the competitive 

evaluation of each data-mining model in discriminating a 

highly pure population of T-cell lymphocytes from other 

myeloid cells within the PBMCs fraction. The optimisation of 

each classifier (PCA-LDA, SVMs, and Random Forest) is 

demonstrated. The classification performance of each of the 

classifiers is discussed in terms of linearly and non-linearly 

separable data, with a view to illustrating the need for 

identifying appropriate classification methods for datasets that 

may not be linearly separable. The study is an exploratory study 

that demonstrates that there are fundamental differences in 

spectral features of myeloid cells and lymphocytes, which are 

more identifiable by some classification techniques than others. 

It is a preliminary study that highlights the potential of Raman 

spectroscopy along with multivariate techniques as a label free 

method of identification of PBMC subtypes.  

  

Materials and methods: 
Peripheral blood lymphocyte and myeloid cell isolation:  

Ethics approval was awarded by the Dublin Institute of 

Technology ethics committee (2012) for the collection of blood 

donations from volunteers at the Institute for the purposes of 

this study. Fresh blood was drawn into Li-heparin tubes 

following consent from each healthy donor. A total of 20ml 

was collected from each donor. Peripheral blood mononuclear 

cells were isolated from each donor’s whole blood by a density 

gradient using histopaque and was performed within 4 hours of 

initial collection. The PBMC layer was removed from the 

whole blood gradient and was washed three times. The cell 

pellet was resuspended in 3ml of full media (RPMI+12.5 %( 

v/v) FBS+2 mM L-glutamine (Sigma)) supplemented with 

2.5% (v/v) phytohaemagglutinin (PAA Laboratories). One ml 

of cell suspension was resuspended in 4 ml of full media in a 

T25 flask and was incubated for 72 hours at 37°C, 5% CO2 to 

allow separation of all other mononuclear cells by plastic 

adherence. T-cell lymphocytes were obtained from the cells 

that remained in suspension. Following removal of the 

lymphocytes from the T25 flasks, the flasks where rinsed in 

PBS. Cells where removed from the bottom of the flask by 

using a cell scrapper. These cells where then resuspended in 

fresh media prior to cell fixation. Population purity was tested 

for lymphocytes using CD3+ staining by flow cytometry. The 

Lymphocyte population was found to have a purity of  > 85%. 

 

Raman spectroscopic measurements: 

Calcium fluoride (CaF2, Crystran Ltd.) microscope slides were 

used for mounting of cells for Raman spectroscopy. All Raman 

spectral measurements were performed using a Horiba Jobin 

Yvon Labram HR800 UV system. Spectra were collected using 

a 660nm solid-state diode laser delivering 100mW of power to 

the sample, a x100 objective with a numerical aperture of 0.9. 

Spectral resolution was defined by the grating which was ruled 

with 300 lines/mm, resulting in a spectral resolution of ~2.1cm-

1. The confocal hole was set to 150µm and the spectra were 

recorded with a 20 second integration time averaged over three 

accumulations. Myeloid spectra were acquired from 7 different 

healthy donors and lymphocyte spectra were acquired from 14 

different healthy donors. Spectra were recorded from each of 

20-40 different cells per donor, with a total of 156 myeloid 

spectra and 463 lymphocyte spectra. Only 7 donors were 

acquired for myeloid cell spectra due to the difficulty of 

extraction and isolation of high concentration of myeloid cells 

from peripheral blood. Each spectrum was recorded by 

performing a 4x4µm raster scan of the centre of each cell. All 

cellular spectra from a single donor were recorded on the same 

day. Multiple spectra of 1, 4-Bis (2-methylstyryl) benzene and 

NIST SRM 2245 were recorded prior to each group of spectral 

measurements for calibration purposes. All spectra were 

recorded within two weeks of slide preparation and slides were 

stored in a desiccator prior to Raman spectral measurement. 

 

Raman spectral measurement post processing:  

Raman spectral post processing was performed in Matlab 

version 7.9.0 (R2009b) (Mathworks, USA) using the PLS-

Toolbox version 6.51 (Eigenvector Research Inc.) and 

algorithms developed in-house. Spectral calibration was 

performed using a spectral alignment algorithm which fitted a 

polynomial to the peak positions of the peaks from the 

spectrum of 1, 4-Bis (2-methylstyryl) benzene relative to the 

peak positions of a common reference spectrum of the same 

material. Calibration of spectral intensity was performed 

similarly using the spectrum of the standard reference material 

SRM2245 relative to a common reference spectrum of the same 

material. Baseline correction was performed with in house 

algorithms using a nodal point baseline correction with the 

minimum amount of points required, for minimal spectral 
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alteration. Savitsky Golay filtering was employed with a 5th 

order polynomial and a 15 point window. Substrate 

contributions arising from CaF2 were subtracted from all 

spectra and spectra were vector normalized prior to analysis. 

 

Raman data analysis - PCA-LDA: 

Principal component analysis is an unsupervised data reduction 

technique that is extensively used across many disciplines29–31. 

More importantly it is a feature selection process that allows the 

user to identify variances in the dataset that may be used to 

classify objects into certain groups. The application has become 

an important tool in chemometric and spectroscopic analysis. 

In the case of Raman spectroscopy PCA is used to reduce the 

matrix of spectral data in which objects (individual spectra) are 

measurements of large numbers of variables (wavenumbers). 

PCA is performed by subtracting the mean of the data set to 

obtain the mean centered matrix, calculating the covariance 

matrix of the mean centred matrix and subsequently finding the 

eiganvectors and eigenvalues of the covariance matrix. The 

eigenvector with the largest eigenvalue is the first principal 

component which then describes the largest source of variance 

across all the spectra32. The second principal component is the 

eigenvector with the next largest eigenvalue, is independent of 

the first principal component and describes the second largest 

source of variance. All increasing principal components 

describe mutually independent sources of variance, and 

decreasing proportions of the spectral variance in the dataset. 

Typically in Raman spectroscopy of biological samples, the 

first 6-10 principal components describe over 99% of the 

variance or statistical information within the dataset, while 

beyond this point the principal components are generally noise. 

A matrix of spectra is decomposed into its scores and loadings 

according to: 

 

� = ��� Equation 1 

where X is the original data set, P is the matrix of Principal 

components also known as loadings and T is a matrix of scores. 

Thus any spectrum in X can be reconstructed by the sum of the 

principal components weighted by the scores for each principal 

component calculated for each individual spectrum.  

LDA is classification method that aims to find one or more 

linear functions of a dataset with x number of variables that can 

be used for the purpose of classification32. LDA produces a line 

or hyperplane that results in the maximum separation of two or 

more classes in a dataset. It has been used in many fields 

alongside PCA, where LDA uses the PCA scores as latent 

variables and tries to find the linear hyperplane that 

discriminates between two or more populations of PCA scores. 

Raman data analysis - SVM-Linear and RBF kernel 

Support vector machines are statistical learning algorithms that 

have seen use widely within classification and regression 

algorithms in data mining 33–35. As classification algorithms, 

SVMs are designed to identify the hyperplane or hyperplanes 

that best separate two or more classes of multivariate data, 

while at the same time maximising the margin around the 

hyperplane.  SVMs can also employ kernel mappings from a 

non-linear input space to a new feature space where the SVM 

searches for the best linear classification hyperplane. As a 

linear algorithm, the SVM uses the following equation: 

���� =	< �, � > +� ≥ � Equation 2 

where x is the input data (in the scope of this article x is spectral 

data), w is the weight vector and b is the bias. The SVM finds 

f(x) (the hyperplane) that best discriminates between classes. 

The instances of x that lie closest to the discrimination 

hyperplane are called support vectors. There are two main types 

of SVMs, one which maximises the margin around the 

discrimination plane with the inclusion of a cost. The cost 

function allows for misclassification of some instances but 

incurs some penalty for the misclassification. This type of SV 

classifier is known as C-SVC. Another type of SVM employes 

a penalty defined to misclassifications defined by a parameter 

called ν. This parameter places an upper bound on the fraction 

of training samples that are misclassified and a lower bound on 

the fraction of training samples that are support vectors. Unlike 

linear discriminant analysis and other linear classifiers SVMs 

can be built to discriminate between both linear and non-

linearly separable data. The use of kernel transforms on the 

input space, mapping the data to a new feature space can allow 

for discrimination of non-linearly separable data. There are 

however many forms of transforms and it is sometimes 

necessary to implement several transforms to identify which 

one is most capable of separating the data. Radial based 

functions, polynomials and sigmoid functions are typically 

applied to the input space prior to identifying the optimal 

classification hyperplane23,33. 

Raman data analysis - Random Forest 

Random forest (RF) classification algorithms are an ensemble 

method whereby a model consisting of multiple independent 

decision trees is created. The consensus vote from all the 

decision trees is then the class determined by the RF algorithm, 

with overall reduced classification error relative to a single 

decision tree. Decision trees are a top down method where the 

tree chooses a series of attributes or variables on which to 

‘split’ such that the class distribution after each node is skewed 

maximally (i.e. classes are separated). To identify the most 

important variables for the classification a quantity known as 

the information gain is used24. Information gain is the expected 

reduction of entropy caused by splitting the data based on a 

particular variable. Entropy is considered a measure of purity or 

impurity of a collection of samples. Alternatively an entropy of 

one represents a collection of samples with an equal number of 

samples in all classes. An entropy of 0 represents a collection of 

samples that consist of only a single class. The information gain 

is calculated for each attribute and the attribute that reduces the 

entropy (or provides the maximum information gain) is 

attribute that best classifies the data and is thus used for the 

initial decision24. Each node will continue to split until the 

entropy of the newly formed nodes become zero. A Random 

forest is built with multiple decision trees. Each record (spectra) 

is passed down all of the trees in the forest and the consensus of 

all the trees in the forest gives the predicted outcome of a 

particular record. 

Model development and parameter optimisation 

Careful choice of model training and testing strategy is critical 

to determining model performance and eliminating over fitting 

while at the same time preventing penalization of the model 

performance through supplying it with a small range of training 

samples 36 This latter point is a key consideration for modelling 

with small datasets. As the dataset available for modelling 

decreases in size from hundreds and thousands of examples to 

tens or less the appropriate model training and testing strategy 

moves from the holdout method to repeated cross-validation 
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and bootstrapping 36. In the latter method it is assumed that the 

data samples are taken from a normal distribution and therefore 

could be observed again in the general population were they to 

be sampled. Therefore each of the donors or patients can be 

resampled in sequence for both the training and testing sets and 

the model performance is summarized over all individuals. 

 In this study, given the size of the dataset, repeated cross-

validation and repeated bootstrapping are used. In the first 

instance, repeated bootstrapping was employed where each of 

the modelling methods were optimized separately using a 

training, validation and test set where the spectra were 

randomized such that resampling of the spectra occurred 

between each subset. The training data for each of the models 

was built using 60% of the total dataset while 20% of the data 

was used as a validation set with the remaining 20% used for 

testing. Classifications were performed a total of 10 times with 

randomised training, validation and testing data for each 

iteration. All classification metrics are averaged over all 

successive iterations. The parameters for each of the 

multivariate models were then optimized by choosing the 

parameters that resulted in the best Matthews correlation 

coefficient (MCC) for each of the classifications. The MCC is a 

measure of accuracy which uses a weighted combination of 

sensitivity and specificity and is suited to datasets with 

unbalanced class distributions, such as the one used here. Each 

model was optimised for its respective parameters (number of 

latent variables (PCA-LDA)) or combination of parameters 

(cost and γ (SVM), number of trees and number of leafs (RF)). 

In each case a 10-fold cross-validation was performed to 

identify the best performing model parameters. 

Once a champion modelling approach was obtained from 

repeated bootstrapping, a second more rigorous evaluation of 

performance was obtained for the champion model using 

repeated 7-fold cross-validation. In this instance individuals 

were randomly sorted to training and testing sets while ensuring 

spectra from individuals were not resampled to each of the 

subsets. This process was repeated 10 times and the 

performance summarized. 

PCA-LDA: Optimisation of the linear discriminant model was 

performed by firstly identifying latent variables from the 

principal component analysis that resulted in a positive MCC. 

LDA was performed on each of the principal components 

scores individually. Latent variables that were found to have an 

MCC of less than 0 were removed from the LDA classification. 

After removal of latent variables that did not contribute 

positively to the classification, LDA was performed on 

increasing numbers of latent variables. To reduce the 

complexity of the model, a 4th order polynomial was fitted to 

the validation set MCC and the second derivative of the 

polynomial was calculated. The point where the 2nd derivative 

was found to be zero was chosen as the number of latent 

variables to use for the classification. Beyond this point, the 

relative contribution of each additional latent variable to the 

classification accuracy decreases. The model used to predict the 

test set was built using the number of latent variables defined 

by where the 2nd derivative was equal to zero and was 

constructed using the training data. 

 

SVM: In this article the SVMs that were optimised were the 

linear and RBF cost dependant SVMs. SVM optimisation was 

performed by employing a grid search of the penalty parameter 

C (cost) and the γ parameter. In the case of the linear SVM, γ 

was varied from 1x10-6 to 10 while cost was varied from 1x10-2 

to 1x108. In the case of the RBF SVM, γ was varied from 1x10-

3 to 1x104, while cost was varied from 1 to 1x109. The MCC 

and the support vector (SV) fraction was calculated for each of 

the classifications and the combination of C and γ that resulted 

in the maximum difference between MCC and SV fraction was 

chosen for the model that was used to predict the test set. This 

resulted in the maximum classification accuracy while 

minimising the complexity of the model. 

 

Random forest: Random forest optimisation was performed by 

optimizing training model using the validation set for the size 

of the leaves per node and the number of trees grown in the 

classification. Determination of the optimum size of the leaves 

was performed first, with a fixed number of trees grown (50). 

The MCC was calculated for the classification of each random 

forest with leaf nodes sizes of 1, 3, 5, 7, 10, 15, 20, 25, 35 and 

50. The best performing leaf size for the validation set was 

chosen and fixed for the optimisation of the number of trees to 

be used in the optimisation. The best quality model for the 

validation set performance was chosen from a number of 

models, where 20, 30, 40, 50, 80, 100, 150, 200, 300, 400 and 

500 trees were grown.  

 

Results: 
The mean and standard deviation of unprocessed and processed 

spectra of lymphocytes and myeloid cells are shown if Figure 1 

A and B respectively. The difference spectra of lymphocytes 

and myeloid cells is plotted in Figure 1 C) and shaded regions 

represent the regions of the spectrum where the difference in 

spectra of was significantly different with a significance level 

of p<0.001. Darker regions represent where the spectral 

intensities were found to be significantly higher in lymphocytes 

than myeloid cells and lighter shaded regions represent where 

spectral intensities were significantly lower in lymphocytes 

than myeloid cells. 

 
Figure 1: A) The mean and standard deviation of raw spectral data from donor 

lymphocytes and myeloid cells. B) The mean and standard deviation of processed 

spectra of lymphocytes and myeloid cells from donors. C) The difference 

spectrum of lymphocytes and myeloid cells (Shaded regions represent where 

lymphocytes had significantly higher (dark) or lower (light) spectral intensities). 

1. PCA-LDA 

Training models were optimized using the validation set 

performance as described in the methods section of this article, 

A) 

B) 

C) 
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Figure 2 (A) shows the training and validation set performance 

for increasing numbers of latent variables. Training and 

validation was performed on only positively contributing 

principal components scores. The black line illustrates the 

number of latent variables that resulted in the best performing 

training model while minimising the number of latent variables 

used to classify, tested on the validation set. The number of 

latent variables that produce the highest MCC while reducing 

the model complexity was found to be 31. The most accurate 

model for the validation set was then tested on new data 

(testing set). The MCC for the most accurate validation model 

was found to be 0.80. The classifications sensitivity, specificity 

and MCC for the test set are provided in Table 1. The 

classification performance was found to be relatively good with 

a sensitivity and specificity of 0.95 and 0.97 respectively. The 

MCC coefficient was found to be 0.88. 

 

Figure 2: (A) Variation in MCC as a function of the number of latent variables 

used in the classification for training and validation sets. The green line represents 

a 4th order polynomial fit of the validation set performance. B) Shows the 1st and 

2nd derivatives of the polynomial used to fit the MCC of the validation. The black 

vertical line illustrates the optimum number of latent variables for the validation 

set. 

Table 1: Sensitivity, specificity and MCC along with their respective 

standard deviations for the final test set performance following optimization 

using the validation set. 

PCA-LDA 

Sensitivity Specificity MCC 

0.95±0.03 0.97±0.03 0.88±0.06 

2. Random Forests 

The random forest algorithm was optimized by using training 

and validation sets to find the optimal combination of the size 

of the leaf nodes in the trees of the random forest and number 

of trees grown in the model. The surface plot of the MCC value 

as a function of the number of trees grown and the number of 

leaves per tree for the training set is shown in Figure 3Error! 

Reference source not found. A) while the MCC as a function 

of number of leaves and the number of trees grown for the 

validation set are plotted in Figure 3 B). The combination that 

produced the highest MCC value in the validation set was 50 

and 1 for number of trees grown and the number of leaves 

respectively, and is illustrated by the red dot in the plot. The 

MCC for the classification was found to be 0.73. These 

parameters were then used to grow a random forest from the 

training data and the model was tested on the newly seen test 

set data. The MCC for the classification of the test data was 

found to be 0.68. The confusion matrix along with the 

sensitivity, specificity and MCC are provided in Table 2. 

 

Figure 3: A) Shows the MCC as a function of the leaf size and the number of trees 

grown in the classification of the training set, B) shows the MCC as a function of 

leaf size and the number of trees grown in the validation set. The red dot 

represents the best performing combination of leaf number and number of trees 

grown for the validation set. 

Table 2:  Sensitivity, specificity and MCC along with their respective 

standard deviations for the final test set performance following optimization 

using the validation set for the random forest classification. 

Random Forest  

Sensitivity Specificity MCC 

0.97±0.01 0.74±0.10 0.68±0.08 

 

3. SVM-(linear and radial based kernel functions) 

Linear SVM (C-SVC) 

The optimisation of the linear cost dependant SVM is shown in 

Figure 4. The MCC for each of the values of the γ cost 

parameter is plotted for both training and validation sets. The 

value of γ was varied from 1x10-6 to 10 in uniform log intervals 

and was found not to affect the outcome of the prediction of the 

linear SVM and thus was fixed at 0.0001. Cost was varied from 

1x10-2 to 1x108 similarly in uniform logarithmic intervals. The 

black vertical line in Figure 4 represents the value of cost that 

both maximises the MCC of the validation set and minimises 

the number of support vectors required by the SVM. The 

resulting value of the cost parameter was used for the final 

model, which was used to predict the test set. The value of cost 

that gave the best prediction in the validation set was 1x107 and 

the SV fraction was 0.21. The MCC for the classification was 

0.81. The resulting sensitivity, specificity and MCC for the 

classification of the test set are provided in Table 3. The MCC 

for the final test set was 0.84.  
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Figure 4: Variation in the MCC for both training and validation sets, the SV 

fraction and the difference in the MCC of the validation set and the SV fraction, 

as a function of the log of cost parameter. The black vertical line represents the 

cost parameter which maximized the performance of the SVM while minimizing 

the number of SVs required. 

RBF SVM (C-SVC) 

The cost dependant RBF function was optimised by performing 

a grid search to find the combination of γ and cost function 

values that resulted in the highest MCC for both training and 

validation sets. Figure 5 A) shows the MCC surface plot for the 

classifications using the training set, with varying values of γ 

and cost function. γ was varied from 1x10-3 to 1x104, while cost 

was varied from 1 to 1x109 in uniform log intervals. In Figure 5 

(B) the surface plot of MCC as a function of cost and γ are 

shown for the validation set. The SV fraction as a function of 

cost and γ is plotted in Figure 5 (C) and in Figure 5 (D) the plot 

of the difference between the validation set MCC and the SV 

fraction, for each of the combinations of cost and γ is plotted. 

The highlighted red dots in Figure 5 (C) and (D) show the 

combination of cost and γ that result in the best performing 

SVM with the minimal amount of SVs required for the 

classification. Maximising the difference between the MCC and 

SV fraction reduces the complexity of the model and results in 

better performance of the SVM on new data. The combination 

of γ and cost parameters that resulted in the highest MCC and 

the minimal amount of SVs required in the validation set were 

used to build the SVM for the testing set. In this case the values 

of γ and cost were found to be 10 and 1x104 respectively, 

giving an MCC of 0.92 and a SV fraction of 0.23 in the 

validation set. The resulting model was then tested on the test 

set and was found to have an MCC of 0.90. Table 3 shows the 

sensitivity, specificity and MCC for the final testing set.  
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Figure 5: A) and B) Visualisation of the cost-dependant RBF SVM optimization for training and validation sets respectively, MCC is plotted as a function of the log of 

cost and γ parameter, C) and D)  show support vector fraction  and the difference between the validation set MCC and SV fraction, with respect to the log of cost and γ. 

The red dot highlighted in the plots of the SV fraction and the MCC-SV fraction shows the combination of cost and γ that resulted in the best performing SVM with the 

minimal amount of SVs required.  

Table 3: Sensitivities, specificities and MCC along with their respective standard deviations for each of the SVM classification methods, linear and RBF cost 

dependent SVMs.

C-SVC linear SVM C-SVC RBF SVM 

Sensitivity Specificity MCC Sensitivity Specificity MCC 

0.96±0.02 0.91±0.04 0.84±0.06  0.98±0.02 0.92±0.05 0.90±0.06  

 

All of the modelling performances detailed thus far are for 

repeated boot-strapping of the dataset during training and 

evaluation. As mentioned in the methods repeated cross-

validation was also performed on the best-performing model, 

the RBF-SVM, using repeated 7-fold cross-validation where 

donors were randomized for membership of each of the folds. 

The resulting MCC of the SVM was found to be 0.42±0.27, 

which corresponds to a specificity and sensitivity of 0.83±0.01 

and 0.62±0.05 respectively. This more rigorous approach gives 

level of reassurance that the first model training and testing 

approach does not over fit and that the performance statistics 

are reflective of a performance which would be expected from 

each model type with a larger training and testing set. 

Discussion 

Raman spectroscopy has demonstrated its potential in 

hematology through its ability to discriminate between different 

cell subtypes and cellular responses to external factors, and 

further allowing the prediction of concentrations of metabolites 

found within the blood. In such instances the choice of model 

and optimisation strategy is key to the development of robust 

models. Within this consideration, it is critical to consider 

whether the data can be expected to be linearly or non-linearly 

separable when choosing a modelling algorithm or approach. 

Optimisation should then proceed to maximise modelling 

accuracy while minimizing model complexity and maximizing 

robustness on unseen testing sets. 
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The present article demonstrates this approach for three distinct 

model types; PCA-LDA, SVMs and Random Forest classifiers, 

applied to a challenging classification problem of 

subclassification of leukocytes taken from the blood of a 

population of volunteers. Each model has been optimised on the 

same data sets and the method of optimisation of each of the 

models has been presented. All models performed relatively 

well with MCCs above 0.65 for the test set data. 

The performance of the SVMs was found to be the champion 

out of all three model types with the RBF SVM producing the 

model with the best classification performance (MCC=0.90). 

The Random forest classifier performed the worst out of all 

three classifications resulting in an MCC for the test set of 0.68, 

with a sensitivity and specificity of 0.97 and 0.74 respectively. 

The random forest specificity was quite low (0.74) indicating a 

bias in the classification, where 99% of all lymphocytes were 

classified correctly but 35% of cells, that were of a different 

origin, were classified incorrectly. 

As the PCA-LDA classifier methodology is somewhat similar 

to a simplified SVM (linear) and unsurprisingly its validation 

set performance was similarly high at an MCC of 0.80 similarly 

to the validation set performance of the linear SVM 

(MCC=0.80). However the optimal classification for the PCA-

LDA classification resulted in a highly complex model using a 

total of 31 latent variables to perform the classification. The 

power of PCA-LDA applied to Raman spectroscopy is in 

allowing the modeller to enquire as to the spectral variables 

giving origin to the classification through the principal 

components chosen in the model. However, in a model with 

such a high level of complexity, although robustly accurate, the 

advantage of visualisation of the spectral variables disappears.  

The SVM classifiers all performed relatively well on the test 

data in comparison to the random forest classifier. The linear 

and RBF SVMs support vector fractions used in the test set 

performance were found to be 0.21 and 0.23 respectively. The 

RBF SVM performed slightly better than its counterpart linear 

SVM. This suggests that the data is somewhat non-linearly 

separable and that the discriminating hyperplane is not strictly 

linear. Figure 5 (D) shows the importance of increasing the γ-

parameter in the RBF SVM, where γ effectively determines the 

flexibility of the hyperplane. Although this article is meant as 

an exploratory study, it demonstrates that the choice of 

multivariate model and the optimisation of that model, is 

critical to the development of robust, generalizable prediction 

models based on Raman spectral data. Models should suit the 

classification problem, providing flexibility in adapting to the 

dataset and the separation hyperplane and minimizing model 

complexity. The study demonstrates that there is a fundamental 

difference in the spectral features of myeloid cells and 

lymphocytes. Further visualisation of the origin of the 

classification from the perspective of the spectral variables that 

are important may be achieved through coupling to variable 

selection and spectral fitting techniques.  

Conclusion 

The label-free subclassification of leukocyte subtypes with 

Raman spectroscopy represents a challenging problem from a 

technical perspective. Overlapping spectral bands within each 

leukocyte subtype can reduce the distinct character of each 

spectral subclass. Presentation of the whole Raman spectrum to 

a classifier in an unsupervised manner is the most appropriate 

a-priori approach to development of models for classification 

of these subtypes, although configuration of the modelling 

parameters and its complexity must be carefully chosen to 

maximise robustness and accuracy. The present article 

demonstrates the importance of identifying the best model for 

classifications and outlines a strategy for optimisation of three 

distinct modelling approaches. Alternative approaches may be 

required for other classification algorithms and problems. 
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