This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
A WS$_2$ nanosheet-based platform for fluorescent DNA detection via PNA-DNA hybridization

Shuting Wang, Yulin Zhang, Yong Ning*, Guo-Jun Zhang*

School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China

*Corresponding author: Tel: +86-27-68890259, Fax: +86-27-68890071
E-mail: zhanggj@hbtcm.edu.cn; ningyong128@163.com
Abstract

WS₂ nanosheet, one of two-dimensional layered nanomaterials, shows high fluorescence quenching ability to the dye-labeled ssDNA. Currently, most of the fluorescent DNA detections employ DNA as a probe for recognition of target DNA. Peptide nucleic acid (PNA) is a DNA mimic but a neutral molecule, showing superior hybridization properties to target DNA. Based on the unique properties of WS₂ nanosheet and PNA-DNA hybridization, we have developed a rapid, simple, stable and sensitive approach for DNA detection based on good fluorescence quenching ability of WS₂ nanosheet as well as high binding affinity and specificity of PNA to DNA. This novel assay is capable of exhibiting high sensitivity and specificity with a detection limit of 500 pM, and discriminating single-base difference.
1. Introduction

DNA plays an important role in life science. DNA detection is critical in the fields of disease diagnosis, forensic investigation, genomics, and etc. Real-time quantification polymerase chain reaction (qPCR), a main approach for DNA detection currently, excels in both amplification and quantification of target sequences, possessing high sensitivity and specificity, as well as capability for SNP genotyping.\(^1\) However, it also has some disadvantages, such as time-consuming, complex, expensive and so on.\(^2\) Thus, it is very necessary to develop rapid, simple and cost-effective DNA assays.

Nanomaterials like nanoparticles,\(^3\)-\(^6\) quantum dots (QDs),\(^7\) \(^8\) carbon nanotubes (CNTs),\(^9\)-\(^11\) silicon nanowire (SiNW),\(^12\)-\(^14\) nanobelts\(^15\), \(^16\), nanospheres\(^17\) and graphene oxide (GO)\(^18\)-\(^20\) have been widely applied for rapid and sensitive DNA detection due to their special properties. Based on these materials, a series of methods have been developed, including colorimetric assays,\(^4\) \(^21\), \(^22\) fluorescent assays,\(^7\) \(^10\), \(^18\) turbidity assays\(^23\) and electrical assays\(^9\), \(^12\), \(^24\), \(^25\). In particular, fluorescent assays that using nanomaterials as quenchers have been extensively explored for their simple, rapid and cost-effective merits. As a typical example, single chain fluorescence-labeled DNA probe can be bound to the nanomaterials and fluorescence quench subsequently occurs in the absence of target. However, it releases from the nanomaterials and fluorescence recovers when mixing with complementary target and forming duplex\(^19\). GO, a two-dimensional material that derives from graphene, is a widely used nanoquencher for this kind of assay owing to its capability of long-range
energy transfer,18, 19, 26 as well as distinguished adsorption to single stranded (ss-) and double stranded (ds-) DNA. It has got intensive research by using various probes (e.g., DNA,18, 19 RNA,27 aptamer,18, 19 PNA,20, 28 LNA,29 MB,30, 31 etc.) and strategies (e.g., pre-mixing18 and post-mixing19, direct detection18, 19 and amplified detection32, 33, etc.) to meet the desired sensing performance. Recently, some other two-dimensional layered nanomaterials have been explored as nanoquenchers as well. For example, MoS\textsubscript{2},34 carbon nitride35 and WS\textsubscript{2}36 nanosheets were reported to be used in novel fluorescent DNA assays already. WS\textsubscript{2} nanosheet, with a “S-W-S” sandwich structure37,38 layer, is reported to have similar effect with GO on the fluorophore labeled DNA probes.36, 39-41 Compared to GO, the WS\textsubscript{2} preparation doesn’t involve oxide treatment while it is a critical process in the GO preparation. As known, the oxidization degree of GO has significant impact on fluorescence quenching efficiency,42, 43 meaning that the performance of WS\textsubscript{2} nanosheet is more controllable than that of GO. Thus WS\textsubscript{2} is showing great potentials in biosensors.

PNA is a DNA mimic consisting of normal DNA bases and a “peptide-like” backbone.44 It can hybridize with the complementary nucleic acid sequence obeying the Watson Crick hydrogen-bonding rules and form duplex like DNA does.45 Moreover, the replacement of negatively-charged sugar-phosphate in DNA by neutral N-(2-aminoethyl)glycine units in PNA44 affords PNA many advantages over DNA. For instance, the binding affinity and the sequence specificity of PNA probe to nucleic acid target are higher than that of DNA probe.46, 47 In addition, the PNA-DNA duplex is more stable than the DNA-DNA duplex.47 Due to these advantages, PNA has been
used in various biosensors20, 47-51 to improve the sensing performance. For example, in fluorescence assays, GO / PNA sensing systems have proven to be more sensitive20 or stable28 than GO / DNA sensing systems. However, PNA has not been explored as probe yet in the WS\textsubscript{2}-based platform. In this work, we report a new WS\textsubscript{2} platform based fluorescent DNA assay by using the more specific PNA probe instead of the DNA probe. We investigate the interactions between PNA and WS\textsubscript{2} nanosheet, and develop the DNA sensing platform by PNA and WS\textsubscript{2} based homogeneous fluorescence assay and a post-mixing strategy.

2. Experimental Section

2.1 Materials and Apparatus

The PNA probe sequence used in this work was synthesized by Bio-synthesis, Inc. (Lewisville, Texas), and the DNA sequences were synthesized and purified by Takara biotechnology Co., Ltd. (Dalian, China). Their sequences are as follow:

PNA probe (P1): N-AACCACACACAACCTACTACCTCA-lysine-FAM-C

DNA probe (P2): 5’-AACCACACACAACCTACTACCTCA-FAM-3’

The complementary target DNA (T1): 5’-TGAGGTAGTAGTGTGGTT-3’

The one-base mismatched ssDNA (T2): 5’-TGAGGTAGTGGATGTGGTT-3’

The non-complementary ssDNA (T3): 5’-ATGCATGCATGCATGCAA-3’

Tungsten Disulfide (WS\textsubscript{2}) nanosheet was purchased from Nanjing XF Nano Material Tech Co., Ltd. (Nanjing, China). Other reagents were of analytical grade.
Ultrapure water was obtained from Millipore water purification system. The fluorescence measurements were taken on a Hitachi F-4600 spectrophotometer.

2.2 Fluorescence assays

In optimizing the concentration of WS$_2$ nanosheet, the fluorescent probe P1 or P2 (1 μM, 20 μl) was added into a certain amount of 20 mM Tris-HCl buffer (150 mM NaCl, pH=7.6), and then mixed with different amount of WS$_2$ nanosheet, making the final volume of 1 ml. The mixture was incubated at room temperature for 1 min before fluorescence measurement.

In the kinetic study of WS$_2$ quenching behavior to the fluorescent probe P1, fluorescence emission spectra were monitored as a function of time after P1 (20 nM) was mixed with WS$_2$ nanosheet (4 μg/ml).

In the concentration gradient assay, P1 (20 nM) was hybridized with the different concentrations of complementary target T1 (1 nM, 2 nM, 5 nM, 10 nM, 20 nM, 40 nM and 80 nM) at room temperature for 10 min. Then the reaction solution was mixed with WS$_2$ nanosheet (4 μg/ml) and the mixture was incubated for 1 min before fluorescence measurement.

In the specific DNA detection assay, P1 (20 nM) was hybridized with the target T1, the one-base mismatched ssDNA T2 or the non-complementary T3 of 20 nM at room temperature for 10 min. After that, the reaction solution was mixed with WS$_2$ nanosheet (4 μg/ml) and the mixture was incubated at the temperature at 65 °C for 1.5 h before fluorescence measurement.
3. Results and Discussion

3.1 Design of the sensing strategy

It has been reported that PNA and DNA have different adsorption behavior at electrically charged surfaces.52, 53 Consistent with this, previous studies show that PNA has stronger binding affinity to the negatively charged GO nanosheet than DNA does, as the dye-labeled PNA needs less GO than the dye-labeled ssDNA to completely quench the fluorescence of the dye.20, 28 According to the recent reports in which the dye-labeled ssDNA can be adsorbed on WS\textsubscript{2} nanosheet and subsequently WS\textsubscript{2} quenches its fluorescence,36, 39 we anticipate that the dye-labeled PNA has the similar interaction with WS\textsubscript{2}, and it thus can be employed as a more specific probe in WS\textsubscript{2} platform for DNA detection. To investigate the applicability of PNA probe in this platform and develop a new DNA biosensor, we design a homogeneous fluorescence assay by employing WS\textsubscript{2} and PNA with the schematic shown in Fig 1. PNA instead of DNA is chosen as the probe, and PNA is FAM-labeled at the C-terminal. In the absence of the target, PNA is strongly absorbed on the surface of WS\textsubscript{2}, and the fluorescence of FAM can be effectively quenched by WS\textsubscript{2}. In contrast, in the presence of the target, PNA-DNA duplex will form immediately and the molecular conformations alter, resulting in weak interaction between the duplex and WS\textsubscript{2}, and thus the fluorescence of FAM largely remains.

The WS\textsubscript{2} nanosheets were characterized by both transmission electron microscopy (TEM, JEM-2100) and atomic force microscopy (AFM, Vecco 3D). The TEM image (Fig. S1) revealed that the WS\textsubscript{2} was a two-dimentional thin nanosheet.
AFM images (Fig. S2) further confirmed that the height of the WS2 sheet was about 1.0 nm, indicating the WS2 is a single-layer nanosheet.

Fig. 2 confirms the feasibility of the designed assay. P1 (20 nM) in Tris-HCl buffer showed strong fluorescence emission around the wavelength of 520 nm for the labeled FAM fluorophore. With the addition of WS2, up to 97% quenching of the fluorescence emission was observed. The phenomena indicate strong adsorption of P1 on WS2 and high fluorescence quenching efficiency of WS2. However, when P1 was hybridized with the complementary target DNA T1 to form a duplex, its fluorescence was largely retained in the presence of WS2. It suggests that the adsorption of PNA-DNA duplex on WS2 is very weak. We speculate that the interactions are induced by the van der Waals force\(^{34}\) and the hydrophobic force between the nucleobases of PNA and the basal plane of WS2 as the surface of the WS2 nanosheet is made of chemically saturated sulfur atoms and is therefore hydrophobic.\(^{54}\) After P1 is hybridized with T1, the nucleobases are buried into duplex, resulting in the weak interaction between the duplex and WS2. The fluorophore-labeled P1 is away from the surface of WS2, so the fluorescence is remained.

3.2 Optimization of WS2 concentration

The effect of WS2 concentration on the fluorescence intensity of P1 was investigated. As shown in Fig. 3a, the concentration of WS2 intensively influenced the fluorescence intensity of P1. With the increase of WS2 concentration, the fluorescence decreased and trended to a minimum value at 4 μg/ml. Thus, 4 μg/ml WS2 was used in the following experiments.
As a comparison, the effect of WS$_2$ concentration on the fluorescence intensity of DNA probe (P2) was also explored. The intensity decreased with the increase of WS$_2$ concentration (Fig 3b), but the change was much smaller than that of P1 at every WS$_2$ concentration. This means that the binding affinity of DNA to WS$_2$ is not as strong as the affinity of PNA to WS$_2$. The fluorescence of P2 did not decrease to a minimum at 4 μg/ml WS$_2$, suggesting that DNA probe needs more WS$_2$ than PNA to completely quench the fluorescence. Then we could conclude that PNA probe is better than DNA probe in consideration of WS$_2$ concentration and the background signal.

The different binding affinities of WS$_2$ to PNA and DNA may ascribe to the electrostatic repulsion. It is well known that PNA is neutral while DNA is negatively charged due to their distinctively different backbone. The single-layer WS$_2$ can be viewed as a positively charged plane of tungsten atoms sandwiched between two planes of negatively charged sulfur atoms. Recently, Ge et al and Liu et al experimentally demonstrated that there were negative charges on the WS$_2$ nanosheet surface via the zeta potential detection. Based on these studies, we speculate that the WS$_2$ nanosheet in this work also has negative charges on the surface. If the neutral PNA mixes with WS$_2$ in Tris-HCl buffer, there would be no repulsion and PNA adsorbs on WS$_2$ due to the van der Waals force and the hydrophobic force. Thus the binding affinity is extremely strong. However, when DNA mixes with WS$_2$ in the same condition, both the electrostatic repulsion and the adsorption induced by the two
force mentioned above would exist, resulting in poor binding affinity between DNA and WS$_2$.

3.3 Kinetic behavior of PNA and WS$_2$

The kinetic behavior of PNA and WS$_2$ was studied by monitoring the fluorescence intensity as a function of time. Fig. 4 shows the fluorescence quenching of P1 in the presence of WS$_2$ as a function of incubation time. It was seen that PNA adsorption on WS$_2$ surface was very fast at room temperature. It reached equilibrium in 1 min. So 1 min was chosen as the detection time after WS$_2$ was added into solution.

3.4 Detection of DNA with PNA and WS$_2$

To explore if the detection system can be applied for quantitative DNA assay, the fluorescence responses induced by T1 at different concentrations were monitored. As shown in Fig. 5a, the fluorescence intensity was gradually enhanced with the increase of target concentrations. This is because T1 hybridizes with P1 and forms PNA-DNA duplex, and the fluorescence of FAM in duplex retains after mixing with WS$_2$. At the same time, the fluorescence of un-hybridized P1 is efficiently quenched by WS$_2$ if T1 is less than P1.

Fig. 4b shows the plot of (F-F$_0$) (the fluorescence intensity at 520 nm) versus the concentration of T1. There is a linear range between 1 and 20 nM with the linear equation $y = 9.67x - 4.38$, and the correlation coefficient is $r = 0.9986$. The limit of detection (LOD) for DNA is 500 pM, which is comparable to the previously reported GO and MoS$_2$-based DNA sensing systems19,20,34. Compared with the poly(acridic
acid)-modified WS₂ nanosheet system, the LOD in this assay is one order of magnitude higher than that. This is possibly because of WS₂ size dependence, as discussed in the size-dependent GO sensors for ions detection. However, the dosage of WS₂ and the analysis time in this assay is much less than those in that system.

3.5 The specificity of the sensing system

To confirm the sequence specificity of the sensing system, a comparison of the fluorescence signal induced by the target-DNA (T1), the one-base mismatched DNA (T2) and the non-complementary DNA (T3) was performed. The thermal stability of PNA-DNA duplex is strongly affected by the presence of imperfect matches. According to the report, a single base mismatch leads to 8-20 °C decrease in Tm. And the Tm for the complementary PNA-DNA duplex in our experiment was predicted to be 70.5 °C. Then we chose 65 °C as the experiment condition, a temperature lower than 70.5 °C, but higher than the Tm of P1-T2 duplex. We expect that at this temperature a large amount of P1-T1 would maintain the structure of duplex and keep away from WS₂ to retain the fluorescence, while most of P1-T2 duplex would uncoiling and the free P1 adsorbs on WS₂ to quench the fluorescence. The reason is that the adsorption between P1 and WS₂ is rather strong and it would compete with the re-hybridization of target and P1. To guarantee that the denaturation reaction would reach equilibrium, the detection was taken after the mixture was incubated for 1.5 h. To get a control, the solution with only P1 (20 nM) and WS₂ (4 μg/ml) was treated under the same condition. Fig. 6 exhibits the comparison of relative fluorescence signal (F/F₀) regarding the three target sequences. The signal for
T1 was about 3 times as much as that for T2 and T3. Moreover, it was found that the signal for T2 was larger than that for T3, which means that the sensor can be used for detection of single-base mutation. This result clearly demonstrates that our DNA assay is of sufficient selectivity to distinguish the complementary DNA from one-base mismatched DNA sequence as well as the non-complementary sequence.

4 Conclusion

In summary, we have demonstrated that WS2 has strong binding affinity toward PNA as well as high fluorescence quenching ability to the fluorophore-labeled PNA sequence. In contrast, the affinity between WS2 and PNA-DNA duplex is very weak, which keeps the fluorophore on duplex far from WS2 surface, resulting in poor fluorescence quench efficiency. Comparing the fluorescence intensities of FAM-PNA with FAM-DNA under the same concentration of WS2, it is found that FAM-PNA shows lower signal background, meaning that PNA is more suitable as a probe than DNA. Based on WS2 nanosheet and PNA-DNA hybridization, the homogeneous fluorescence DNA sensor has been successfully developed and possesses good performance. It can quantitatively detect DNA in a linear range from 1 to 20 nM with the detection limit of 500 pM. It shows high specificity to target sequence because the thermal stabilities of PNA-DNA are obviously different between perfect and imperfect duplexes. The mix-and-detect assay can be finished in several minutes because of the quick formation of PNA-DNA duplex and the fast PNA adsorption to WS2 surface. Moreover, the assay is conducted in a homogeneous solution and
doesn’t require separation, making it easy to perform for automation. This work offers another manner for DNA detection in WS$_2$-based homogeneous fluorescence assay by employing PNA instead of DNA as the probe. The applications of the sensor in real complex samples are under way by minimizing the interference.

Acknowledgment

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21275040 and 21475034) and the Research Plan Projects of Hubei Provincial Department of Education (No. D20121606).

Notes and references

V. V. Demidov, 2013.

Figure captions:

Fig. 1 Scheme of WS$_2$ nanosheet platform for fluorescent DNA detection by employing PNA as a probe.

Fig. 2 Fluorescence emission spectra of PNA probe in Tris-HCl buffer, PNA probe mixed with WS$_2$, and PNA-DNA duplex mixed with WS$_2$, respectively. The concentration of PNA probe and PNA-DNA duplex were 20 nM while the WS$_2$ concentration was 4 μg/ml. Excitation: 495 nm, emission: 520 nm.

Fig. 3 Fluorescence quenching of (a) PNA probe and (b) DNA probe without and with various concentrations of WS$_2$ nanosheet (1, 2, 3, 4, and 5 μg/ml).

Fig. 4 Fluorescence quenching of PNA probe (20 nM) in Tris-HCl buffer by WS$_2$ nanosheet (4 μg/ml) as a function of time.

Fig. 5 (a) Fluorescence spectra of PNA probe (20 nM) in the presence of different concentrations of cDNA (1, 2, 5, 10, 20, 40, 80 nM). (b) The dependence of the fluorescence intensity change (F-F0) on cDNA concentration and the linear calibration within the range of 1-20 nM. F and F$_0$ are fluorescence intensities with and without cDNA, respectively. The data shown in the figures represent the average of three independent experiments.

Fig. 6 The specificity of the fluorescent DNA assay. The bars represent the relative fluorescence intensity upon addition of 20 nM of cDNA, one-base mismatched DNA and non-complementary DNA, respectively.
Figure 2
Figure 3
Figure 4

Fluorescence Intensity (a.u.) vs. Time (min)
Figure 5
Figure 6

![Bar chart showing the comparison of cDNA, one-base mismatched DNA, and non-complementary DNA with respect to F/F₀.](chart.png)

Figure 6