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Abstract:  

Prognosis of breast cancer, the most common cancer in females worldwide, has been shown to 

improve with early detection. Owing to disadvantages like low sensitivity, specificity, tedious 

sample preparation, long output times and inter-observer variance of currently available 

screening/ diagnostic tools; rapid, objective alternatives such as Raman spectroscopy (RS) are 

being extensively explored. Body fluid (serum, saliva) based RS assays have shown promising 

results in diagnosis of oral, lung and nasopharyngeal cancers. The current study aims to explore 

the feasibility of breast cancer diagnosis using urine based RS. In this study, spectra were 

acquired from unprocessed as well as concentrated urine of controls (C) and breast tumor bearing 

(T) rats and analyzed using Principal Component Analysis (PCA) and Principal Component - 

Linear Discriminant Analysis (PC-LDA). Classification efficiencies of 80% and 72% using 

unprocessed urine and 78% and 91% using concentrated urine for C and T rats respectively were 

achieved. Thus, results suggest possibility of breast cancer diagnosis using urine based RS.   

Further, spectra were also acquired from concentrated urine samples collected prior breast tumor 

development (TT) in rat and from rats that did not develop tumor despite carcinogen treatment 

(NTT). Concentrated urine of NTT rats could be classified as ‘normal’ (C or NTT) with ~ 83% 

efficiency whereas concentrated urine from visibly and palpably normal rats that eventually 

developed tumor (TT rats) could be classified as ‘abnormal’ (TT or T) with ~ 72.5% efficiency 

using PC-LDA. These results suggest possibility of detecting biochemical changes occurring 

prior tumor development using urine based RS.  
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1. Introduction: 

Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death in 

females worldwide [1]. In 2012, 226,870 new invasive breast cancer cases and 39,510 breast 

cancer deaths were estimated to occur in US [2]. In developing countries like India, incidence 

rates as high as 39.5 per 1, 00,000 women have been reported [3]. Literature suggests improved 

prognosis with early detection of breast cancer [4]. In lieu of this, efforts have been directed 

towards development of screening techniques for early detection of this cancer. Clinical breast 

exam (CBE) and mammography are the two most widely used screening tools [5, 6]. However, 

the sensitivity of CBE is low whereas mammography suffers from disadvantages like low 

positive predictive value (only 25%) [6], unsuitability for women with dense breast, radiation 

exposure, etc. Alternatives like ultrasonography, thermography, Magnetic Resonance Imaging 

(MRI), Positron Emission Tomography (PET) have low sensitivity, cannot detect small tumors 

and are expensive. The gold standard for diagnosis of breast cancer – histopathology, also suffer 

from several disadvantages like tedious sample preparation, long output times and inter-observer 

variance [7, 8]. Rapid, objective and preferably non-invasive alternate screening /diagnostic 

techniques are hence being extensively explored.  

Raman spectroscopy (RS), a rapid, objective tool with a potential for non-invasive/ minimally 

invasive applications, has shown promising results in the diagnosis of cervix, lung, 

gastrointestinal, brain, oral, skin, colon [9-13] and several other cancers [14] including breast 

cancers [15-22]. RS is based on an inelastic scattering process where the energy of photon 

scattered by the sample is different from the incident photon due to transfer of energy to or from 

vibrational modes of molecules in the sample. Since bands of Raman spectrum are characteristic 

of specific molecular vibrations unique to a molecule, RS can provide chemical fingerprint / 

biochemical profile of a sample. The ability of this technique to classify normal breast tissues 

from benign and malignant tissues [16, 17], metastatic from non metastatic cell lines [23], and 

invasive carcinoma from ductal in situ carcinoma using cryopreserved sections [24] have been 

reported. Detection of constituents deep inside breast tissue phantoms [20, 21] as well as 

transcutaneous detection of breast tumors in rats has been established [25, 26]. Tumor margin 
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assessment using in vivo RS during partial mastectomy surgery has also been demonstrated [22]. 

However, the requirement of invasive procedures for spectroscopy in human subjects remains a 

problem. Use of body fluid (serum, saliva, urine) based RS may circumvent this problem. Apart 

from minimal invasiveness, body fluids based tests have several advantages like accessibility, 

multiple sampling, easy handling, storage and transportation. Serum based RS to classify normal 

from cancer serum and monitor asthma [27-32] and saliva based Surface Enhanced RS assay for 

diagnosis of oral, nasopharyngeal and lung cancer [33-35] have been reported. Diagnosis of 

bladder cancer using cells voided into urine has also been demonstrated [36]. However, 

feasibility of using urine for breast cancer diagnosis is yet to be explored. 

The current study aims to explore the feasibility of breast cancer diagnosis using urine based RS. 

In this study, spectra were acquired from unprocessed urine of controls and breast tumor bearing 

rats. To check the possibility of better classification between normal and tumor, spectra were 

also acquired after concentrating (by dehydration in vacuum)  urine of  control and  tumor 

bearing rats. In order to further explore the sensitivity of urine based RS in breast cancer 

diagnosis and possibility of early detection; spectra were also acquired from urine samples 

collected prior breast tumor development in rat. The data were analyzed using Principal 

component analysis (PCA) and Principal Component-Linear Discriminant Analysis (PC-LDA). 

Results of the study are reported in the manuscript. 

2. Materials and Methods: 

2.1. Animals: A total of 42 Sprague-Dawley (SD) rats were used in this study. 25 fifty days old 

SD rats were administered 65 mg/kg 7, 12 dimethyl benzanthracene (DMBA, Sigma-Aldrich, 

purity 95%) dissolved in groundnut oil (Dhara, India) ingtragastrically by gavage. 20 rats 

developed breast tumors (histopathologically confirmed adenocarcinoma of breast) 

approximately six months post carcinogen treatment. 17 fifty days old SD rat were administered 

oil (control). None of the control rats developed breast tumors. The study was approved by 

Institutional Animal Ethics Committee, ACTREC endorsed by the Committee for the Purpose of 

Control and Supervision of Experiments on Animals (CPCSEA), Government of India. All 

animals were housed under standard laboratory conditions, fed a diet of in-house-prepared 

pellets and provided with water ad libitum.  
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2.2. Urine collection: The rats were restrained; airlifted and voided urine was collected in sterile 

pertidishes.  The urine was then transferred to sterile eppendorf tubes using a micropipette. 

Separate petridish and eppendorf were used for each rat urine sample. Approximately 150-200ul 

urine was collected per rat. The urine samples were snap frozen immediately after collection and 

stored in -80
o
C.Using this procedure, urine was from six groups:  

a) Unprocessed control urine (n=9): urine samples of control rats were thawed and spectra 

were acquired from these samples. 

b) Unprocessed tumor urine (n=9): urine samples of tumor bearing rats were thawed and 

spectra were acquired from these samples. 

c) Concentrated control urine (n=8): urine samples of control were thawed, dehydrated in 

vacuum using Speed Vac and rehydrated with 40ul normal saline before spectra 

acquisition. 

d) Concentrated tumor urine (n=7): urine samples of tumor bearing were thawed, 

dehydrated in vacuum using Speed Vac and rehydrated with 40ul normal saline before 

spectra acquisition. 

e) Concentrated TT urine (n=4): urine samples were collected 5 months post carcinogen 

(DMBA) treatment from visibly and palpably normal rats. These rats were palpated every 

two weeks after urine collection. Approximately 1 month post urine collection (~ 6 

months post carcinogen treatment), these rats developed breast tumors. Biopsy followed 

by histopathology confirmed the tumors to be adenocarcinoma. The urine samples 

collected from these rats were labeled ‘Tumors Treated’ and will hence forth be referred 

to as ‘TT’.  Before spectra acquisition, these samples were dehydrated and rehydrated as 

described above.  

f) Concentrated NTT urine (n=5): urine samples were collected 5 months post carcinogen 

(DMBA) treatment from visibly and palpably normal rats. However, these rats failed to 

develop tumor even 8 months post carcinogen treatment. Urine samples from these rats 

were labeled as ‘No Tumors Treated’ and henceforth are referred as ‘NTT’. The urine 

was processed in the same way before spectra acquisition.  
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Urine samples from control, TT, NTT and tumor bearing rats were collected at the same time. 

Thus, all samples were collected from age matched rats.  

2.3. Spectra acquisition: After passive thawing/rehydrating, samples were subjected to Raman 

spectroscopy by placing 40 µl sample on calcium fluoride (CaF2) window and spectra were 

recorded using Fiber Optic Raman microprobe (Horiba-Jobin-Yvon, France). This Raman 

system consists of laser (785 nm, Process Instruments) as an excitation source and HE 785 

spectrograph (Horiba-Jobin-Yvon, France) coupled with CCD (Synapse, Horiba-Jobin-Yvon) as 

dispersion and detection elements respectively. Optical filtering of laser line and Rayleigh 

signals, is accomplished through ‘Superhead’, the other component of the system. Optical fibers 

were employed to carry the incident light from the excitation source to the sample and also to 

collect the Raman scattered light from the sample to the detection system. Raman microprobe 

was assembled by coupling a 40X microscopic objective (Nikon, Japan) to the superhead. 

Spectral acquisition details were: Excitation wavelength (λex) = 785 nm, laser power = 40 mW.  

Spectra were integrated for 10 seconds and averaged over 6 accumulations. On an average, 8 

spectra were recorded from each sample to generate a total of 355 spectra under 6 groups, 81 

spectra from unprocessed urine of control rats, 82 from unprocessed urine of tumor bearing rats, 

64 spectra from concentrated urine of control rats, 56 from concentrated urine of tumor bearing 

rats, 40 spectra from concentrated urine of TT rats and 32 spectra from concentrated urine of 

NTT rats.  

 2.4. Spectral pre-processing: 

Raman spectra from all urine samples were corrected for instrument response with a National 

Institute of Science and Technology (NIST) certified Standard Reference Material 2241 (SRM 

2241) followed by the subtraction of background signals from optical elements and substrate. To 

remove interference of the low frequency background, first derivatives of spectra (Savitzky-

Golay method and window size 3) were computed [37-39]. Spectra were interpolated in 600-

1800 cm
-1 

region, vector-normalized and used as input for multivariate analysis. 

 2.5. Multivariate analysis 
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First derivative, vector normalized spectra were subjected to multivariate unsupervised Principal 

Component Analysis (PCA) and supervised Principal Component-Linear Discriminant Analysis 

(PC-LDA). PCA is a routinely used method for data compression and visualization while LDA 

provides data classification based on an optimized criterion which is aimed for better class 

separation. LDA can be used in companion with PCA to increase efficiency of classification. For 

this, PCA scores obtained using a set of significant PCs with maximum variance amongst data 

are used as input data for LDA based classification. The advantage of doing this is to remove or 

minimize noise from the data and concentrate on variables important for classification. LDA 

models were validated by Leave-one-out cross-validation (LOOCV). LOOCV is a type of 

rotation estimation used mainly for smaller datasets i.e. a technique useful for assessing 

performance of a predictive model with a hypothetical validation set when an explicit validation 

set is not available. Algorithms for these analyses were implemented in MATLAB (Mathworks 

Inc., USA) based software using in-house codes [40].  

Mean spectra were computed from the background subtracted spectra prior to derivatization for 

each class, by averaging Y-axis variations for each class, and baseline corrected by fitting a fifth 

order polynomial function. These baselines corrected spectra were vector normalized and then 

used for computing mean spectra. Standard deviation was computed using background 

subtracted baseline corrected spectra. Difference spectra were also calculated by subtracting 

mean spectra of control group from tumor group, TT and NTT group.  

3. Results and Discussion: 

3.1. Spectral analysis:  

a) Unprocessed control and tumor urine: Vector-normalized average spectrum (Figure 1a i) 

of control rat urine exhibit urea peaks at 1004cm
−1

 (symmetrical C−N stretch) and 

1161cm
−1

 (attributed to NH2 modes) and creatinine peaks at 680 cm
−1

 (C−NH2 and C═O 

stretching, ring vibrations) and 850 cm
−1

 (C−NH2 deformation and ring vibrations), as 

reported elsewhere [41]. Mean tumor bearing rat urine spectra (Figure 1a i) showed 

differences in the intensities of several peaks, indicating difference in the concentration 

of the urine’s biochemical components. Differences were seen in the intensity of specific 
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peaks such as decreased intensity of the peaks of urea (1006 cm
−1

) and creatinine (680 

cm
−1

) in the cancer group compared to control. To elucidate the spectral variations 

amongst groups, difference spectra were computed by subtracting mean control spectrum 

from mean tumor spectrum, respectively. Subtraction of mean spectra is one of the 

conventional ways of looking at spectral differences, it provides differences over a 

selected spectral range and thus understanding of the moieties that may have been 

modified is facilitated. The positive peaks of difference spectrum are from the mean 

tumor spectrum while negative peaks are from mean control spectrum. Tumor – control 

difference spectra (Figure 1a ii) also show a prominent positive urea peak at 1006 cm
−1 

suggesting increased urea concentration in urine during cancer.  

b) Concentrated control and tumor urine: Mean concentrated control rat urine spectrum have 

features similar to unprocessed urine with additional peaks at 653, 756, 781, 885 and 925 

cm
−1

 (Figure 1b i).  Mean tumor spectrum (Figure 1b i) show difference in the intensity 

of urea and creatinine peaks with respect to control. Tumor – control difference spectra 

show a prominent positive urea peak at 1006 cm
−1

 suggesting increased urea 

concentration in urine during cancer (Figure 1b ii).  

c) Concentrated NTT and TT urine: Mean concentrated NTT (Figure 3a i) and TT (Figure 

3a ii) rat urine show difference in the intensity of urea peak. TT mean spectrum exhibit 

highest intensity compared to control and tumor while NTT mean spectum show lowest 

concentration compared to all.  TT – control (Figure 2b i) and Control – NTT (Figure 2b 

iii) difference spectra suggest higher urea concentration in TT compared to control and 

higher urea concentration in control compared to NTT. TT - NTT difference spectra 

(Figure 2b ii) also suggest increased urea concentration in TT compared to NTT. 

Standard deviations for each group, unprocessed urine control (Figure 3a), unprocessed urine 

tumor (Figure 3b), concentrated urine control (Figure 3c), concentrated urine tumor (Figure 

3d), concentrated urine NTT (Figure 3e) and concentrated urine TT (Figure 3f) to assess 

reproducibility of data processing and sample-sample variation. 
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Although differences in the urine biochemistry of control and tumor rats are observed, the link 

between breast cancer and urine is not yet completely known. Studies have indicated excretion of 

androgen, corticoid and estrogen metabolites in urine to be associated with breast cancer [42, 43]. 

However, further studies are needed to establish an underlying connection between urine and 

breast cancer. 

Further, it is unclear why TT and NTT have huge difference while control and tumor spectral 

difference is comparatively smaller. A probable explanation is as follows. TT is pre-tumor 

condition. Intense biochemical changes may be expected for establishing a tumor. In NTT group, 

successful immune response resulting in aborted carcinogenesis may alter metabolism. Altered 

metabolism is linked with changed excretion profiles. Since the metabolic and biochemical 

alterations in TT and NTT are intense and different, a large difference is probably observed.  

Compared to this, in control there is no tumor and hence additional biochemical changes are not 

expected. In tumor group, cancer is established. Hence, minor changes and secretions from 

tumor are expected. Hence, difference between these groups is probably less. Extensive studies 

in this direction are warranted. 

3.2. Multivariate analysis:  

a) Unprocessed control and tumor urine: Preprocessed spectra interpolated in 600-1800 cm
-1

 

range were subjected to PCA for delineating trends in the data set. PCA variance plot and 

loadings are shown in Figure 4a and b. As can be seen in Figure 4a, cumulative variance 

covered by factor 2 and 3 are 81% and 84% respectively. Scatter plot of PCA factors 

(Figure 4c) shows a tendency towards classification of control and tumor bearing rat 

unprocessed urine. To explore the feasibility of classifying the above groups, PC-LDA 

was used. To avoid over fitting, 9 factors [44] contributing ~ 80 % percent of correct 

classification; were used (Figure 5a). The plot of PC-LDA factors 1, 2 and 3 (Figure 5b) 

show clusters of control and tumor unprocessed urine spectra.  The confusion matrix for 

PC-LDA model building shows 69/81 control spectra correctly classify as control while 

11/81 misclassify as tumor; whereas 63/82 spectra are correctly classified as tumor while 

19/82 spectra misclassify as control. Leave-one-spectrum-out-cross validation (LOsOCV) 

was carried out to evaluate the results obtained by PC- LDA. LOsOCV builds a model 
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based on all observations but one, and tests the left out observation against the model 

built; this is repeated until all observations are left out once.  The performance is 

estimated in terms of classification efficiency, which is percentage of spectra from each 

group that are correctly classified. In analysis of LOsOCV as shown in Table 1a; 65/81 

control spectra correctly classify as control while 16/81 misclassify as tumor; whereas 

59/82 spectra are correctly classified as tumor while 23/82 spectra misclassify as control.  

Urine is a complex colloidal solution consisting mainly of urea, creatinine, salts and 

colloids made of glycoprotein, proteins and mucopolysaccharides [45]. Their 

concentration ranges from 9.3g/L (urea) to 0.67g/L (creatinine). The meager quantity 

present enhances the possibility of irregular distribution of the components mentioned. 

Further, as breast cancer progresses, minute concentration changes occur in limited 

number of urine components while the concentration of all other components of urine 

remain unchanged.  These factors may contribute greatly to the misclassification 

observed amongst groups. Overall, the classification efficiency of control and tumor 

(using unprocessed urine samples) group was 80 % and 72 % respectively. 

b) Concentrated control and tumor urine:  Spectra of control and tumor bearing rat 

concentrated urine interpolated in 600-1800 cm
-1

 range were also subjected to PCA. PCA 

variance plot and loadings are shown in Figure 6a and b respectively. As can be seen in 

Figure 6a, cumulative variance covered by factor 2 and 3 are 82% and 84% respectively. 

Scatter plot of PCA factors (Figure 6c) shows clusters of concentrated control and tumor 

bearing rat urine. To explore the feasibility of classifying the above groups from control, 

PC-LDA was used. 4 factors contributing ~ 85 % percent of correct classification were 

applied (Figure 7a). The plot of PC-LDA factors 1, 2 and 3 (Figure 7b) shows well 

separated clusters of control and tumor spectra.  The confusion matrix for PC-LDA 

model building shows that 50/64 control spectra correctly classify as control while 14/64 

misclassify as tumor; whereas 51/56 spectra are correctly classified as tumor while 5/56 

spectra misclassify as control. LOsOCV of results of PC-LDA model built (Table 1b); 

50/64 control spectra correctly classify as control while 14/64 misclassify as tumor; 

whereas 51/56 spectra are correctly classified as tumor while 5/56 spectra misclassify as 
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control. As discussed earlier, limiting concentration of urine components and their 

irregular distribution may explain the observed misclassification.  

Although, in this case, the samples are concentrated, the total amount of components 

present in the sample analyzed is still very low. Since 150-200ul samples were 

concentrated and used for spectra acquisition, the total quantity of major component urea 

expected in one urine sample will be ~2ug. Thus, concentrating samples have higher 

quantity and probably more regular distribution of components compared to unprocessed 

urine, but the quantities being analyzed are meager and possibly results in the 

misclassification observed. Overall, the classification efficiency of control and tumor 

(unprocessed urine samples) group was 78 % and 91 % respectively. While the 

classification efficiency of control group in case of both unprocessed and concentrated 

control urine is ~80%, classification efficiency of tumor group in case of concentrated 

urine is higher (91%) compared to unprocessed urine (72%). Therefore, further studies 

were conducted using concentrated urine.  

c) Concentrated NTT and TT urine: To further explore the sensitivity of urine based RS in 

diagnosis of breast cancer and possibility of early detection, as mentioned earlier, urine 

samples were also collected prior tumor development Spectra acquired from concentrated 

urine of control, tumor bearing, NTT and TT rats were preprocessed, interpolated in 600-

1800 cm
-1

 range were subjected to PCA and PC-LDA. The PCA variance plot and 

loading factors 1 and 3 are shown in Figure 8a and b respectively. The TT spectra in the 

PCA scatter plot (Figure 8c) shows a tendency of classification. The PC-LDA scatter plot 

(Figure 9b) of factors 1, 2 and 3 shows overlapping clusters of control, tumor, TT and 

NTT. It is however noteworthy, that control and NTT populate the left side of the plot 

whereas TT and tumor lie on the right side.  The results of PC-LDA in the form of 

confusion matrix shows that 34/ 64 spectra are correctly classified as control, while 9/ 64 

misclassified as NTT, 11/ 64 misclassified as TT and 10/ 64 misclassified as tumor. 17/40 

NTT spectra were correctly classified as NTT, while 15/40, 2/40 and 4/40 misclassified 

as control, TT and tumor respectively. In case of TT, 23/32 were correctly classified 

whereas 7/32 and 2/32 misclassified with control and tumor respectively. 30/ 56 tumor 
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spectra classified correctly while 3/56, 11/56 and 12/56 misclassified with control, NTT 

and TT. The results of LOsOCV are shown in Table 2a. As can be seen, 34/ 64 spectra 

are correctly classified as control, while 9/ 64 misclassified as NTT, 11/ 64 misclassified 

as TT and 10/ 64 misclassified as tumor. 17/40 NTT spectra were correctly classified as 

NTT, while 16/40, 2/40 and 5/40 misclassified as control, TT and tumor respectively. In 

case of TT, 22/32 were correctly classified whereas 8/32 and 2/32 misclassified with 

control and tumor respectively. 30/ 56 tumor spectra classified correctly while 3/56, 

11/56 and 12/56 misclassified with control, NTT and TT.  

Despite misclassification amongst groups, 67.2% control spectra classify as either control 

or NTT, while 82.5% NTT spectra classify as either control or NTT (Table 2c). Control 

rats were not treated with carcinogen whereas NTT rats did not develop tumor in spite of 

carcinogen treatment. Therefore, control and NTT urine spectra represent ‘normal’ (non 

cancerous) condition. TT rats were rats that eventually developed tumor whereas tumor 

group rats had breast tumors at the time of urine collection. Thus, urine spectra of TT and 

tumor group rats represent ‘abnormal’ (cancerous) condition. As observed in Table 2a, 

75% TT and 75% tumor spectra correctly classified as abnormal (TT/ Tumor).  

Result of Leave-One-Rat-Out-cross-validation (LOrOCV) implemented using 2 PC-LDA 

factors is shown in Table 2b. As can be seen, 30/ 64 spectra are correctly classified as 

control, while 17/ 64 misclassified as NTT, 8/ 64 misclassified as TT and 9/ 64 

misclassified as tumor. 14/40 NTT spectra were correctly classified as NTT, while 20/40, 

0/40 and 6/40 misclassified as control, TT and tumor respectively. In case of TT, 19/32 

were correctly classified whereas 8/32, 1/32 and 4/32 misclassified with control, NTT 

and tumor respectively. 22/ 56 tumor spectra classified correctly while 2/56, 15/56 and 

17/56 misclassified with control, NTT and TT. Thus, 73.4% and 85% control and NTT 

spectra respectively classify as control/NTT while 72% and 70% spectra from TT and 

tumor respectively classify as TT/ tumor.  The results corroborate the outcome of 

LOsOCV. 

In a nutshell, results suggest that rats that did not develop tumor could be classified as 

‘normal’ (with ~ 83% efficiency) even though these rats were treated with carcinogen and 
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had high probability of developing tumor, while rats that did develop tumor after 

carcinogen treatment were classified as ‘abnormal’ (with 72.5% efficiency) using urine 

collected prior any visible or palpable abnormality.  

4. Conclusion: The aim of the study was to explore the feasibility of breast cancer diagnosis 

using urine based RS. Using unprocessed urine, control and tumor bearing rats could be 

classified with ~ 80% and ~72% efficiency respectively. Using concentrated urine, control and 

tumor groups could be classified with ~ 80% and 91% efficiency. These results suggest 

possibility of cancer diagnosis using urine based RS. Further, concentrated urine of rats that did 

not develop tumor even after carcinogen challenge could be classified as ‘normal’ with 83% 

efficiency whereas concentrated urine from visibly and palpably normal rats that eventually 

developed tumor could be classified as ‘abnormal’ with 72.5% efficiency. These results suggest 

possibility of detecting biochemical changes occurring prior tumor development using RS. 

Further studies in this direction may help development of urine based RS as early breast cancer 

detection tool.  
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Figure legends: 

Figure 1:a) i)  Mean spectra of unprocessed urine interpolated in 600-1800cm
-1

 region from 

control and tumor bearing rats, ii) tumor – control difference spectrum; b) mean spectra of 

concentrated urine interpolated in 600-1800cm
-1

 region from control and tumor bearing rats, ii) 

tumor – control difference spectrum 

Figure 2: a) Mean spectra of concentrated urine interpolated in 600-1800cm
-1

 region from i) NTT 

and ii) TT rats, b) i) TT – control, ii) TT - NTT, and iii) control - NTT difference concentrated 

urine spectra  

Figure 2: Mean and standard deviations for each group, a) unprocessed urine control b)  

unprocessed urine tumor c) concentrated urine control d) concentrated urine tumor e) 

concentrated urine NTT and f) concentrated urine TT  

Figure 4: PCA of unprocessed urine from control and tumor bearing rats a) variance plot, b) 

Loading factors 2and 3, and c) Scatter plot. 

Figure 5: PC-LDA of unprocessed urine from control and tumor bearing rats a) Scree plot b) 

scatter plot 

Figure 6: PCA of concentrated urine from control and tumor bearing rats a) variance plot, b) 

Loading factors 2and 3, and c) Scatter plot. 

Figure 7: PC-LDA of concentrated urine from control and tumor bearing rats a) Scree plot b) 

scatter plot 

Figure 8: PCA of concentrated urine from control, NTT, TT and tumor bearing rats a) variance 

plot, b) Loading factors 1and 3, and c) Scatter plot. 
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Figure 9: PC-LDA of concentrated urine from control, NTT, TT and tumor bearing rats a) Scree 

plot b) scatter plot 
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Table legend:  

Table 1: PC-LDA Confusion matrix of a) Leave-one-out cross validation (LOOCV) of 

unprocessed control and tumor bearing rat urine, b) LOOCV of concentrated control and tumor 

bearing rat urine (Ex-diagonal elements are false positive predictions). 

Table 2: PC-LDA Confusion matrix of C, NTT, TT and T concentrated urine for a) Leave-one-

spectrum-out cross validation b) Leave-one-rat-out cross validation (Diagonal elements are true 

positive predictions and Ex-diagonal elements are false positive predictions)  
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Table 1: PC-LDA Confusion matrix of a) Leave-one-out cross validation (LOOCV) of 

unprocessed control and tumor bearing rat urine, b) LOOCV of concentrated control and tumor 

bearing rat urine (Ex-diagonal elements are false positive predictions). 

 

 

 

 

 

 

a)LOOCV (No. of animals, No. of spectra) Unprocessed urine control Unprocessed urine tumor 

Unprocessed urine control (9, 81) 65 ( 80.24 % ) 16 

Unprocessed urine tumor (9, 82) 23 59 ( 71.95 % ) 

   

b)LOOCV (No. of animals, No. of spectra) Concentrated urine control Concentrated urine tumor 

Concentrated urine control 8, 64) 50 ( 78.12 % ) 14 

Concentrated urine tumor (7, 56) 5 51 ( 91.07% ) 
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Table 2: PC-LDA Confusion matrix of C, NTT, TT and T concentrated urine for a) Leave-one-

spectrum-out cross validation b) Leave-one-rat-out cross validation (Diagonal elements are true 

positive predictions and Ex-diagonal elements are false positive predictions)  

 

a) Group (No. of 

animals, no. of 

spectra) 

CONCENTRATED 

URINE 

CONTROL 

CONCENTRATED 

URINE NTT 

CONCENTRATED 

URINE TT 

CONCENTRATED 

URINE TUMOR 

CONCENTRATED 

URINE 

CONTROL (8, 64) 30 (46.8%) 17 (26.6%) 8 (12.5%) 9 (14.1%) 

CONCENTRATED 

URINE 

NTT (5, 40) 20 (50%) 14 (35%) 0 6 (15%) 

CONCENTRATED 

URINE 

TT (4, 32) 8 (25%) 1 (3.1%) 19 (59%) 4 (12.5%) 

CONCENTRATED 

URINE TUMOR 

(7, 56) 2 (3.6%) 15 (26.8%) 17 (30.4%) 22 (39%) 
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b) Group (No. of 

animals, no. of 

spectra) 

CONCENTRATED 

URINE 

CONTROL 

CONCENTRATED 

URINE NTT 

CONCENTRATED 

URINE TT 

CONCENTRATED 

URINE TUMOR 

CONCENTRATED 

URINE 

CONTROL (8, 64) 34 ( 53.12 % ) 9 (14.1%) 11 (17.2%) 10 (15.6%) 

CONCENTRATED 

URINE 

NTT (5, 40) 16 (40%) 17 ( 42.5 %) 2 (5%) 5 (12.5%) 

CONCENTRATED 

URINE 

TT (4, 32) 8 (25%) 0 22 ( 62.5 %) 2 (6.3%) 

CONCENTRATED 

URINE TUMOR 

(7, 56) 3 (5.3%) 11 (19.6%) 12 (21.4%) 30 (51.78 %) 
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a) i)  Mean spectra of unprocessed urine interpolated in 600-1800cm-1 region from control and tumor 
bearing rats, ii) tumor – control difference spectrum; b) mean spectra of concentrated urine interpolated in 

600-1800cm-1 region from control and tumor bearing rats, ii) tumor – control difference spectrum  
249x190mm (300 x 300 DPI)  
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a) Mean spectra of concentrated urine interpolated in 600-1800cm-1 region from i) NTT and ii) TT rats, b) i) 
TT – control, ii) TT - NTT, and iii) control - NTT difference concentrated urine spectra  

248x163mm (300 x 300 DPI)  

 

 

Page 25 of 32 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



  

 

 

Mean and standard deviations for each group, a) unprocessed urine control b)  unprocessed urine tumor c) 
concentrated urine control d) concentrated urine tumor e) concentrated urine NTT and f) concentrated urine 

TT  
230x133mm (300 x 300 DPI)  
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PCA of unprocessed urine from control and tumor bearing rats a) variance plot, b) Loading factors 2and 3, 
and c) Scatter plot.  

254x144mm (300 x 300 DPI)  
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PC-LDA of unprocessed urine from control and tumor bearing rats a) Scree plot b) scatter plot  
254x171mm (300 x 300 DPI)  
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PCA of concentrated urine from control and tumor bearing rats a) variance plot, b) Loading factors 2and 3, 
and c) Scatter plot.  
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PC-LDA of concentrated urine from control and tumor bearing rats a) Scree plot b) scatter plot  
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: PCA of concentrated urine from control, NTT, TT and tumor bearing rats a) variance plot, b) Loading 
factors 1and 3, and c) Scatter plot.  
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PC-LDA of concentrated urine from control, NTT, TT and tumor bearing rats a) Scree plot b) scatter plot  
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