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New algorithm for identification of components in a 

mixture: application to Raman spectra of solid 

amino acids 
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ABSTRACT: The procedure of identifying components in a mixture was developed and tested 

on Raman spectra of mixtures of solid amino acids, using the spectra of single amino acids as 

templates. The method is based on finding the optimum scaling coefficients of the linear 

combination of template spectra that minimize the Canberra distance between measured and 

reconstructed spectra. The Canberra distance, used here as a measure of dissimilarity between 

spectra, defines non-convex objective function in the related optimization process. In view of the 

possibility of presence of local minima, differential evolution, which is a non-gradient stochastic 

method for finding global minimum, was chosen for optimization. The method was tested on 

twenty measured spectra of mixtures of solid powders containing one to eight amino acids taken 
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from the collection of twenty that are coded in living organisms. The results show that the 

procedure can successfully identify several amino acids, and, in general, several components in a 

mixture. The method was shown to compare favorably against the least squares and partial least 

squares methods, the procedures used in commercially available chemometrics packages. 

1. INTRODUCTION 

Many papers have been devoted to identification of substances by their spectra and the specific 

issues they address are diverse. For example, the problem may concern looking for a single 

substance by comparing its measured spectrum with successive entries in a library of spectra. 

Tanabe and Saëki
1
 examined the possibility of identifying single substances by their IR spectra 

and the Pearson correlation coefficient. Several factors were investigated influencing the 

efficiency of the procedure, such as wavenumber range and the spacing between adjacent data 

points, both related to the number of sampling points, as well as wavenumber accuracy and 

sample purity. Another problem concerns the case of assigning reference spectra in a library as 

components of a measured spectrum representing a mixture. Mallick et al.
2
 compared several 

methods of calculating coefficients of components of a mixture spectrum assumed to be a linear 

combination of reference Raman spectra. They included all library reference spectra into the 

combination, which implied solving one problem of high dimension. Thus the efficiency of a 

numerical procedure was very important in this case. The methods were tested with simulated 

measurements obtained from a statistical model with the most important error sources. The work 

by Drake et al.
3 

dealt with the case of linear dependence of some reference spectra in the library, 

which must take place in case the number of spectra exceeds the number of points in the 

spectrum, and found that non-negative least squares with active set method described by Lawson 

and Hanson
4
 was suitable for this task. Another possible scenario is looking for a particular 
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substance in a mixture containing excipients or contaminants. O’Connell et al.
5
 first pre-

processed a large number of spectra by normalization to the strongest peak and calculating the 

first derivative. Both steps were justified by the Principal Component Analysis (PCA).
6,7

 Then 

they used several classification methods to discriminate the target analyte. These included 

Principal Component Regression (PCR),
6
 Support Vector Machine,

8
 K-Nearest Neighbors,

9
 a 

decision tree,
10

 and others.  

Beyond correlation coefficient there are several other similarity or dissimilarity  measures for 

matching spectra, such as Euclidean distance, city-block distance,
11

 Tanimoto coefficient 

(Jaccard index),
12

 cosine of an angle between spectra. Li et al.
13

 dealt with the general analysis of 

correlation coefficient, Euclidean cosine and their first-difference counterparts applied to 

simulated spectra of one peak and ten peaks. The authors studied the influence of changing peak 

width and peak position on the similarity (dissimilarity)  indices. They recommended that such 

indices should be used locally in predefined windows of significant intensities to increase the 

reliability of the results. Varmuza et al.
14

 studied correspondence between spectral similarity, 

measured by correlation coefficient, mean of the absolute and squared differences or Euclidean 

cosine, and structural similarity measured by the Tanimoto index. The authors performed random 

queries to a compound database, retrieving hit lists of compounds with similar IR spectra and 

found the average for the Tanimoto coefficient between query and hit list compounds. The 

method was used to characterize the performance of a spectral similarity search. 

In this work we propose a nonstandard dissimilarity measure between spectra, the so-called 

Canberra distance,
15

 which is the sum of relative errors in intensities for successive 

wavenumbers. This index has been studied theoretically,
16

 and it is presently applied in genomics 

as a measure of similarity.
17

 In this procedure, the mixture is assumed to be a linear combination 
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of reference spectra. Then one tries to minimize the objective function, defined by the Canberra 

distance between the reconstructed and measured spectra, by varying the coefficients in the 

combination. Since the objective function is not a convex function of its coefficients, the 

uniqueness of the minimum is not guaranteed. Thus, some optimization procedure is required 

that is capable of finding the global minimum in the presence of local minima. Non-gradient 

stochastic optimization methods are suitable for this task. One method from this class, 

differential evolution, has recently gained popularity.
18,19

 It is a representative of a wider class of 

genetic algorithms that finds the global solution with high degree of probability, which proved to 

be the case in our present analysis. An example of the application of a genetic algorithm was 

presented by Forshed et al.
20

 for peak alignment procedure for NMR metabonomic data. The 

authors divided two spectra into common segments, and tried to shift sideways and stretch or 

shrink one of them by linear interpolation to fit the other one. The optimum values for this 

segment transformation are found by means of a genetic algorithm. The dissimilarity function 

(Canberra distance) of our paper can be viewed as a weighted city-block distance (sum of 

absolute differences), the weights being the inverses of the sums of absolute values of second 

derivatives of compared spectra for successive wavenumbers. The idea of using weights to cope 

with the problem when the range of values is wide was proposed by Liu et al.
21

 The authors used 

weighted Pearson product-moment correlation coefficient to compare high-performance liquid 

chromatograms and obtained better results than in the case of the non-weighted coefficient. It is 

methodologically appropriate to precede any identification process by the correlation analysis 

between template spectra. In our previous work
22

 we performed comparison of the same set of 

spectra of twenty amino acids as in this paper using the intensities of strongest peaks and their 

positions, as well as Pearson correlation coefficient as measures of similarity. 
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2. METHODOLOGY 

The method was analyzed using as templates twenty measured Raman spectra of proteinogenic 

amino acids enumerated in Table 1. For a detailed description of amino acid samples, as well as 

the measurement conditions and results we refer the reader to the work by Roliński et al.
22

 The 

samples were purchased from Aldrich and Merck and used without any additional purification. 

Raman spectra of single amino acids and their mixtures were recorded with a Renishaw InVia 

Raman microscope using 632.8 nm line of the HeNe laser and ×20 objective. The laser power at 

the sample was 50 mW or less. The microscope was equipped with 1200 grooves/mm grating, 

cutoff optical filters, and 1024×256 pixels Peltier-cooled RenCam CCD detector, which allowed 

registering the Stokes part of Raman spectra with 5-6 cm
-1

 spectral resolution and 2 cm
-1

 

wavenumber accuracy. To exclude the possibility of the orientational dependence of the signal 

on the polarization of the laser beam, the samples were finely pulverized and at least 100 spectra 

were recorded for each sample using automatic translation stage and then averaged. 

The measured spectra of solid amino acids are shown in Figures 1 and 2. The high 

wavenumber range, 2500-3500 cm
-1

, was not included in the identification process, providing a 

bigger challenge for the analytical algorithm, since a region was neglected for which one 

observes substantial differences between the spectra of mixture components. 
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Figure 1. Experimental spectra of solid amino acids measured at 293 K using 632.8 nm laser 

line. 
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Figure 2. Experimental spectra of solid amino acids measured at 293 K using 632.8 nm laser 

line. 
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The spectra of mixtures and templates were first limited to the range 300-1700 cm
-1

 and then 

scaled so that the strongest peak within each spectrum equaled 100. This can be viewed as a 

simple preprocessing step. 

Visual comparison of the spectra of mixtures with those of successive templates showed that 

the shifts of the corresponding peaks were very small, which greatly simplified the analysis since 

otherwise one would have to device a measure of similarity that could compensate for this.
23

 

Since mixture intensities are sums of component intensities, one can expect good correspondence 

for intensities in some spectral regions only where a given component spectrum is dominant. If 

the fit were good for all considered energies (wavenumbers), this would mean that the mixture 

spectrum is trivial, i.e. containing one component. Moreover, even in the case of comparison of 

one component mixture and the corresponding template, the differences in intensities can be 

attributed to the measurement bias and the error in the definition of baselines for different 

spectra. It is also known that even under ideal measurement conditions the error in the value of 

intensity is theoretically proportional to the square root of the value. With the above in view we 

defined a dissimilarity function that is more responsive to the differences in position between 

peaks and their differences in widths than the differences in intensity: 

 ∑
|��

�����	�
��
�����	�|	

|��
�����	�|�|��

�����	�|

�
���         (1) 

where: 

��
���

=	∑ ���∈� ��
���
,	 � ⊂ {1,2,3, … ,#} is the reconstructed second derivative of mixture 

spectrum; 

��
���
,		 % = 1,… ,#	 is the second derivative of template spectrum number % (see Table 1 and 

Figures 1 and 2);  

��	, % = 1,… ,# is the l-th scaling coefficient; 
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#&

���
,		 ' ∈ {1,2,3, … , (}	 is the second derivative of the measured mixture spectrum (see Table 

4); 

)�, * = 1,2,3, … , + is the wavenumber corresponding to the i-th point in the spectrum. 

In our analysis # = 20, + = 1401, 

 )� = 299 + *	cm
�, * = 1,2,3, … ,1401      (2) 

because we considered the spectral region of 300-1700 cm
-1

, and the set of measured mixtures 

�1,2,3, … , (} is replaced by {�, 2, �, … , 3} (see Table 4). The function (1) is the sum of local 

distances for the wavenumbers )�. The local distance is the absolute value of the difference 

between #&

���
 and ��

���
 for a given wavenumber, divided by the sum of their absolute values .The 

definition of (1) can be viewed as the Canberra distance
15

 between objects ��
���

 and #&

���
. In our 

case this function is minimized with respect to each �� under restrictions �� ≥ 0,		 % ∈ � ⊂

{1,2,3, … ,20}. 

Since there is no analytical formula for the spectra, the second derivative has to be evaluated 

numerically. To this end we first obtained a vector of intensities for the wavenumbers )�	 from 

(2) by interpolating initial data, and then applied Savitzky-Golay filtering by trying to fit a 

second order polynomial locally to the data window of 21 points. The order of the polynomial 

and the width of the window were chosen by trial and error by comparing the original and the 

fitted data. An example of fitting is presented in Figures 3 and 4. 

One should note first that if there is a difference in sign of the compared second derivatives of 

spectra for a given energy(wavenumber) then the corresponding term in (1) reaches its maximum 

value of one. On the other hand, if the signs are the same then this term approaches the 

maximum value only for a big difference between the second derivative spectra (see Figure 5). 

Obviously, if the values of the compared second derivatives are the same the term equals zero. 
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Second, if we scale both second derivative spectra by some constant then the value of (1) does 

not change. This means that those parts of second derivative spectra that are small in value have 

the same influence on the dissimilarity function as those which are large in value. Third, under 

assumption that the background varies slowly with respect to the curve representing spectrum, 

the use of second  derivatives has additional benefit, because it minimizes the error arising from 

the subtraction of the background, which is not defined precisely.  

The expression (1) as a function of the coefficients �� is non-convex, which means that it might 

have local minima, contrary to the case of the least squares problem, where one has one global 

minimum. In practice we find a global minimum for the function (1) by  

• choosing a suitable minimization method, e.g. differential evolution stochastic 

optimization method,
18,19

 

• trying to avoid solving problems for large �, i.e. for many templates in the linear 

combination, by analyzing templates successively (one at a time), which will be 

explained in detail later on, 

• monitoring the results of successive optimizations. 
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Figure 3. The result of Savitzky-Golay filtering for the interpolated data (second order 

polynomial, 21 points window). Dashed line, interpolated data; solid line, result of filtering. For 

clarity, the data was restricted to the range 800-1000 cm
-1

. 

 

Figure 4. Comparison of numerical calculation of the second derivative of interpolated data. 

Dashed line, second derivative of data obtained by finite differences for adjacent points; solid 
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line, second derivative of data obtained by Savitzky-Golay filtering of the interpolated data 

(second order polynomial, 21 point window). For clarity, data was restricted to the range of 800-

1000 cm
-1

. 

 

Figure 5. A plot of the function 6�7� =
|8
�|

|8|��
 for 91 : 7 : 10 showing the behaviour of local 

distance for a particular energy(wavenumber), i.e. one term of the dissimilarity function (1). We 

assume that the second derivative of intensity of the measured mixture spectrum equals one and 

the second derivative of intensity of the reconstructed spectrum equals 7. 

In what follows we shall be using acronyms for the corresponding amino acids taken into 

analysis. The correspondence is given in Table 1. 

Now we describe the method in detail. 

1st iteration. We try to find a single template matching the mixture spectrum the best, i.e. the 

one for which the optimum scaling coefficient gives the smallest value of function (1); see (1) for 

the case � = {;}, 1 : ; : 20	 (see also Table 2 and Figures 6 and 7). 
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Figure 6. Spectra of mixture f (cyan thick  line) and serine (dark blue thin line) multiplied by the 

corresponding optimum coefficient (see Tables 1, 2 and 4). 

 

Figure 7. Second derivatives of the spectra from Figure 6. Local distances (components of (1)) 

are shown as brown line. The line increasing monotonically is the normalized cumulative value 
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of the local distances. Note that this line increases uniformly, which means that intervals of large 

value of second derivative do not dominate the value of the global distance, i.e., the value of (1). 

We claim that this contributes to the quality of the method. 

n-th iteration. Let us assume we have already accepted some number of amino acid spectra 

forming, with their coefficients, a linear combination. The combination defines the reconstructed 

spectrum at the (n-1)-th iteration. Now we want to check if the next template spectrum should be 

included in it. We try to accept a single template from the collection of templates that have not 

yet been included in the reconstructed spectrum. This template, together with the reconstructed 

spectrum, forms a linear combination for the optimization process. It should be underlined that 

now we try to find two scaling coefficients: one for the template and second for the whole 

reconstructed spectrum from (n-1)-th iteration. The chosen combination should yield the smallest 

value for the dissimilarity function (1). If the stop condition is not fulfilled then we accept the 

best new template and perform additional optimization for all already accepted templates, thus 

defining the new reconstructed spectrum (see Table 3 and Figure 8). The stop condition means 

that the absolute value of the difference in values of the function (1) for the best and the worst 

match divided by the value for the worst match is less than some threshold value or the value of 

the scaling coefficient corresponding to the best match falls below another threshold.  
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Figure 8. Measured Raman spectrum of mixture f (cyan thick line), spectrum of serine (dark 

green thin line) with optimum coefficient (see Table 2) and the linear combination of serine and 

threonine (dark blue thin line) with optimum coefficients (see Table 3). It can be seen that the 

combination fits the mixture spectrum better than single template of serine if we give more 

weight to the distribution of peaks than their intensities according to the construction of function 

(1) (see description below), see also Tables 1 and 4. 

3. RESULTS 

The method was verified using twenty measured spectra of mixtures of solid powders 

containing from one to eight amino acids (see Table 4) taken from the set of twenty presented in 

Table 1. The mixtures contained approximately equal volumes of components, which does not 

mean that their contributions to the measured spectrum were equal, as different substances yield 

weaker or stronger Raman signals depending on their polarizability. We tested the power of the 

method in qualitative analysis of samples, i.e. in identifying the components. The results are 

presented in Table 5. There may be two kinds of errors in the analysis: identification of 
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substance not present in the mixture (false positive) and failure of detecting a substance present 

in the mixture (false negative). We assumed that both errors are equally serious and, accordingly, 

tried to minimize their sum by adjusting the stop condition (see the description of the n-th 

iteration of the method), which in the case of the analyzed mixtures (see Table 4) means that the 

difference in values of function (1) for the best and the worst match divided by the value for the 

worst match must be less than 2.4% or the value of the scaling coefficient of a potential 

component corresponding to the best match must fall below 0.04. The number of 

misclassifications for the optimum stop condition can serve as a measure of the quality of the 

identification algorithm. There are no false positive and only two false negative cases: they 

concern the mixtures with a high number of components (five and eight). 

 

4. COMPARISON WITH THE NON-NEGATIVE LEAST SQUARES (NLS) METHOD 

The objective function (1) is nonstandard for component identification in mixtures. The 

standard one is the Euclidean distance corresponding to the least squares (LS) method, and 

consequently LS can serve as a benchmark. The LS method has been used extensively in linear 

mixture analysis (see the work by Heinz and Chang
24

 and references therein). Two options are 

possible, namely we can use zero or second derivative spectra. We performed calculations for the 

second derivative spectra and obtained vastly different numbers of misclassifications for spectra 

normalized as described in the Section 2 (normalization to the strongest peak both for templates 

and mixture spectra) and for spectra normalized as described in Section 5. On the contrary, for 

zero derivative spectra the numbers of misclassifications were quite close for both 

normalizations and this is the reason why we present here the results for zero derivative spectra 

with normalization of Section 2. Now the following function is minimized: 
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 ∑ |���)�� 9
�
��� #&�)��|

�        (3) 

where:  

�� , #& are defined analogously to ��
���
, 		#&

���
 in (1), except that we now consider zero 

derivative of spectra, and consequently the superscript 
(2)

 is omitted in the definition; 

�, ', )�		 are defined in (1) and (2). 

This function is the sum of squared differences of intensities in the mixture spectrum and the 

linear combination of template spectra. The function is minimized with respect to all the ��	 

coefficients under restrictions �� ≥ 0,	 % ∈ � ⊂ {1,2,3, … ,20}. 

We repeated the algorithm of Section 2 by calculating optimum coefficients of linear 

combinations for the objective function (3). In this case they can be found more efficiently by the 

Lawson and Hanson algorithm,
4
 but it was sufficient to use the FindMinimum procedure from 

the Mathematica package,
25

 as time was not here a parameter for optimization. The results are 

presented in Table 6. The stop condition in this case means that the difference in values of 

function (2) for the best and the worst match divided by the value for the worst match must be 

less than 11% or the value of the scaling coefficient of a potential component corresponding to 

the best match must fall below 0.04. As for the Canberra distance case, the parameters in the stop 

condition were adjusted to obtain the least number of misclassifications. This number equals 

eleven, and it is much higher than in the case of function (1) (see Table 6). 

 

5. COMPARISON WITH THE PARTIAL LEAST SQUARES (PLS) METHOD 

Another standard procedure used widely in chemometrics for calibration is the partial least 

squares (PLS) method. It was introduced for the first time several decades ago in econometrics 

and then it gained popularity in chemistry for modelling the relationship between some 
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explanatory (easily obtainable) variables and the difficult or expensive to obtain response 

variables.
6,26

 This is a method for solving the least squares (LS) problem approximately. The 

matrix of intensities from LS is replaced by a matrix of much simpler structure, and usually of 

lesser rank, that can be represented as a sum of some number of outer products of vectors of 

scores and loadings. The number is equal to the rank of the matrix and is referred to as a number 

of factors. The replacement is particularly useful if the columns of the intensity matrix are 

strongly correlated, which means that the explanatory (independent) variables are correlated, as 

well as in the case of noisy data.
7,26

 The colinearity of variables is unavoidable if the number of 

explanatory variables is greater than the number of observations, which is usually the case if we 

seek the signal contributions of substances using spectral intensities. It must be added that for the 

PLS method the calculated approximate matrix is dependent on the values of the response 

variable. In a simpler technique called principal component regression (PCR) the approximate 

matrix is defined independently of the response variable. This technique is related to the singular 

value decomposition procedure from the linear algebra and relies on choosing only the singular 

vectors from this decomposition related to the largest singular values. It was shown that the PLS 

technique leads often to a faster reduction of the residuals than PCR.
7
 The technique has been 

implemented in many software chemometrics packages, e.g. Grams,
27

 Unscrambler
®

X,
28

 and this 

section can be treated as a comparison of the identification capabilities of the commercially 

available software with the identification power of the Canberra distance (1). Generally, there are 

the training and the testing steps in the analysis. First, we treated the set of templates as the 

training set and found the scores and loadings to model signal contributions. We applied the 

PLS1 version of the algorithm, which means that we independently calibrated the signal 

contribution of each amino acid. For a given amino acid the contribution related to its 
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corresponding spectrum was set equal to one, and for the rest of the templates the contributions 

were set to zero. Second, we tested the model on twenty mixtures (see Table 4), predicting the 

signal contributions with the calculated scores and loadings. The sequential character of the 

algorithm was maintained by successive spectral subtractions of the identified templates 

multiplied by the found contribution coefficients (scaling coefficients) from the analyzed mixture 

spectrum. So first we subtracted the template with the highest calculated contribution in the 

mixture, then repeated the procedure to find the next highest contribution for the difference 

spectrum and the rest of potential component spectra. The procedure stopped when the calculated 

contribution dropped below a preset threshold level. It should be underlined here that for the 

procedure from Section 2 we did not perform the subtraction operation, but tried to find the best 

fit for the combination of the reconstructed spectrum and a potential component spectrum. 

Since we decided to model the real signal contribution ratios of constituents in the mixture, the 

measurement and scaling of templates and mixtures were different than in Sections 2, 3 and 4. 

The spectra of templates (components) were measured for the same time so that their intensity 

ratios would reflect the contribution ratios in a mixture. Then we scaled both templates and 

mixtures so that the average of the strongest peaks in all templates equaled 100 and for each 

mixture spectrum the integral over the whole wavenumber range equaled the average of the 

integrals for templates. The above can be viewed as a simple preprocessing step. 

We performed some number of simulations by varying the number of factors in the PLS 

method and analyzing centered (after the subtraction of the intensity average) or non-centered 

(original, positive) intensity vectors (spectra). The PLS procedure is essentially quantitative and 

its quality can be assessed by the predictive residual sum of squares (PRESS).
6
 Here we use PLS 

for identification and therefore we must define the contribution threshold for confirmation of the 

Page 20 of 36Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



presence of a component in the mixture. If we find the optimum value for this threshold 

corresponding to the smallest number of misclassifications, i.e. the sum of false positives and 

false negatives for a given test set of mixtures, then this number can serve as a measure of 

quality of identification corresponding to PRESS in the basic quantitative case. 

The best results were obtained for the case of four factors and non-centered data together with 

the optimum contribution threshold of 0.04, which yielded ten misclassifications: four false 

negatives and six false positives (see Table 7). Since the mixtures were prepared by mixing 

approximately equal volumes of powders the threshold of 0.04 seems to be rather small, which 

means that if the volumes of components in mixtures were very small this method of 

identification would probably fail. The number of four factors is relatively small if we compare it 

with the number of explanatory variables (intensities for 1401 wavenumbers), which means that 

many variables contain similar information on the signal contributions. We also obtained twelve 

misclassifications for two factors only in the PLS method. Interestingly, the number of 

misclassifications increased to sixteen for nine factors, which probably means that more detailed 

data in spectra was treated as noise. Comparing the results presented in Table 7 with those in 

Table 6 leads to the conclusion that PLS does not have more identification power than the non-

negative LS method. 

 

6. CONCLUSIONS 

A method for identifying components in a mixture was developed and tested on powder 

mixtures of amino acids. The procedure is based on the linear model of mixture and involves 

searching for scaling coefficients of the linear combination of template spectra minimizing a 

function of dissimilarity referred to in the literature as Canberra distance.
15,17

 The Canberra 

distance is related to a non-convex objective function in the optimization process and 
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consequently the method requires a stochastic optimization algorithm in view of the possibility 

of existence of local minima. The method was tested using twenty measured spectra of mixtures. 

Each mixture contained approximately equal volumes of powders of several amino acids taken 

from the collection of twenty. The number of amino acids varied between one and eight. The 

method does not attempt to find coefficients of the combination of all twenty template spectra 

simultaneously, but accepts them into the reconstructed spectrum of the mixture successively, 

starting from those most similar to the measured spectrum of mixture. Most components were 

identified correctly: there were only two false negative cases for mixtures of five and eight 

components and zero false positives (see Table 5). These results were achieved for the optimum 

values of two threshold parameters (see Section 3) defined for all considered mixtures. The 

results compare favorably with those obtained using the non-negative least squares (NLS) 

method, which, for the two optimum parameters, gave eleven misclassifications (see Table 6), 

and those provided by the partial least squares (PLS) method, which, for one optimum 

parameter, gave ten misclassifications (see Table 7). 

It should be mentioned that PLS is much faster than the remaining two methods, especially the 

method based on the Canberra distance, which, however, is superior in identification power. The 

speed of the PLS method is due to the two-step process mentioned in Section 5. The model 

parameters calculated in the training step serve for prediction of amino acid signal contributions 

in all analyzed mixtures, which includes few vector multiplications only, without solving any 

equations. On the contrary, for the two previous methods we performed a series of optimizations 

for each mixture to find scaling coefficients, though in the NLS method these optimizations were 

relatively fast, because they involved minimizing simple quadratic functions. Moreover, one 
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should be aware that only one contribution threshold parameter is required for PLS, whereas for 

the other two methods there are two of them, which may somewhat bias the results. 

The total time for the analysis of all 20 mixtures and 20 templates for the Canberra distance 

method amounted to 210 minutes (approximately 5-14 minutes for two component mixtures up 

to 17-26 minutes for more than five components in a mixture), whereas for the PLS method it 

took only 3 seconds if we do not count the training step. Of course the present method can be 

made faster if we consider less data points (wavenumbers) in spectra. Moreover, the optimization 

method (differental evolution) is time-consuming, as it requires many calls to the objective 

function. Therefore, substituting it with a simple gradient method could greatly accelerate the 

identification process, but at the expense of the possibility of falling into a local (not global) 

minimum of the objective function and, consequently, increasing the number of 

misclassifications. Both ways of acceleration, however, were not verified in practice. We think 

that by the already obtained results we could combine the two methods together. First, we could 

use the PLS method with parameters defined so as to make the false negative cases (almost) 

absent, and then use the present method to additionally verify the already identified components 

treated as a limited set of templates. 

In practice we often face the situation where there are some unknown components in the 

mixture spectrum, i.e. the components that cannot be spanned by the templates, and the 

applicability of the method in such cases is important. Obviously, the stronger the unknown 

components with respect to templates the less identification power of the method. The method 

works sequentially, i.e. the first identified components are more dominant in the Raman signal, at 

least with respect to the chosen Canberra metric. Since the method performed well in the case of 

5-8 components in the mixture, this suggests that if the sought components are reasonably strong 
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they should be identified. However there is the problem of the threshold condition in this case, 

i.e. how close the template spectrum should be to the mixture spectrum to be considered as its 

part. In general, the problem can hardly be solved. In practice, one is interested in 1-3 

components. They can be chosen from the set of templates by the devised algorithm, and then it 

can be checked visually how many peaks in the compared spectra coincide, taking also into 

account how strong they are in the templates. 
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Table 1. Collection of twenty amino acids taken into spectral analysis with their acronyms. 

 Amino acid Acronym 

1 Arginine Arg 

2 Proline Pro 

3  Alanine Ala 

4 Phenylalanine Phe 

5 Cysteine Cys 

6 Asparagine Asn 

7 Glutamine Gln 

8 Leucine Leu 

9 Threonine Thr 

10 Valine Val 

11 Isoleucine Ile 

12 Glutamic acid Glu 

13 Glycine Gly 

14 Aspartic acid Asp 

15 Lysine Lys 

16 Methionine Met 

17 Histidine His 

18 Serine Ser 

19 Tryptophan Trp 

20 Tyrosine Tyr 
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Table 2. The first iteration of the method for mixture f (see Table 4). The results are sorted 

according to the values in the second column. First column, acronym of the amino acid (see 

Table 1); second column, values of the function (1) for optimum coefficients; third column, 

difference between the current value and the value of function (1) for the worst match expressed 

as percent of the value for the worst match; fourth column, the optimum scaling coefficient for 

the corresponding amino acid.	In the present case the best match corresponds to serine. 

Amino 

acid 

Values of 

function (1) 

Difference in the 

values of (1) [%] 

Optimum 

coefficient 

Ser 865. -22.0 1.76 

Thr 872. -21.0 1.14 

Arg 910. -18.0 1.95 

Gln 999. -10.0 0.76 

Pro 1009. -9.1 1.77 

Ala 1010. -9.1 0.99 

Ile 1016. -8.5 0.58 

Lys 1029. -7.3 1.23 

Asn 1031. -7.2 0.73 

Cys 1033. -7.0 2.27 

Trp 1043. -6.0 0.93 

Tyr 1046. -5.8 2.96 

Asp 1049. -5.5 0.93 

Met 1051. -5.4 1.78 

Phe 1054. -5.1 2.30 

Leu 1070. -3.7 0.67 
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Val 1070. -3.6 0.67 

Glu 1077. -3.0 0.99 

Gly 1097. -1.2 2.54 

His 1110. 0.0 1.84 
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Table 3. The second iteration of the method for mixture f (see Table 4). The results are sorted 

according to the second column. First column, acronym of an amino acid (see Table 1); second 

column, value of function (1) for optimum coefficients; third column, difference between the 

current value and the value of function (1) for the worst match as percent of the value for the 

worst match; fourth column, optimum scaling coefficient for the spectrum reconstructed in the 

first iteration (serine); fifth column, optimum scaling coefficient for the corresponding amino 

acid spectrum. In this case the best match is the combination of spectra of serine and threonine 

(see Tables 1 and 2). 

Amino 

acid 

Value of 

function (1) 

Difference in 

the values of 

(1) [%] 

Optimum 

coefficient for 

reconstructed 

spectrum 

Optimum 

coefficient for 

corresponding 

amino acid 

Thr 653. -25.0 0.76 0.63 

Arg 774. -11.0 0.51 1.00 

Ala 810. -6.3 0.84 0.36 

Gln 811. -6.2 0.85 0.14 

Asn 817. -5.5 0.69 0.27 

Ile 822. -4.9 0.73 0.16 

Asp 825. -4.6 0.70 0.27 

Gly 831. -3.9 0.75 0.51 

Cys 841. -2.8 0.92 0.14 

Pro 848. -1.9 0.93 0.37 

Glu 851. -1.6 0.76 0.33 

Phe 852. -1.4 0.97 0.08 

Trp 854. -1.3 0.97 0.10 

Leu 857. -0.9 0.93 0.10 

Page 30 of 36Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



His 859. -0.7 1.00 0.12 

Val 861. -0.5 0.87 0.04 

Tyr 862. -0.4 0.83 0.65 

Met 863. -0.2 1.06 0.00 

Lys 865. 0.0 1.00 0.00 
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Table 4. Sample identification letters and qualitative composition of measured mixtures.  

Mixture Composition  

a Phe Ala 

b His Arg Pro 

c Tyr Asn 

d Gly Thr Ser Gln Leu 

e Trp Glu Gln Ile 

f Ser Thr Arg Ala 

g Met Ala His Gly Leu 

h Glu Leu Ile 

i His Gly Leu 

j Glu Met Lys 

k His Gly Tyr Pro 

l Thr Ala 

m Asn 

n Met Val Leu Ile 

o Phe Gln 

p Tyr Thr Pro Asn Asp 

q Gly Glu Ala 

r Tyr Trp His Arg Ser 

s Trp Asp 

t Tyr Cys Phe His Ser Leu Thr Ile 
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Table 5. Identification results of measured mixture spectra (denoted by letters; see Table 4). All 

the amino acids shown in the second column were identified correctly using adjusted mechanical 

stop condition of the iterative algorithm for all mixtures. The third column shows two false 

negative cases involving serine and isoleucine from the mixtures r and t of five and eight 

components, correspondingly. The last column shows zero false positive cases. 

Mixture Identified correctly False negatives False positives 

a Phe Ala   

b His Arg Pro   

c Tyr Asn   

d Gly Thr Ser Gln Leu   

e Trp Glu Gln Ile   

f Ser Thr Arg Ala   

g Met Ala His Gly Leu   

h Glu Leu Ile   

i His Gly Leu   

j Glu Met Lys   

k His Gly Tyr Pro   

l Thr Ala   

m Asn   

n Met Val Leu Ile   

o Phe Gln   

p Tyr Thr Pro Asn Asp   

q Gly Glu Ala   

r Tyr Trp His Arg Ser  

s Trp Asp   
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t Tyr Cys Phe His Ser Leu Thr Ile  
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Table 6. Identification results of measured mixture spectra (see Table 4) in the case of 

benchmark objective function (3). All amino acids shown in the second column were identified 

correctly using mechanical stop condition from the iterative algorithm (see Section 4); the third 

column shows false negative cases, fourth column shows false positive cases. 

Mixture Identified correctly False negatives False positives 

a Phe Ala   

b His Arg Pro  

c Tyr Asn   

d Gly Thr Ser Gln Leu   

e Trp Glu Gln  Ile  

f Ser Thr Arg Ala  

g Met Ala His Gly Leu   

h Glu Leu Ile   

i His Gly Leu   

j Glu Met Lys   

k His Gly Tyr Pro   

l Thr Ala   

m Asn   

n Met Val Leu Ile   

o Phe Gln Trp 

p Tyr Thr Pro Asn Asp  

q Gly Glu Ala Lys 

r Tyr Trp His Arg Ser  

s Trp Asp   

t Tyr Cys Phe His Ser Ile Leu Thr  
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Table 7. Identification results of measured mixture spectra denoted by letters (see Table 4) in the 

case of PLS method. All amino acids shown in the second column were identified correctly using 

the optimum mechanical stop condition from the iterative algorithm (see Section 5); the third 

column shows false negative cases, the fourth column shows false positive cases. 

Mixture Identified correctly False negatives False positives 

a Phe Ala   

b His Arg Pro   

c Tyr Asn   

d Gly Thr Ser Gln Leu   

e Trp Glu Gln Ile   

f Ser Thr Arg  Ala  

g Met Ala His Gly Leu   

h Glu Leu Ile   

i His Gly Leu   

j Glu Met Lys   

k His Gly Tyr Pro   

l Thr Ala   

m Asn  Gly 

n Met Val Leu Ile   

o Phe Gln  Ser Trp 

p Tyr Thr Pro Asn Asp   

q Gly Glu Ala  His Lys 

r Tyr Trp His Arg Ser  

s Trp Asp  Ile 

t Tyr Cys His Ser Leu Ile Phe Thr  
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