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ABSTRACT 

 
Studying cell-to-cell heterogeneity requires techniques, which robustly deliver 
reproducible results with single-cell sensitivity. Through a new fabrication method for 
the microarray for mass spectrometry (MAMS) platform, we now have attained a 
robustness and reproducibility in our single-cell level mass spectrometry 
measurements that allowed us to combine single-cell MAMS-based measurements 
from different days and samples. By combining multiple measurements, we were able 
to identify three co-existing phenotypes in an isogenic population of Saccharomyces 
cerevisiae characterized by distinctively different levels of glycolytic intermediates. 

 

 
 
INTRODUCTION 

 
Analytical methods capable of studying individual cells play an important role in 
identifying and characterizing cell-to-cell heterogeneity.1-3 Cell-to-cell (phenotypic) 
heterogeneity is a natural occurring characteristic that manifests itself in all organisms 
– including individual cells from an isogenic population – because it ensures an 
enhanced adaptability to fast changes and/or perturbations in the growth 
environment.4-7 Several causes can induce cell-to-cell heterogeneity – even stochastic 

reasons – may lead to different phenotypes of otherwise genetically identical cells. 
Such cell-to-cell variation has medical relevance, as for example in the case of 
persistence. Persistence happens when non-genetic cell-to-cell heterogeneity – in an 
isogenic population – allows a small group of cells to endure the addition of drug to its 
growth medium (i.e., because they show a better phenotypic adaptation toward the 
drug).6,7 Once the drug is removed, the selection pressure disappears and these 
surviving cells would give rise to a new (heterogeneous) – but still isogenic – 
population.6,7 It is for this reason that new analytical methods for identifying such cell- 
to-cell phenotypic variations are greatly required,1-3 in particular when developing a 
mathematical model of the adaptation and survival mechanisms of a cell population 
toward a drug.4-7
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A novel method for matrix-assisted laser desorption/ionization (MALDI) mass 
spectrometry (MS), called microarrays for mass spectrometry (MAMS), has been 
proven to achieve sensitivity for single-cell metabolite detection.8-11 However, the 
original method used for the MAMS fabrication (i.e., laser scan ablation) was inefficient 
in generating microarrays of consistently high quality. Thus, microarray-to-microarray 
comparison was difficult, since it required numerous normalization steps to 
compensate the technical noise originated from the microarrays.8 Furthermore; such 
normalization was only possible for certain metabolites. This hampered the ability to 
pool multiple samples to clearly identify co-existing phenotypes in an isogenic cell 
population. 

 
Here, we implemented an improved MAMS fabrication process, which should be 
capable to reduce technical variability. To test the novel MAMS substrates, we 
analyzed metabolite levels in single cells of the baker’ s yeast Saccharomyces 
cerevisiae, and for the first time single-cell level measurements from multiple 
microarrays were combined to generate a total population of 1280 measurements (i.e., 
an eight-fold increase compared to previous published data).8-11 As a result of the 
statistical analysis of the data, three subpopulations with distinctively different levels of 
glycolytic intermediates were found to co-exist in the isogenic population. Thus, due to 
the improved MAMS fabrication process, pooling of data from multiple samples is now 
feasible and therefore now allows using MAMS to confidently identify and characterize 
co-existing metabolic phenotypes. 

 
 
 
 
EXPERIMENTAL SECTION 

 
 
MAMS are fabricated on commercial transparent indium-tin oxide coated cover glass 
chips (20 mm x 20 mm x 0.16 mm) with a resistivity of 8-12 Ω *cm-1 (SPI Supplies, 

 

Unterfoehring, Germany). The slides were spin-coated (SuSos, Duebendorf, 
Switzerland) with a 1 µm thick polysilazane coating (CAG 37, marketed by Clariant, 
Frankfurt am Main, Germany). This polysilazane layer was structured (EMPA, Thun, 
Switzerland) using projection laser ablation system equipped with an excimer laser 
(Exitech Ltd., Oxford, UK), with the following characteristics: 20 ns pulse, 248 nm 
wavelength, 50 Hz repetition rate, and an average fluence at the substrate level was 
500 mJ/cm2 per pulse. The laser was collimated to illuminate an area of 16x16 mm2 on 
a mask and then focused on the sample with the de-magnification factor of 5 (Figure 
1A). By scanning the mask under the beam and the sample, a quadratic array of 13 x 
13 circular recipient sites (100 µm diameter) with a site-to-site distance of 400 µm in 
both dimensions was created. Recipient sites of larger (1.5 mm in diameter) size were 
machined outside the 13 x 13 array for depositing metabolite standards to be used as 
mass calibrants. 

 
The Saccharomyces cerevisiae mutant strain (i.e., CEN.PK.KOY.TM6*P) was 
used.12,13 This strain exhibits a stochastic cell growth rate, when grown in liquid 
culture. This observed variability between cultures is present even if the cultures 
originated from the same colony and were grown under exactly the same growth 
conditions (similar growth medium, temperature, pH, etc.). 
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The cell handling process is as follows, cells were taken from a liquid culture, 
quenched using a cold (-20°C) methanol:water mixture (3:2 ratio) with ammonium 

 

bicarbonate (0.85% w/v, pH 7.4) to stop metabolic activity, after which the supernatant 
is removed and cells are washed with a methanol:water (3:2 ratio) solution (-20°C) to 

remove salts. The cell suspension is then aliquoted onto the MAMS substrate (Figure 
1B). The number of cells is determined by microscopic inspection, while the entire 
MAMS chip is kept cold (-40°C) in a cryo-chamber flushed with liquid nitrogen. 
Subsequently, 9-aminoacridine (MALDI matrix) – also cold (-20°C) and in 
methanol:water (3:2) – is sprayed and the MAMS target is introduced into the MALDI- 
MS instrument for measurement. Data treatment and analysis was accomplished by 
transforming the raw data files from the AB5800 instrument to a universal data format 
(i.e., mzXML) using the freeware program Peak List Conversion Tool, available from 
http://www.proteomecommons.org. Afterwards, the spectral data (i.e., accurate mass, 
signal intensity, etc.) were calculated using a MATLAB (MathWorks, Natick, MA, USA) 
peak recognition software that was kindly made available by Uwe Sauer and Nicola 
Zamboni (Institute of Molecular Systems Biology, ETH Zürich).14 All spectral data were 
normalized by a linear combination of unsaturated signals that did not correlate with 
signals of biological origin. A more detailed description of the cell cultivation, as well as 
the analysis and data processing can be found in the supplemental information 
material. 

 
Safety considerations: 9-aminoacridine (9-AA) is a mutagenic substance and it must 
be handle with care. The selection of 9-AA as a matrix is due to its preferential 
ionization mechanism,15-17 which when coupled with the trapping the cells in picoliter- 
volume reservoirs,8-11 and the homogenous co-crystallization of matrix and analytes18 

is what allows us to reach the "single-cell" level sensitivity. 
 

 
 
 
 
 
RESULTS AND DISCUSSION 

 
One key step for studying cell-to-cell heterogeneity is to identify the co-existing 
phenotypes in an isogenic population. Each of these co-existing phenotypes is 
characterized by a unique metabolic pattern. Unfortunately, when we pool phenotypes, 
their unique metabolic pattern is diluted due to averaging artifacts (Supplemental 
Figure 1). In a previous worked, we have observed the natural co-existing 
subpopulations in an isogenic yeast culture.8 However, due to technical limitations 
(i.e., mostly associated with the limited number of single-cell events), it was not 
possible to characterize the co-existing populations with enough statistical 
significance. Here, by using an improved MAMS microarray, this limitation has been 
overcome. 

 
 
 
Single-cell level monitoring of an S. cerevisiae isogenic population. 

 
Variations in the monitored metabolite signal intensity – at the single-cell level – do not 
necessarily reflect the natural occurring differences in metabolite concentrations, since 
they can also result from variations in cell size (or other trivial biological artifacts) or 
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instrumental and sample handling variation (analytical artifacts). To illustrate the 
robustness of our method, as well as its ability to monitor the natural occurring 
biological variability between the multiple cells within and between set of 
measurements, we performed a set of control measurements (Supplemental Figure 2- 
5) described in-detail in the Supplemental section. In summary, these control 
experiments gave us confidence that the metabolite signal variations were of biological 
origin and not artifacts influenced by trivial biological variability (cell size), or by the 
analysis. 

 
After having ensured that we actually monitor biological information, we used our 
MAMS-based technology to identify the co-existing phenotypes within an isogenic 
yeast strain population. The Saccharomyces cerevisiae (CEN.PK.KOY.TM6*P) strain 
is an excellent model, because it presents a strong stochastic behavior.12 This 
stochasticity is reflected in its ability to grow at different growth rates in liquid culture, 
even if all cultures were generated from a single colony and were grown under similar 
conditions. In total, four liquid cultures – each of them with a different growth rate 

(0.14, 0.16, 0.18, and 0.21 1/h) – were used for this study. Furthermore, the mass 
spectrometry single-cell data of these 4 liquid cultures were pooled together during a 
post-data processing step to generate an in-silico “ master”  mixed growth-rate cell 

population (a total of 1280 wells) to obtain a better understanding of the 
CEN.PK.KOY.TM6*P strain metabolic behavior. 

 
The total distribution of the number of cells per reservoir for the whole data set can be 
seen in Supplemental Table 1. From the 159 wells containing 1 cell per reservoir, only 
75 were proved suitable for further studies (n=32, 17, 13, and 13 single-cell level 
measurements for the 0.21, 0.18, 0.16, and 0.14 1/h – cell growth rate samples, 
respectively). The selection criteria for determining if a single-cell level measurement 
is good or not was based on the precise mass recognition of 30 central metabolites 
(Supplemental Table 2) with a maximum mass deviation of 0.02 Da, and an average 
total mass deviation error of 25 ppm per mass spectra (see Supplemental Information 
section for additional details). 

 
Interestingly, in Figure 2A, we observed that many cells, independently from the liquid 
culture they originated from, had similar relative signal intensities of hexose- 
bisphosphate (very possibly Fructose-1,6-bisphophate – F16BP).8 Therefore, to better 
study the distribution of abundances of hexose-bisphosphate in the 
CEN.PK.KOY.TM6*P yeast strain, the histogram for relative signal intensity of hexose- 
bisphosphate was also plotted, in Figure 2B, for the in-silico “ master”  cell population 

(i.e., the population obtained by pooling all different liquid cultures). Remarkably, the 
observed distribution of hexose-bisphosphate in Figure 2B is not a symmetric uni- 
modal Gaussian distribution.8,19

 

 
Previously, we have observed that the relative intensity of hexose-bisphosphate can 
correlate with the cellular levels of F16BP, which presents a bimodal distribution.8,19

 

The validation of the correlation between the cellular levels of F16BP and hexose- 
bisphosphate was done by performing a tandem MS experiment, as well as a liquid 
chromatography coupled with mass spectrometry (LC-MS), supplemental figures 4 
and 5 respectively. Interestingly, by classifying for example all cells in two hypothetical 
co-existing groups with (i) high and (ii) low levels of F16BP (Figure 2C), a link between 

Page 4 of 19Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



5  

higher growth rates and higher levels of F16BP could be made. This was our first hint 
that the different growth rates could be associated with different ratios of co-existing 
phenotypes in each liquid culture. In the following section, we aim to describe the 
differences between these co-existing phenotypes based on their metabolic profiles 
and not only based on the relative levels of F16BP as done in a previous report.8 

 
 
 
Identification and characterization at the metabolic level of naturally occurring 
molecular phenotypes in an S. cerevisiae isogenic population. 

 
Our first goal in this section is the identification of a significant source of cell-to-cell 
heterogeneity based on the measured mass spectrometry signals. Sources of cell-to- 
cell heterogeneity can be external and/or internal to the organism. An example of an 
external factor that contributes to cell-to-cell heterogeneity is that cells can be found in 
slight different growth environments (i.e., microenvironments) even if grown under 
exact same conditions. These microenvironments originate due to slight differences in 
oxygen and nutrient availability, which can impact cellular metabolism.20,21  Here, we 
assume that external source of cell-to-cell heterogeneity, such as oxygen availability, 
is not predominant since we cannot measured it directly with our system. 

 
For this purpose, we monitor metabolite signals (or metabolite signal ratios) that are 
used as biomarkers for identifying the cell state. For example, a trivial source of cell-to- 
cell heterogeneity is cell viability (i.e., cells are either alive or dead).23 Because the 
mass spectra signal for adenosine monophosphate could not be identified, the 
ATP/ADP ratio was used instead of the energy charge for monitoring the viability of the 
cells.8  As it was expected, all single cells measured showed a remarkable constant 
ATP/ADP ratio, which indicates that all of them were equally viable at the moment of 
analysis (Figure 3A). This gives additional confidence that our cell handling protocols 
truly quenched the metabolism of the cells without introducing analytical artifacts. 

 
Another source of cell-to-cell heterogeneity is the cell stage of development. It has 
recently been demonstrated that the GTP/GDP ratio in combination with cytosolic pH 
act as a triggering signal for yeast growth by activating the Ras/TOR signal cascade.24

 

Since  we  did  not  attempt  to  synchronize  our  yeast  cultures  prior  collecting  the 
samples, it is not surprising to see a greater amount of variability (biological noise) 
between the individual cells (Figure 3B), in particular when compared to the previous 
parameter (cell viability). 

 
Finally,  another  source  of  cell-to-cell  heterogeneity  is  associated  with  how  cells 
process the available nutrients in the growth medium (i.e., glucose). Therefore, a ratio 
that could be easily linked to the way fermentation is performed was plotted. One of 
the metabolites that we chose for this ratio was F16BP, whose levels in yeast cells 
have been correlated with carbon uptake via the anaerobic glycolysis pathway.25, 26

 

The other metabolites was phosphenolpyruvate (PEP), which strongly correlates with 
the pentose phosphate pathway activity.27 Interestingly, when compared the ATP/ADP 
and the GTP/GDP ratio data dispersion, which have a clear uni-modal distribution; the 
plot of the F16BP/PEP ratio (Figure 3C) presents a bimodal distribution. It is important 
to state that this bimodal distribution is not associated to the previously observed 
bimodal distribution observed for F16BP (this will be better clarified in the following 
paragraphs). It is also an interesting observation that the overall dispersion (coefficient 
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of variability, CV) for this ratio is higher than the one observed for ATP/ADP (Figure 
3A), while at the same time lower than the one observed for the GTP/GDP (Figure 
3B).  This  is  interesting  because  the  natural  occurring  cell-to-cell  heterogeneity 
reflected by the F16BP/PEP ratio fluctuates between two conserve values, even when 
the overall biological noise (reflected by the GTP/GDP ratio) is much higher. Since 
these finding shows that glycolysis has a role in the cell-to-cell heterogeneity observed 
for this yeast strain, we will attempt first to classify the cells based only on their 
F16BP/PEP cellular ratio. Once this classification has taken place, we will compare 
our results with a non-supervise classification. Based on our measurements, we 
tentatively assigned three different phenotypes, labeled here as: (i) Group 1, (ii) Group 
2, and (iii) Group 3 (Figure 4A). Due to the ability of mass spectrometry to 
simultaneously monitor multiple metabolite signals from the central metabolism, we 
can describe each group in terms of a metabolic pattern (Figure 4B). 

 
We will now compared the above result with the one obtained from a non-bias 
classification based on the whole metabolic profile of the cells. For this purpose, the 75 
single-cell mass spectra was analyzed using a non-supervise principal component 
analysis (MatLab, MathWorks). To have confidence that the analysis represents 
biological information, we identified the principal component that fulfills the following 
conditions: (i) it could explain most of the population variance; and (ii) its loading 
values for the signals of F16BP and PEP will have opposite signs (i.e., they will be 
anti-correlated as it is to be expected).27 In our case, both conditions were fulfilled by 
the  Principal  Component  4.  In  Supplemental  Figure  6,  we  plot  the  principal 
components 1 vs 4. Each point corresponds to a single yeast cell, and is described by 
332 relative ion intensity signals (normalized by a single correction factor, as described 
in the Supplemental information section). On the one hand, due to 97.8% of all the 
loading values for the PC1 (33.6% of the sample variance) were positive, we 
hypothesize that the PC1 represent a trivial biological trait/feature (i.e., size) or an 
analytical artifact, e.g., laser fluctuations that – although minimized by our analytical 
protocol – cannot be completely removed from the analysis. On the other hand, we 
hypothesize that the Principal Component 4 (7.9% of the sample variance) is 
associated with the natural occurring cell-to-cell heterogeneity because (i) the loadings 
associated with the Principal Component 4 show different signs, in particular for 
metabolites from competing metabolic pathways such as PEP and F16BP and (ii) 
known metabolite MS signals (Supplemental Table 2) scored – either positive or 
negative – high loading values. Interestingly, the level of non-trivial (metabolite) cell-to- 
cell variability (i.e., the variance contribution of PC4) found here is realistic and in 
agreement with models of metabolic cell-to-cell heterogeneity that assumes variations 
between 5 and 10% for glycolytic intermediates.19 The groups obtained in the principal 
component  analysis  confirm  to  some  extend  our  previous  classification  based 
exclusively on the F16BP/PEP signal ratio. Group 1 is clearly isolated from Group 2 
and 3, due to its characteristic metabolic profile (as described in Figure 4B), while 
Group 2 and 3 share a more common metabolic profile. Although, a supervised PCA 
approach, in which only the mass spectrometry signals of selected metabolites, could 
have improved the clustering of the cells in groups 2 & 3, it would not have yielded a 
significant improvement over the classification based on the F16BP/PEP signal ratio. 

 
Following the tentative identification of the molecular phenotypes, we plotted the 
distribution of these molecular phenotypes in terms of its relative levels of F16BP – in 
an analogous way to the one shown in Figure 2 (Figure 5A), considering 100% to be 
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the  “master”  population  (i.e.,  all  measured  cells).  Interestingly,  by  reducing  the 
technical and analytical variability, we could de-convolute the overlapping populations 
with low F16BP levels (based on the above introduced classification, Figure 4). 
Furthermore, we can clearly observe that only Group 3 (i.e., with high levels of 
glycolytic activity) presents the before mentioned F16BP bi-stability – the presence of 
both high and low level F16BP populations. In Figure 5B and 5C, we demonstrate that 
the different growth rates observed for this yeast strain can now be clearly correlated 
with an increasing number of yeast cells with high glycolytic activity, and in more detail 
with those yeast cells that showed high levels of F16BP. This result – the correlation 

between glycolysis and cell growth – is in accordance with the Warburg effect, which 
states the increased utilization of glucose via glycolysis as a cellular resource for fast 
cell growth.26

 

 
Finally, in Supplemental figure 7, we can take advantage of the analytical power 
associated with the pooling of single-cell level measurements and compare the mass 
spectra of one particular cell vs another cell (Supplemental figure 7A), or for example 
between the pooled mass spectra of two different phenotypes (Supplemental figure 
7B) and perform an in-depth statistical analysis to find the key-differences between the 
two populations. For example, when compared with our first attempt to characterize 
the high and low F16BP populations using our single-cell platform,8  the possibility of 
accumulating larger numbers of single-cell data, with a lower technical/analytical 
variability, allowed us to perform a 2-sample t-test statistical study on both populations. 
Furthermore before performing this comparison, we can remove from the high and low 
F16BP populations (characterized by a high glycolysis activity) other cells that might 
present similar levels of F16BP but present different levels of glycolytic activity. Thus, 
in addition to the trivial difference in F16BP, the High and Low F16BP populations can 
be differentiated for example in terms of adenosine triphosphate, uracil triphosphate, 
and   3-deoxy-D-arabino-heptulosonic-acid-7-phosphate   (p   values   equal   6x10-5, 
2.69x10-3, and 1.89x10-3, respectively). 

 
Furthermore, we can now also observe that metabolite-metabolite correlations present 
unique information about the metabolic networks’ underlying system architecture for 
each phenotype. In Figure 6A, the “average” partial rank correlation for those 
metabolites that have been described in supplemental table 2. While, figure 6B, 6C, 
and 6D, the partial rank correlation for a selected cluster of metabolites belonging to 
Group 1, Group 3b, and Group 3a are shown. Interestingly, cells associated with 
Group 1 (low glycolytic activity) the partial correlation between oxaloacetate and 
coenzyme A is quite strong. However, the correlation between these two metabolites 
becomes fainter for the cells from Group 3 (high glycolytic activity). In addition, cells 
from group 3 shows the additional correlation between these two metabolites and 
phosphogluconolactone. The latter correlation even differs in the case if the cell levels 
F16BP are high or low (Group 3a and 3b, respectively). It would be tempting at this 
stage to provide a metabolic model that explains the differences between the observed 
phenotypes (in particular for Group 1, Group 3a and Group 3b). However, a more in- 
depth analysis is required prior developing such biological model. Fortunately, the 
MAMS substrates are compatible with fluorescence microscopy measurements, thus it 
would be possible to label transcription factors and/or proteins with fluorescent protein 
tags to monitor the up- or down-regulation of a particular metabolic pathway. For this 
reason, we believe that a MAMS-based mass spectrometric analysis at the single-cell 

Page 7 of 19 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



8  

level  is  a  great  first  step  in  trying  to  understand  the  causes  for  cell-to-cell 
heterogeneity. 

 
In summary, this new generation of microarrays for mass spectrometry is able to show 
the non-genetic heterogeneity present in a clonal population, and it might proof useful 
as a first line of study to better understand cell-to-cell heterogeneity. The possibility of 
coupling these transparent substrates with a fluorescent read-out could be the next 
step to better identify the biological processes that allows the formation of different 
non-genetic phenotypes to appear. This could be of great interest in a clinical research 
application, where a clonal population of cells might present non-genetic heterogeneity 
(e.g., cancer cells). A MAMS-based approach could identify different phenotypes, and 
possibly identify the effect of a drug on these populations in such way that after 
measuring the cell population at different time points we could identify the surviving 
phenotype. This would then really lead to a “tailor-made” therapy for diseases, such as 
cancer. 

 
 
 
 
CONCLUSIONS 

 
In this study we exploit a new microfabrication method (i.e., projection laser ablation) 
for the fabrication of microarrays for mass spectrometry. By using this new generation 
of MAMS substrates, we reduced the technical (or analytical) variability to be able to 
directly visualize four different co-existing phenotypes (characterized by the cellular 
levels of glycolytic intermediates) in an isogenic cell population of Saccharomyces 
cerevisiae strain, CEN.PK.KOY.TM6*P. The existence of these subpopulations in 
different ratios can be correlated to the different growth rates observed the liquid 
cultures of this particular yeast strain. 

 
There is in theory no limitation to the number of single-cell level measurements that 
can be performed and combined to compare/characterize – with statistical significance 
– individual cells, a group of cells that are phenotypically similar, or the whole cell 
population (the latter two by pooling selected or all the individual results together, 
respectively). Because, we exploit the inherent variability between individual cells (e.g. 
due to cell cycle, stochastic effects, cell age, cell size, etc.) as a potent system 
perturbation, we could observe differences in the metabolic networks’ underlying 
system architecture. This information in combination with the ability of this platform to 
calculate the biological variance, and the number of co-existing phenotypes, can be 
later used for data driven modeling or for designing more complex biological 
experiments to validate the existence of the co-existing phenotypes. 
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FIGURE CAPTIONS 
 
Figure 1. Graphical summary of the workflow used to prepare the samples for single-cell  MALDI MS 

analysis. Cellular metabolism is quenched by adding a cold (-20°C) solution of 3:2 Methanol:Water with 
0.85%(v/v)  ammonium  bicarbonate  (pH 7.4). After cell handling (i.e. centrifugation  and discarding  the 
supernatant),  the pellet is reconstituted  in a salt free cold (-20°C) solution of 3:2 Methanol:Water,  and 

the cell suspension  is spread onto a cold MAMS chip. Applying  the cell suspension  onto the MAMS 
surface  will  result  in an  automated  aliquoting  of the  cell  suspension  into  the  hydrophilic  reservoirs, 
without the need for a microspotter. Dependent on the cell concentration employed, the number of cells 
on each hydrophilic reservoir can be between zero and hundreds (random Poisson distribution). The 
transparency of the MAMS substrate allows for microscopic analysis to determine the number of cells in 
each reservoir while the cells remain quenched because the entire MAMS chip is kept cold in a cryo- 
chamber using liquid nitrogen. After counting the cells under the microscope, 9-aminoacridine (MALDI 
matrix) is applied with an airbrush, and each reservoir on the plate is analyzed with MALDI MS. 

 
Figure 2. (A) The MAMS-based analytical protocol is able to avoid biological and technical artifacts due 
to averaging of a large number of cells by performing a single-cell level analysis on the liquid medium 
grown cells. Therefore, we observed that within a “theoretical” homogeneous clonal population of cells, 
there is enough cell-to-cell heterogeneity to form different phenotypes which may contribute to the 
observed differences in growth rate. (B) By pooling all the cell samples together, we can observed that 
there is a correlation between increasing levels of F16BP and the growth rate of the cell population (C). 
The identification of fructose-1,6-bisphosphate (F16BP) is based on precise mass, and tandem MS 
experiment (supplemental figure 4), which was performed on standard stainless steel target with a 
higher density of yeast cells (~1000 cells). The fragmentation spectrum of hexose-bisphosphate  was 
then compared to a commercially available sample of F16BP. Furthermore, LC-MS measurements were 
performed. On the LC-MS measurements, the levels of F16BP in different mutants of the CEN.PK.KOY 
yeast strain (each of them presenting a different growth rate) had a positive correlation; a trend that was 
also obtained from the different liquid cultures of the CEN.PK.KOY.TM6 strain using our MAMS platform 
(supplemental figure 5). With this experiment, we have not only confirmed that the hexose-biphosphate 
signal is F16BP, but also that the level of F16BP signal in the sample correlates with the observed cell 
growth as shown in Figure 2. 

 
Figure 3. The ratios of ATP/ADP, GTP/GDP, and F16BP/PEP were plotted to compare the different 
levels of biological noise associated with the cell-to-cell heterogeneity. For example, difference in 
viability is a source of cell-to-cell heterogeneity. The energy charge was not used because for our MS 
measurements the adenosine monophosphate (AMP) signal did not fulfill our signal selection criteria 
(explained in the supplemental information). Instead the ratio between ATP/ADP was used to estimate 
the cell viability (see text for details). Here, we can observe that viability is not a strong source of cell-to- 
cell heterogeneity. While, the ability of the cells to sense their carbon source (i.e., glucose) in the 
different cultures is. The ratio of GTP/GDP is a triggering signal for cell growth, and in combination with 
cytosolic pH is directly link to the sensing of glucose in the cell environment. The high coefficient of 
variability for the GTP/GDP ratio shows that this can be one of the major sources of cell-to-cell 
heterogeneity. However, even in a quite noisy system (as illustrated by the GTP/GDP ratio), the 
distribution of the F16BP:PEP ratio falls between two conserved values. Thus, we hypothesized that the 
different co-existing phenotypes could be characterized in terms of their associated glucose 
degradation. CV is the abbreviation for coefficient of variation. 

 
Figure 4. (A) The Log(F16BP/PEP) is plot in decreasing order. A binomial distribution can be observed, 
were two groups, Group 1 and Group 3, are clearly differentiated by the levels of glycolytic activity 
(Group 1 with low and Group 3 with high levels of anaerobic glycolytic activity, respectively). In between 
these two groups, few cells can be found. These cells are part of Group 2, which is an intermediate 
state between Groups 1 and 3. (B) Based on these three groups, a decision tree can be constructed. 
Using a t-test statistical approach, key metabolites that are statistical different can be retrieved. For 

example, for the first decision step – used to differentiate Group 1 from the rest – guanosine 
triphosphate and phospho-gluconolactone  can be used as part of the selection criteria (p-values are 
7.83x10

-8
, 8.11x10

-6  
respectively). For the second decision step, aspartate and phosphoenol pyruvate 

(p-values are 5.89x10
-5  

and 2.09x10
-3

, respectively) can be used. 

 
Figure 5. Three (3) core groups (or phenotypes) could be identified over the previous once shown in 
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Figure 2B, based on the mass spectrometry signals of the central metabolism (as shown in Figure 4). 
(A) The histogram of fructose-1,6-bisphosphate for all measured yeast samples (i.e., pooled data – 
shown in Figure 2B) is further de-convoluted using these three groups that are characterized by different 
levels of glycolytic activity. By de-convoluting the co-existing populations, it is possible to avoid 
overlapping of three different phenotypes that present similar levels of F16BP, but show different 
glycolysis activity (100% = 75 cells, which is the total population of measured yeast cells). (B) The co- 
existence of these three groups in different ratios is also associated with the growth rates observed in 
liquid growth medium (100% = 32, 17, 13, and 13, for the 0.21, 0.18, 0.16, and 0.14 1/h – cell growth 
rate samples, respectively). (C) The Group 3 (i.e., the group characterized by a high glycolytic activity) 
can be further subdivided in two sub-populations, one with high and another with low levels of fructose- 
1,6-bisphosphate (100% as in Figure 5B).  Figures 5B & 5C show that it is the relative abundance of 
these four subgroups in the overall population (and not only 2 based on a high and low F16BP 
phenotypes) what can explain the growth rates observed for the CEN.PK.KOY.TM6*P  populations. 

 
Figure 6. (A) Partial rank correlation for the whole population of measured cells based on the post- 
measurement pooling of the mass spectra from Groups 1, 2, 3a & 3b characterized by low glycolytic, 
intermediate, high glycolytic activity (with high and low levels of fructose-1,6-bisphosphate), 
respectively. (B) Partial rank correlation for a small subset of metabolites using the data obtained 
exclusively from Group 1 (i.e. low glycolytic activity yeast cells). (C) Partial rank correlation for a small 
subset of metabolites using the data obtained exclusively from Group 3b (high glycolytic activity with low 
cellular levels of F16BP yeast cells). (D) Partial rank correlation for a small subset of metabolites using 
the data obtained exclusively from Group 3a (high glycolytic activity with high cellular levels of F16BP 
yeast cells). 
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