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Fourier transform infrared (IR) spectroscopy in combination with multivariate data analysis is a 

versatile tool that can be applied for the diagnosis. However, a rigorous validation of the obtained 

models is necessary in order to obtain robust results. This work evaluates the advantages of the use 

of permutation testing for determining the statistical significance of the misclassification errors 

obtained from IR based diagnostic models through cross validation (CV). The model performance, 

estimated by CV, is compared to a distribution of CV-performance values obtained using randomly 

permuted class labels. The distribution of ‘random CV-values’ is considered as a null distribution 

and used to establish the significance of the model estimators obtained using real class labels. ATR-

FTIR spectra of serum samples were classified using random forest (RF) classifiers according to 

two criteria, the tag number (a randomly assigned pseudo class membership) and the level of urea 

(real class). CV errors obtained were compared to the null distribution of CV errors from a 

permutation test and an independent validation set. The procedure was evaluated testing typical 

conditions leading to overoptimistic estimations provided by the CV like e.g. the size of subsamples 

used during CV, variable selection and the use of replicates. Results show that for the tag number 

(pseudo class), CV indicated classification errors between 23 and 33 % depending on the subsample 

size employed. Those values were even lower when variable selection or replicates were used. 

However, permutation testing indicated that those CV errors were non-significant. In contrast, for 

sample classification according to their levels of urea, all cross validation errors were found to be 

significant. Although the proposed method is computationally intensive, it provides a simple way of 

calculating an empirical p-value of the CV-estimator, thus establishing the statistical significance 

and providing a feasibility indicator especially useful for studies where the number of samples is 

limited. 
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1. Introduction  

In the last decade, experimental studies revealed the potentials of vibrational spectroscopy for the 

diagnosis of disease in a wide variety of biological fluids and tissues
1
. Specifically, the combination 

of multivariate analysis and Raman or infrared (IR) spectroscopy has been repeatedly proposed for 

medical diagnosis based on the high amount of information encrypted in IR and Raman spectra, 

which provides a bimolecular fingerprint of the metabolic state of the patient
2
. A literature review 

between 2012 to 2014 reports its application for the diagnosis of several diseases such as asthma
3
 or 

diverse types of cancer including glioma
4
, breast

5
, ovarian

6,7
, oral

8
 or bladder cancer

9
. In addition, 

in the case of blood and related samples such as serum and plasma, attenuated total reflectance 

(ATR) IR measurements offer a minimum-invasive, fast and cost-effective diagnostic tool
10

. The 

access to well characterized samples is fundamental for exploiting the potentials of vibrational 

spectroscopy. Selection of the sample size required to derive a statistically significant estimation is 

critical to produce robust results and it depends on a number of factors including the size of the 

effect and intrinsic biological and instrumental variation. However, difficulties in obtaining well 

characterized samples (e.g. blood, tissues) may hinder the development of this type of technology 

and, frequently, reported studies include a limited number of samples. In these situations, external 

independent test sets for the evaluation of the prediction capabilities of the models are not always 

available and, alternatively, a number of cross validation (CV) procedures are employed. In spite of 

its usefulness, CV-based approaches might lead to an underestimation of the classification error
11

 

leading to overly optimistic descriptions of the model discriminant performance. In the fields of 

metabolomics and proteomics it is not unusual to generate mega-variate datasets with a high 

variable to sample ratio
12

. Because of the need to establish reliable indicators of the performance of 

the classifications when biomarker identification is involved, the aforementioned problems related 

with CV have been already addressed. One approach is based on non-parametric permutation tests, 

which imply the random reallocation of class labels in order to establish the statistical significance 
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of a figure of merit obtained using CV
13,14

. In spite of being a quite common approach in other 

fields such as proteomics
13

 or metabolomics
12

, this strategy is not yet common practice in IR 

biospectroscopy and besides a conference proceedings of Lloyd et al
15

, it is difficult to find any 

application of this procedure in the biospectroscopy field .  

The aim of this paper is to introduce permutation testing as a feasible indicator of the statistical 

significance of CV-figures of merit of IR based diagnostic models. For this purpose, ATR-Fourier 

transform infrared (FTIR) spectra of serum samples were recorded and discriminant models by 

means of random forest (RF) classifiers were developed. Reproducing preliminary studies, a limited 

number of samples were used for calculating and cross validating the RF classifiers. Results of a 

permutation test performed over the CV error were compared with the actual prediction capability 

of those models, established by validating them with a large and representative set of samples. 

Serum samples were classified in two groups according to: i) the urea concentrations in sample, and 

ii) to an arbitrary sample number un-related to the sera composition. The importance of the access 

to statistically reliable performance parameters was further underlined in common situations of IR 

based diagnostic models, which are known to enhance overoptimistic CV errors, i.e. the use of 

measurement replicates and variable selection.  

2. Experimental 

2.1 Samples and Spectral Acquisition 

ATR-FTIR Spectra of 122 serum samples from different patients were acquired as described 

elsewehere
16

. Briefly, spectra containing 235 data points recorded in the range 1800-850 cm
-1

 with a 

spectral resolution of 4 cm
-1

 were recorded using a Tensor 27 spectrophotometer from Bruker 

(Bremen, Germany), equipped with temperature-stabilized deuterated lanthanum tryglycine sulfate 

(DLATGS) detector and a nine reflection diamond/ZnSe DuraDisk from Smiths Detection Inc. 

(Warrington, UK). 150 microliters of serum were deposited on the ATR cell and the spectrum was 
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measured using the empty clean cell as a background. Both, spectrum and background were 

obtained averaging 100 scans, and the water contribution to the spectrum was eliminated by 

subtracting a spectrum of water measured in the same conditions. 

Measurements for each sample were recorded in triplicate and the average of the replicates was 

used in sections 3.1 and 3.2 and the actual individual replicates were used in section 3.3.  

2.2 Samples Sets and Class Assignment 

As we have stressed in the introduction, in most of the cases the number of samples are limited on 

the studies for the diagnosis of illnesses based on IR spectroscopy.  Since our investigation aimed to 

simulate those preliminary studies, only 30 samples were employed for calibration. Besides, 

reproducing the conditions of a representative blind test, 92 samples were used only as an 

independent test set in order to establish the actual prediction capability of the models against a 

real-world external set of samples not included in any step of both the calibration and selection of 

RF parameters. Sample classes were assigned according to two criteria:  

1) First, samples were classified based on the concentration of urea measured by 

employing an enzymatic reference method used at the hospital for the 

conventional routine analysis. 61 samples (15 for calibration and 46 for validation) 

contained urea concentration values above 60 mg/dL and the other 61 (15 for 

calibration and 46 for validation) below 40 mg/dL. Urea concentration in serum 

can be measured using FTIR spectroscopy
16

 and so, a discriminative model should 

be a priori to provide good predictive performance.   

2) Samples were distributed based on an arbitrary hospital tag number: 56 samples 

(15 for calibration and 41 for validation) with a tag finished by 1, 2, 3 and 4 were 

assigned to ‘class A’ and 66 samples (15 for calibration and 51 for validation) 

with a tag finished by 0, 5, 6, 7, 8 and 9 were assigned to ‘class B’. This 
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classification was therefore arbitrary and thus, any classification obtained 

considering this pseudo-class could be attributed to chance, model overfitting or to 

an optimistic estimation of the CV-figures of merit.  

2.3 Random Forest Classification 

Random forest classification was performed in Matlab 2012b (The Matwhorks, Natick, USA) using 

the routine available at https://code.google.com/p/randomforest-matlab/ and further calculations 

were carried out using in-house written scripts.  

In order to increase the number of variables, an augmented data matrix was obtained by 

concatenating the raw and the first derivate spectra calculated using a Savitzky-Golay routine, 

resulting in a calibration dataset with 30 samples and 986 variables. The tuning parameters of the 

RF classifiers were set following the recommendations of Ollesch et al
9
. The number of trees 

employed for each random classifier was three times the number of variables and the number of 

wavenumber-features used in each tree was a third of the number of variables). All other parameters 

of the RF classifiers were set to the default values established in the routines. 

2.4 Cross validation, external validation and permutation test 

For performing the Montecarlo CV only the calibration samples were used. A set of M/n samples, 

where “M” is the number of samples in the calibration set and “n” the number of data splits used 

during cross validation, were randomly selected and predicted by the RF classifiers obtained using 

the remaining samples. This step was repeated 60 times, changing the calibration and internal 

validation subsets selected and registering the CV-predicted classes in order to obtain a 

representative value of the CV from the all possible subsets. Based on CV-predicted classes, the 

samples were classified using a majority rule: each sample was classified in the group of the 

majority of CV-predicted values. The error rate was then obtained by dividing the number of the 

bad classified samples by the numbers of samples of the calibration set. Then, the external test set 
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of 92 samples, was used for establishing the actual classification performance of the models. In this 

case the whole calibration dataset was employed for computing the RF classifiers and the same 

parameters employed for the CV in terms of tuning parameters of the RF classifiers. In the case of 

the external validation after variable selection, RF classifiers were performed including only the 

variables selected in the routine. 

Permutation testing included a random class permutation followed by an ensemble RF using the 

dataset with the permuted class labels. CV was carried out as described above. Those two steps 

were repeated 200 times and the CV error was obtained. The distribution of the so-called ‘random 

CV-values’ was used as a null distribution for establishing the statistical significance of the model 

CV estimators obtained using real class labels. This statistical significance was calculated as the 

number of permuted values lower than the CV error obtained using the real classes divided by the 

number of permuted values. 

2.5 Variable selection 

The variable selection (selection of the wavenumbers which provide the best classification) 

procedure was based on a Montecarlo procedure as described in a previous reference
9
, setting the 

tunable parameters to less restrictive values to facilitate the selection of correlated but 

uninformative variables. Montecarlo feature selection utilizes the repetition of a cyclic routine 

randomly selecting 23 samples in each cycle. In the cyclic procedure, an ensemble RF classifier was 

created and validated using the Montecarlo CV as described in the section 2.3, recording the mean 

Gini values for each variable and the CV error. Then, 20% of variables with the lowest Gini values 

were eliminated and the CV was repeated. This cycle of CV and elimination of variables was 

repeated 12 times until only 45 values were retained. From the variables selected from the 10 RF 

models, those selected by the model with the best classification error rate were finally chosen as 

variables selected for the cyclic routine. This cyclic routine was repeated 10 times and the final 

variables chosen were those that were selected in 3 or more out of the 10 cyclic routines. 
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3. Results 

3.1 Statistical significance of cross validation errors 

The selection of the employed n-folds (i.e. number of sub-samples used during CV) is critical when 

CV errors are used as the selection of a high n-fold could lead to an overoptimistic evaluation of the 

model. RF models for the classification by sample tag number and urea levels were performed and 

validated using an independent validation set (external validation) and CV with different n-folds 

(15, 10 and 4). Results (see Table 1) evidenced a strong association between the CV error and the n-

fold. In all cases, the CV error was lower than the one obtained using the independent validation set 

and increasing the n-fold, the CV error decreased. More importantly, in the case of the classification 

according to the sample tag number, classification errors between 26 and 44% were obtained. Those 

values are significantly lower than the one obtained by the independent validation, which was 

52±1% and hence corresponded to the expected value for a non-statistically significant class 

difference. This demonstrates the capability of RF for recognizing apparent discriminant patterns 

even in random data, which only was evidenced after a proper external validation with an 

independent sample set and might be not detected using CV-figures of merit. 

Table 1: Error parameters obtained from the validation of the RF classifiers for different n-fold 

values. 

  

Class Parameter 
n-fold 

15 10 4 

TAG 

NUMBER 

Independent validation error 

(%) 
51.8±0.5% 51.8±0.5% 55.4%±1.0% 

CV Error (%) 26±4% 38±4% 44%±3%  

p-value 0.36  0.33 0.35 

UREA 

LEVEL 

Independent validation error 

(%) 
32±2% 32±3% 32±2% 

CV Error (%) 8.2±0.9% 13.3±0.7% 15.7±0.7% 

p-value <0.005 0.005 0.005 
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Permutation testing was applied for calculating the statistical significance of the aforementioned CV 

errors. The values of the CV errors obtained for the classification of the permuted classes are 

represented in Figure 1. It is remarkable that in the case of the 15-fold CV (leave-2-out), the 

distribution of CV errors obtained for 200 permutations are always lower than the theoretically 

expected 50% error value. This shows the ability of RF to provide low CV errors from IR based 

classification/diagnostic methods no matter which class/illness is under study. However, comparing 

the CV errors to the distribution of the CV errors obtained from permuted classes enables the 

evaluation of the statistical significance of the model under study. 

 

Figure 1: Distribution of errors obtained from the independent and cross validation of the models 

using RF classifiers. 
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The mean of the Gaussian distribution of the prediction moves to lower values as the n-fold 

increases. Therefore, although the CV error also decreases with increasing n-fold, their statistical 

significance does not show substantial changes throughout the different n-folds under study.  In the 

case of the arbitrary classes based on the sample tag number, the obtained CV was in the range of 

the mean CV error obtained from permuted classes as shown in Figure 1 and the calculated 

statistical significance was p>0.05 as shown in Table 1. Thus, the ability of permutation testing for 

detecting overoptimistic estimations of the CV error at different n-folds is demonstrated. In 

contrast, for the classification between samples with low and high levels of urea, the CV errors 

obtained were significantly lower than those obtained by the permuted classes (p≤0.005). It has to 

be also considered that the prediction error obtained using the independent validation dataset was 

two times higher than the one obtained using CV, which indicates, as previously shown
12

, that 

permutation testing focuses on assessing the significance of the classification without taking into 

account the real predictability of the population of samples to predict. An n-fold value of 4 (leave-7-

out) was selected for the further calculations. 

3.2 Statistical significance of CV errors after feature selection  

The development of diagnostic tools based on the modelling of IR spectra faces a critical challenge 

regarding the sample to variable ratio, especially considering early studies where the number of 

samples is limited. Therefore, feature selection is normally used for “producing a smaller number of 

variables (“feature = input variable”) that are more informative than the original whole set of 

wavenumber-variables”
17

. The main aim of this procedure is the improvement of the diagnostic 

model performance and the detection of spectral biomarkers that can help to improve the 

understanding of the biological mechanisms of the illness, also providing a scientific justification of 

the IR based classification. However, the introduction of this feature selection could lead to 

overoptimistic results and the apparent improvement in the CV error obtained after variable 

selection can also be originated from the susceptibility of variable selection towards chance 
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correlations
18

. This effect is a well-known source of complications in the metabolomics field and 

the likelihood of obtaining a model based on chance correlation depends on the sample to variable 

ratio and the correlation structure of the data
19

. In addition, the presence of chance correlation on 

regression models for the prediction of glucose concentration has been widely studied 
20,21

. 

The aim of this section was to assess the use of the permutation testing for evaluating the statistical 

significance of IR models after variable selection. Variable selection was carried out for the 

classification of samples according to the sample tag number and low/high urea levels followed by 

cross validation and permutation testing. From results shown in Figure 2 it can be appreciated that, 

as compared to the 4-fold distribution before variable selection (see Figure 1), the variable selection 

procedure improved the CV error of the classification according to the sample tag number from 

44% to 27%. However, the CV distribution of errors obtained from the permuted values also moves 

to lower errors and consequently no significant difference to the CV error was observed (p=0.46). 

In contrast, for the classification according to the urea levels, the CV error obtained after variable 

selection was still significantly lower than errors obtained from permutation testing (p=0.015).  
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Figure 2: Distribution of errors obtained from the independent and cross validation of the models 

performed for classification of the samples after variable selection using the RF classifiers. 

Figure 3 shows the frequency of the selected variables in each of the 10 cycles performed during the 

variable selection process, where red dots correspond to the variables that were finally selected. The 

distribution of the variables selected differs from the classification considered. In the case of the 

arbitrary determination of the sample tag number (see Figure 3b), several wavenumber values 

arbitrarily distributed across the IR bands were selected. It should be noted that the use of these 

variables improved the CV error in comparison to the use of the whole spectrum, and if the 

statistical significance was not considered, they could have been mistakenly assigned as 

“biomarkers” for the sample tag number. These results demonstrate that the variable selection 

procedure could find correlations on trivial wavenumber values which apparently improved the 

prediction capability of the model, but which did not have any relationship with the studied 

parameter. Nevertheless, the use of the permutation test and a thorough investigation of the 

wavenumber values “feature selected” demonstrates the irrelevance of these markers and models, 

which are likely associated with  chance correlations without statistically significant results. 

In the case of the classification according to urea levels, the variables selected correspond to 

characteristic urea bands, such as a shoulder of the band at 1040 (ρNH2)
22

 cm
-1

 in the untreated and 

the first derivative spectrum and the bands at 1552 (νC-N)
22

 and at 1155 (ρNH2)
22

 cm
-1

 in the first 

derivative spectrum. It has to be noted that the bands selected are not the most intense bands of the 

urea spectrum. However, this might be due to strong interference in the 1600-1400 cm
-1

 region 

caused by amide I and II bands. The selected wavenumber values are in good agreement with the 

selectivity ratio
23

 obtained from a PLS regression performed on the data set for the prediction of the 

concentration of urea (see black spectra) 
16

. 
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Figure 3: Wavenumber values chosen by the feature selection procedure for the classification 

according to the sample tag number (a) and urea levels (b). Blue bars indicate the variable 

selection frequency in the 10 cyclic routines performed. Variables with a frequency higher than the 

threshold (dashed line) were finally retained and are indicated as red points with black circles in 

the mean sample spectrum (green line). Panel (b) also shows the ATR spectrum of a urea standard 

solution at 1000 mg/dL (red line) and the selectivity ratio values for a PLS regression model (black 
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line).The Y axis label “Frequency” corresponds to blue bars and the Y axis label “Absorbance” 

corresponds to the spectra. Selectivity ratio is unitless. 

 

 

3.3 The effect of replicates on the statistical significance on RF models 

The high variable to sample ratio can be also compensated by including measurement replicates of 

the sample in the model. The use of measurement replicates is usually justified by the need of 

taking into account the variability of different spots of the samples. The ‘sample replicate trap’ 

occurs when replicates of the same physical samples are introduced in both the calibration and the 

validation subsets employed during model CV and external validation
24

. This effect can be 

corrected by using a continuous block cross validation employing sub models of m-blocks being m 

the number of replicates. However this process can be troublesome if the number of replicates is not 

the same for all samples. 

The effect of the use of replicates during cross validation of RF models was evaluated employing 

permutation testing. Figure 4 represents the CV and independent validation errors obtained for the 

two class labels considered as well as the distribution of the CV errors for 200 permutations when 

two and three replicates are used. Once again, the distribution of the errors obtained using the 

permutated classes was dramatically shifted to lower errors as the number of replicates increased. 

According to the CV error, the RF was able to correctly classify 82 and 93% of the samples 

according to the sample tag number using 2 and 3 replicates, respectively. As expected, the 

permutation testing indicated that those classifications were not statistically significant (p=0.6 and 

0.5). Regarding the classification of the samples according to urea levels, the prediction errors were 

found to be significantly different from those obtained from randomly permuted classes in all cases 

(p<0.05). It has to be remarked that, although the use of replicates improved the CV errors, it 
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decreased the real prediction capability of the model, as evidenced by the increase of the 

independent prediction errors obtained using 1, 2 and 3 replicates. 

 

Figure 4: Distribution of the classification errors of the RF classifiers obtained using 2 (a) and 3 

replicates (b). 

4. Conclusions 

Results obtained show that the application of permutation testing is suitable for calculating the 

statistical significance of IR based diagnostic models. In the case of the sample tag number, the 

manifested CV errors obtained were not statistically significant after permutation testing. In the case 

of the classification according to urea levels, CV errors were found to be significant. It has to be 

stipulated that the method did not provide an estimation of the predictive capacity of the model, 

which can only be achieved by an external validation set. However, it provides a significance value 

of the classification, which contains information about the significance of the differences between 

the spectra of different classes. Therefore this method can be used as an early estimator of the 

a) 

b) 
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validity of a hypothesis or for making a decision about the utility of incorporating further samples to 

the system. Although there are several repetitions of the procedures involved in the modelling such 

as the CV and variable selection, which can become computationally intensive, it is nonetheless a 

versatile tool that can be used in systems with a high variable to sample ratio or with an unbalanced 

number of samples in each class and hence we recommend the use of permutation testing especially 

in the case of preliminary studies. 
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