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In this work the application of Multivariate Curve Resolution is proposed for the analysis of Mass Spectrometry Imaging (MSI) data. 

Recently, developments on ionization of samples have dramatically expanded the number of applications of MSI due to the possibility of 

collecting the mass spectrum for each pixel of a considered surface in a reasonable time. Using this method, both spatial distribution and 

spectral information of analyzed samples can be obtained. However, there are major drawbacks inherent to MSI related to the high 

complexity of the data obtained from real samples and to the extremely huge size of the data sets generated by this technique. Therefore, 10 

the potential of chemometrical tools in different steps of the analysis process is unquestionable, from data compression to data resolution 

of the different components present at each pixel of the image. In this work, this data analysis is carried out by means of the Multivariate 

Curve Resolution method. The benefits of the application of this method are shown for two examples consisting on a MS image of two 

platted microbes and on a MS image of a mouse lung section. Results show that Multivariate Curve Resolution allows obtaining 

distribution maps of different components and their identification from resolved pure high-resolution mass spectra. 15 

 

1. Introduction 

In recent years a lot of attention has been focused on the 

development of hyperspectral imaging techniques due to its 

ability of carrying out fast and relatively cheap analyses of 20 

multiple compounds spread over the surface of a sample1, 2. These 

imaging technologies have been applied to several research fields 

such as food processing and control3, environmental and 

biomedical studies4-6. In these cases, a complete spectrum 

(usually from a vibrational spectroscopic technique such as NIR 25 

or Raman spectroscopies) is collected for each pixel location of 

the sample surface. However, for the success of the imaging 

technologies, application of data processing tools able to deal 

with big amount of data is necessary. Application of 

chemometrical tools is necessary at the different stages of the 30 

data analysis such as in compression (i.e. wavelets), in 

pretreatment (i.e. correcting baseline drifts) and in exploration2, 7. 

In this last step, several methods have been proposed to extract 

the maximum amount of information from the available spectral 

imaging data. Thus, Multivariate Image Analysis (MIA)8 and 35 

Principal Component Analysis (PCA) have been applied9 and, 

more recently, applications of Multivariate Curve Resolution 

(MCR-ALS) method have grown significantly10. MCR-ALS 

method allows the flexible application of constraints to obtain 

chemical (or biological) meaningful solutions which are easier to 40 

interpret especially when comparing with those obtained from 

other methods (i.e. PCA). Recent examples of application of 

MCR methods to hyperspectral imaging data in the literature 

dealing with monitoring of retina inflammation11, monitoring of 

polymorphic transformations12 or environmental remote sensing 45 

13. 

 

Mass Spectrometry Imaging (MSI), also known as Imaging Mass 

Spectrometry (IMS), technology is an extremely useful tool for 

the study of complex mixtures in real biological samples such as 50 

cells or tissues14-16. Its usefulness is due to its high chemical 

specificity in a way that allows analyzing simultaneously multiple 

molecular species in a very wide mass range, from small (i.e. 

metabolites) to large molecules (i.e. proteins). In addition to the 

qualitative information about the presence or absence of a 55 

particular molecule, MSI allows obtaining its spatial distribution 

in the analyzed sample surface17. Thus, MSI couples the spatial 

information provided by the spectral imaging techniques with the 

chemical specificity based on the mass accuracy of the high 

resolution mass spectrometry techniques (and possible MS/MS 60 

analysis) that allows the detected molecules unambiguous 

identification18. 

 

MSI experiments can be carried out by using one of several MS 

ionization techniques available that offer complementary 65 

capabilities15. Most commonly ionization techniques are 

secondary ion mass spectrometry (SIMS), laser 

desorption/ionization (LDI), desorption electrospray ionization 

(DESI) or matrix-assisted laser desorption/ionization (MALDI). 

For instance, SIMS imaging shows the higher spatial resolution 70 

imaging over a low mass range (until approximately 1000 Da), 

but requires high-vacuum conditions with pressures lower than 

10-6 mbar. MALDI imaging allows working in a wider mass 

range (approximately 100000 Da) but at a lower spatial resolution 

and both high vacuum or atmospheric pressure. However, in 75 

some applications the sample preparation is rather complex. 
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Finally, DESI is used for almost untreated sample surfaces at 

atmospheric pressure for analysis of small molecules but at lower 

spatial resolution. 

 

In this work, it is proposed the application of the Multivariate 5 

Curve Resolution to the exploration and analysis of MSI data 

sets. It is expected that the application of this resolution method 

will enhance the quantity and quality of information obtained 

from MSI data, in comparison with traditional methods despite 

the drawbacks in data processing and analysis that need to be 10 

overcome. Several articles are already available regarding the 

application of chemometric methods (mostly Principal 

Component Analysis and hierarchical clustering) to the analysis 

of MSI data (mainly TOF-SIMS generated data)19-23, and only a 

couple of works  are dealing with the application of MCR-ALS 15 

analysis to MSI data 24, 25. 

 

2. Materials and methods 

2.1. Data sets under analysis 

In this work, two data sets from the OpenMSI web-based 20 

platform26 have been analyzed.  

 

The first data set was generated by Louie and coworkers27 and is 

an example of Mass Spectrometry Imaging using Nanostructure-

initiator mass spectrometry (NIMS)28 as desorption technique and 25 

an ABSciex 5800 TOF/TOF mass spectrometer as a detector. In 

that work, two microbes, Shewanella oneidensis (MR1) and 

Pseudomonas stutzeri (RCH2), were placed on agar film and the 

surface was scanned generating an image of 250 x 160 pixels 

(pixel size 100 microns) and 116152 m/z values. So, at least four 30 

different contributions could be expected: support material, LB 

agar media and the two considered microbes (MR1 and RCH2). 

More details about the fabrication of the NIMS wafer surface or 

the experimental details of the MS imaging could be found at the 

original work27. The second data set was generated by Marko-35 

Varga and co-workers23, 29 and is an example of the combination 

of MALDI desorption and detection by a Thermo LTQ Orbitrap 

XL. In this case, a section of a mouse lung was scanned and the 

obtained hyperspectral image has a size of 149 x 132 pixels (pixel 

size 50 microns) and 500000 m/z values. In this case, MSI is 40 

expected to allow observing different parts of the lung as the 

external membrane and blood vessels. Details about the sample 

preparation and measurement from the lung extraction to the 

experimental MS parameters could be found at the original 

work23, 29. 45 

 

MS imaging data can be arranged in a data cube in which the x- 

and y- axis correspond to the pixels building up the image and the 

z-axis corresponds to the mass spectrum obtained at each pixel. A 

graphical description of this data structure is shown in Scheme 1. 50 

For exploratory analysis purposes, it is possible to extract directly 

some information from the data cube2. First, it is possible to study 

the mass spectrum obtained at each pixel. However, this approach 

fails in the case of real (complex) samples in which more than 

one chemical compound is present at each pixel and, so, the 55 

amount of information that can be extracted is limited.  

 

Scheme 1 Mass spectrometry imaging (MSI) data cube. 

 

Second, it is possible to take a slice of the data cube at a 60 

considered m/z value. If prior knowledge about the scanned 

system is available, it can be useful to search for a specific 

compound (i.e., if a particular pollutant is known to be 

accumulated in a section of the tissue under analysis). If this prior 

knowledge is not available then the selection of m/z values that 65 

provide information is extremely difficult. Finally, if all the mass 

intensity values for a certain pixel are summed in a single value, a 

global intensity plot can be obtained. This total intensity 

graphical image displays the dominant spatial features of the 

image, but it does not allow obtaining detailed information about 70 

the chemical composition of the scanned surface. 

 

2.2. Data pretreatment 

The analysis of raw MS imaging data is rather challenging due to 

the extremely large size of the mass spectra generated by high-75 

resolution instruments20. In addition, data pretreatments are 

needed to enhance the obtained signal and facilitate its further 

analysis. A scheme of the steps needed in this data preparation is 

shown in Scheme 2. 

 80 

Data pretreatment starts with a compression of the image prior to 

its analysis to reduce its size and obtain a data set which can be 

analyzed using a reasonable computational time. For instance, the 

number of elements of the data cube (I) is of more than 4500 

millions (250 x 160 x 116152) in the case of the microbes data set 85 

and almost 10000 millions (149 x 132 x 500000) in the case of 

the lung data set. Despite the increasing power of current 

laboratory computers, chemometric analysis of these huge data 

sets would be extremely slow and impractical. It is clear that a 

data compression method is required. Since spatial information is 90 

low resolution compared to the acquired mass spectra, the 

binning of the mass spectrum at each pixel was preferred for both 

data examples. After binning, in the microbial interactions 

example the number of elements of the data cube (I*) was 

reduced to 232 million (250 x 160 x 5800, approximately a 5% of 95 

the original size) while in the lung example was of only 1200 

million (149 x 132 x 6000, approximately a 1% of the original 

size). 

 

Prior to the application of other pretreatments, the data cube was 100 

unfolded into a two-dimensional data table (D) (see more details 
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in section 2.3.). In this step, the data cube I* of dimensions 

(number of x pixels, number of y pixels, number of binned m/z 

values) was unfolded to a data table of dimensions (number of x-

pixels x number of y-pixels, number of binned m/z values). At 

each row of the data table, there is the mass spectrum 5 

corresponding to a single image pixel. For instance, the first row 

has the mass spectrum of the first pixel at the top left corner of 

the image and last row has the mass spectrum of the last pixel at 

the bottom right corner of the image. Likewise, each column of 

the refolded data table contains the signals for all pixels at the 10 

considered m/z values (see Scheme 2). In this way, microbial 

interaction data set has a final matrix size of 40000 x 5800 while 

mouse lung data set has a matrix size of 19668 x 6000. 

 

Finally, the image data was further preprocessed to enhance its 15 

signal to noise ratio and features. Two pretreatments have been 

used. First, a baseline correction of all mass spectra was applied 

using the asymmetric least-squares algorithm (AsLS)30. Second, 

mass spectra of all pixels were normalized to have equal length19, 

20. The application of this normalization step allowed studying the 20 

data independently of the absolute intensity of each pixel. This 

normalization has the advantage of minimizing the variation 

between pixels due to ionization differences between components 

and to spikes effects (pixels at certain m/z values which present 

extremely high intensity values). It is useful to identify pixels 25 

with similar composition in the MS image, although it should be 

used with caution because this normalization can also cause the 

loss of relevant quantitative information in some situations31.

 

 30 

Scheme 2 Flowchart of the different data pretreatment, data analysis and postprocessing steps used in this work.

2.3. Bilinear model and Multivariate Curve Resolution 

analysis 

In the case of hyperspectral imaging data using vibrational 35 

techniques (Raman, IR, NIR, …), the bilinear model defined by 

Lambert-Beer’s law for spectroscopic measurements has been 

proposed. Absorption measured at different wavelengths is 

additive (linear) and is defined by the product of a term related to 

concentration and another to the spectral properties as can be seen 40 

in Equation 1. 

 

           
  
          Equation 1 

 

Where each individual dij value represents the signal measured 45 

for the ith sample at the jth channel, cin represents the 

concentration values of n species for the sample i and snj 

represents the spectral properties of n species at channel j. When 

the bilinear model is fulfilled, each dij value is the total sum of 

product of concentration and spectral values for the Ns 50 

considered components (constituents or species). Finally, eij value 

corresponds to the error contribution to the measurement that 

does not follow the bilinear model.  

 

The previous bilinear model is extended in this study for the 55 

analysis of the data table (D) obtained from unfolding the MS 

image. In this case, each of the considered components will be 

characterized by a contribution or concentration value at each 

image pixel and by its pure mass spectrum. In matrix form 

Equation 1 can be written as: 60 

 

           Equation 2 
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where D is the data matrix containing the unfolded MS image to 

be analyzed of size (number x-pixels x number y-pixels) rows by 

(number of binned m/z values) columns. D data matrix is 

decomposed into the product of matrix C of dimensions number 

(x-pixels x number y-pixels, Ns) and by matrix ST of dimensions 5 

(Ns, number of binned m/z values). Ns is the number of 

components related to the main sources of data variance, i.e., it is 

assumed that most of the information relevant to the image can be 

explained by a few number of Ns components. Matrix E of 

dimensions (number x-pixels x number y-pixels, number of 10 

binned m/z values) contains the variance not explained by the 

bilinear model, i.e., by the resolved profiles in C and ST matrices.  

 

There are many chemometric tools able to decompose D matrix 

according to Equation 2. For instance, one popular method 15 

commonly used to explore spectral images is Principal 

Component Analysis (PCA) in which the data matrix D is 

decomposed into a few number of principal components giving 

orthogonal scores (information related to image pixels) and 

orthonormal loadings (information related to m/z spectral values),  20 

respectively9. However, other resolution methods have been 

developed due to the possibility to impose more natural 

constraints to the components in order to obtain more easily 

interpretable solutions. Among these methods, Multivariate 

Curve Resolution by Alternating Least Squares (MCR-ALS) has 25 

been already successfully applied to the analysis of other type of 

spectral images12, 32. MCR-ALS solves iteratively Equation 2 by 

an Alternating Least Squares optimization algorithm under 

constraints and calculates matrices C and ST that optimally fit the 

data matrix D33, 34. 30 

 

The number of components is usually preliminary estimated by 

means of PCA or by the Singular Value Decomposition (SVD) 

algorithm35. However, in the case of MS imaging this estimation 

is not straightforward and, in many cases, the complete data 35 

analysis has to be repeated using different number of components 

in order to select a simple model that allows obtaining 

interpretable information as well as fitting appropriately the data 

(without overfitting) ALS optimization starts by using initial 

guesses of either C or ST. In the case of analysis of MS images, 40 

an initial estimation of ST matrix obtained by means of the 

estimation of the purest pixels36 is preferred. MCR-ALS uses an 

iterative alternating least squares (ALS) constrained optimization 

solved in two separate linear least squares steps, one to estimate 

the C (concentration profiles) matrix and another one to estimate 45 

the ST (spectra profiles) matrix of the multiple components 

contributing to the MSI signal. At each of these iterative steps, 

the least squared problem is solved under non-negativity and 

spectral normalization constraints37, 38 (other constraints are also 

possible as implemented in the current version of the method38). 50 

When constraints are appropriately defined, the ALS optimization 

converges fast to a minimum with optimal data fitting. The 

advantages of MCR-ALS over other MCR methods proposed in 

the literature are that implementation of constraints and extension 

to very complex data sets is rather easy. 55 

 

ALS optimization concludes when in two consecutive iterative 

cycles, relative differences in standard deviations of the residuals 

between experimental and ALS calculated data values are less 

than a previously selected value (usually 0.1%). Quality of the 60 

fitting of the data can be measured by the amount of explained 

variance calculated according to the following expression: 

 

        
    

 
       

 
  

    
 

  
   Equation 3 

 65 

where dij designs an element of the input data matrix D and eij is 

the related residual obtained from the difference between the 

input element and the MCR-ALS reproduced matrix. 

2.4. MCR-ALS solutions postprocessing 

The interpretability of the information obtained from MCR-ALS 70 

profiles present in resolved C and ST profiles can be enhanced by 

appropriate postprocessing. Each column of matrix C giving the 

relative contributions of a particular component in all the image 

pixels can be refolded appropriately into a two-dimensional 

distribution map image of this component on the entire scanned 75 

surface2. On the other hand ST rows contain the mass spectra of 

the resolved components at the resolution used for MCR-ALS 

analysis. It is interesting to mention that several possible 

chemical compounds can be observed (i.e. several peaks at 

multiple m/z values) in the signal corresponding to the same  80 

component resolved spectra. However, from these resolved 

spectra, it is not possible to unambiguously identify the image 

constituents yet, because binned m/z values (necessary due to 

computer limitations) have not enough resolution to be used for 

exact mass compound characterization. In order to recover the 85 

high-resolution present in raw measurements and allow exact 

mass component identifications, a single non-negative least-

squares step was used, where matrix Dall (size of x-pixels x y-

pixels by all m/z values) with all m/z data is projected on MCR-

ALS resolved C profiles. This single least-squares step allows 90 

estimating full resolution mass spectra ST
all for all MCR-ALS 

resolved components. Using them, the identification of the image 

constituents is then possible by comparison with MS spectra 

compiled in public libraries such as MassBank39 or Lipid Maps40, 

41. 95 

 

2.5. Software and hardware 

All calculations were performed using MATLAB® software 

running on a HP Z620 Workstation equipped with two Intel® 

Xeon® E5-2620 processors and 32Gb Ram using Windows 7. 100 

PCA analysis has been carried out using the Eigenvector PLS 

Toolbox for the MATLAB® environment. Multivariate Curve 

Resolution routines are freely available at the webpage 

www.mcrals.info.  

 105 

3. Results and Discussion 

Two examples of application of the MCR-ALS method to the 

analysis of MSI data are given below. These two examples show 

the advantages of the application of MCR-ALS to this type of 

data considering different ionization and detection techniques 110 
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such as NIMS ionization and TOF/TOF detection in the case of 

the microbial interaction example, and MALDI ionization and 

Orbitrap detection in the cause of the mouse lung example.  

 

3.1. Microbial interaction data set 5 

As stated above, preprocessing and analysis of this raw data were 

impractical with the available computers because of its huge size. 

The analysis of this data set required its preliminary compression. 

The size of the data cube after binning was 250x160x5800 

(binning in m/z ranges of 0.25 units). This data cube was then 10 

unfolded to a a two-way data matrix of size 40000x5800). Data 

background and baseline was corrected using the AsLS method 

(see methods section) and raw spectral data were normalized to 

equal length. 

First step in the Multivariate Curve Resolution procedure was the 15 

preliminary estimation of the data complexity and number of 

components by SVD data analysis).  From the plot of the singular 

values, in Figure 1a the decision about how many components 

should be selected for an accurate data description is not 

straightforward. It is preferred therefore to perform the MCR-20 

ALS analysis for a different number of components and, then, 

decide about the model that extracts maximum interpretable and 

reliable information with the smallest number of components, 

trying at the same time not to overfit the data. In this case, MCR-

ALS models with components ranging from 6 to 18 were tested 25 

and evaluated. 

 
Fig. 1 SVD analysis results of a) microbes and b) lung data sets. 

For each one of these models initial estimations were obtained 

from purest variables in the data. ALS optimization was then 30 

performed using non-negativity constraints for pixels (rows) and 

mass spectra (columns) and normalizing the mass spectra to equal 

length. Finally, the MCR-ALS model using 15 components 

(explained variance of 92.1%) was selected as appropriate. 

Resolved distribution maps (obtained from the refolding of each 35 

column of the resolved C matrix) and their related binned mass 

spectra (ST matrix) for this particular model with 15 components 

are shown in Figure 2. The comparison of these results with those 

given in Figure S1 (results obtained when initial spectral 

estimates were used directly to calculate the C matrix by a single 40 

least-squares step), clearly shows that the application of the ALS 

iterative optimization procedure under constraints gave better 

results (i.e. distribution maps) easier to interpret. 

 

To allow a better explanation of the whole image, some of the 45 

resolved components have been interpreted together. For 

instance, MCR-ALS components 1, 3, 4, 8 and 12 in Figure 2 are 

all related to the image background (scanning support). However, 

they differ on their composition and contribution at each pixel, as 

it can be seen in their individually resolved MS spectra. Thus, a 50 

visual inspection of the resolved distribution maps did allow 

grouping all resolved MCR-ALS components into five groups. 

 

First, MCR-ALS component number 11 is assigned to microbe 

RCH2. Its distribution map is clearly distinguished from the 55 

background agar plate and its related mass spectrum allows 

identifying the principal m/z values related to this particular 

microbe: 621.97, 575.30, 738.41 and 257.01. However, microbe 

MR1 image contribution could not be totally resolved by a single 

component and MCR-ALS components 10 and 13 were also 60 

needed. It can be seen that MCR-ALS component 13 resolves the 

two ends of the microbe image (see component 13 in Figure 2) 

and that its contribution in the central part of the image is 

resolved by MCR-ALS component number 10. The study of the 

corresponding MCR-ALS spectra for these two components 65 

confirmed some differences in their mass spectra. Whereas 

intensity signals at some m/z values were common such as 

523.41, 686.28 or 254.03, other m/z values were present only at 

the ends of the image (598.14, 305.17 and 694.22 for component 

13) or in the central region of the microbe image (242.36, 270.17 70 

and 854.11 for component 10). MCR-ALS resolved component 

number 15 shows a highly located and strong signal between the 

two microbes. Its corresponding resolved mass spectrum shows  

an important peak located at m/z 550.47 and other minor peaks at 

m/z of 522.41, 598.14 and 746.11 which can be assigned to the 75 

interaction between both microbes 27. Another important group of 

MCR-ALS resolved components (2, 5, 6, 7 and 9) can be 

considered to be linked to the agar surface on which the microbes 

lay. Their distribution maps can be assigned to the regions closer 

to the perimeter of one of the  two microbes, indicating their 80 

different metabolic processes  27. This can be confirmed from 

their resolved MS spectra, in which, despite of the fact that most 

of the detected peaks are common for the different components; 

there are only some peaks that appear in a particular component. 

For instance, MCR-ALS resolved component number 5 is closer 85 

to the RCH2 microbe and shows clearly the peak at a m/z value 

of 623.21, while MCR-ALS component number 9, is closer to the 

MR1 microbe and presents an intense peak at a m/z value of 

746.36, which was not present in the other resolved agar group of 

components. In the fifth group of MCR-ALS resolved 90 

components (1, 3, 4, 8 and 12), three clear contributions (1, 3 and 

4) can be associated to the signal contribution from the support 

material used for the NIMS ionization (background). Distribution 

maps show different background contributions to the signal. In 

this case, their resolved mass spectra resulted to be rather similar 95 

(mass spectra peaks at m/z values lower than 500) which means 

that the composition of the background surface was rather 

similar. However, in the distribution maps two additional regions 

could be identified at the bottom and top left corners of the 

image. In the former case (component 12), the region provided a 100 

defined mass spectrum while in the latter (component 8), no 

meaningfully signal was recovered after the treatment. Only 

MCR-ALS component number 10 is still difficult to be assigned 

to one of the previously described group of components, because 

its distribution map was not well defined and its resolved mass 105 
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spectrum showed a very large number of peaks at high m/z 

values.  

 

Exact mass estimations can be used to reduce the number of 

candidate compounds assigned to a particular peak at a certain 5 

mass to charge value. After MCR-ALS analysis using lower 

resolution, it is possible to recover the exact mass spectrum in the 

original m/z scale by a single non-negative least squares step, 

relating the raw spectra matrix,  Dall, and the concentration 

matrix, C resolved by MCR-ALS. In this way, the original 10 

information available in the raw mass spectra is conserved. For 

instance, as example, the exact mass of the major peaks resolved 

for the components related to the couple of microbes were 

523.3732 for the MR1 microbe and 575.3735 for the RCH2 

microbe. These recovered mass to charge values were searched in 15 

MassBank and Lipid Maps online databases considering 

M(neutral), [M+H]+, [M+Na]+ and [M+K]+ ions and allowing a 

mass error lower than 50 ppm. In the case of mass to charge value 

523.3732, six candidate compounds were obtained (see Table S1 

in Supplementary material for the detailed list of candidates). 20 

Neutral, [M+H]+ and [M+K]+ adducts have been obtained but it is 

difficult to decide the most suitable candidate. With respect to 

mass to charge value 575.3735, nine candidate compounds were 

obtained (see Table S2 for more details). In this case, eight of the 

candidates (adduct with postassium) are different isomeric 25 

carotenes: lycopene, -carotene, -carotene, … Unambiguos 

determination of the compound would require more information 

such as fragmentation patterns obtained in a MS/MS experiment. 

Assignation of any other resolved mass peak of any component 

could be done in the same way. 30 

 

 
Fig. 2 MCR-ALS results of microbes data set. Distribution maps after refolding and MS spectra of all resolved components
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Finally, as stated above, the total explained variance by the MCR-

ALS model using 15 components was 92.1% (PCA explained 

variance of 92.5%). When considering a smaller number of 

components the total explained variance was also high (i.e. using 

6 component the variance explained by the model was already 5 

87.2%) but the interpretation of the resolved distribution maps 

and mass spectra was then  more difficult since some of the 

previously described components appeared mixed in a single 

component. The amount of variance explained by each of the 

resolved components of the MCR-ALS model is shown in Table 10 

1.  

 

 

Table 1 Individual and total explained variances by MCR-ALS 

resolved components for the microbes and lung data sets. MCR-15 

ALS components are sorted by the amount of individual 

explained variance in decreasing order. 

 

Microbes data set Lung data set 

Explained variance 

(%) 

Explained variance 

(%) 

1 22.5 58.6 

2 14.0 26.0 

3 13.9 15.4 

4 12.9 9.7 

5 11.1 8.4 

6 10.7 7.8 

7 9.8 4.5 

8 9.3 4.5 

9 8.2 3.6 

10 5.9 3.6 

11 5.5 - 

12 4.5 - 

13 4.4 - 

14 1.3 - 

15 0.9 - 

Sum of Individual 
component 

variances 

134.9 142.1 

Total variance 

(all components) 
92.1 98.9 

PCA explained 
variance 

92.5 99.1 

 

 

It can be seen that the components that explain a higher amount 20 

of variance are mostly related to the background and agar 

regions. For instance, the sum of the data variances explained by 

the background assigned components was 63%, while the data 

variance explained by the microbes regions was only 15% of the 

total. On the other hand, when variances explained by each 25 

individual component were added, the obtained value was 

significantly higher than the total variance explained by the 

MCR-ALS model, and over than 100% (134.9% vs 92.1%). This 

is because MCR-ALS resolved components are not orthogonal 

and they do overlap. This is an important difference with PCA, in 30 

which the orthogonality of the components forces explained 

variances not to overlap between components (their covariance is 

0). However, MCR-ALS component profiles are closer to real 

ones which may have multiple overlapping contributions and MS 

signals.    35 

3.2. Mouse lung data set 

The second example is different and it was tested in order to 

check the reliability of MCR-ALS results. The analyzed data set 

corresponds to the scanning of a lung tissue sample using 

MALDI as desorption and ionization technique and an Orbitrap 40 

MS detector.   

 

The first step in the analysis of raw MSI data is to perform its 

compression. In this example, the size of the data cube after 

binning m/z values is 149x132x6000 (binning in m/z ranges of 45 

0.275 units). After this transformation, the data cube was 

unfolded to a matrix of size 19668x6000, and data baseline 

correction was performed using AsLS, as well as spectra 

normalization. An initial estimation of the total number of 

components is obtained by using the SVD algorithm. In this case, 50 

the number of selected components was significantly smaller than 

in the case of the microbial interaction (see Figure 1b). However, 

as it was mentioned above, it was not possible to decide about the 

total  number of components and, therefore several MCR-ALS 

analysis were carried out in order to decide what number of 55 

components was finally considered according to their possible 

interpretation. In this example, the considered number of 

components ranged between 6 and 12.   

 

The procedure of analysis was the same as before, with initial 60 

estimations obtained from the purest variables in the data set  and 

with ALS optimization under non-negativity constraints for both, 

pixel intensities and mass spectra, and normalization of the later 

(to equal vector length). MCR-ALS model with 10 components 

(explained variance of 98.9%) was finally selected and 65 

distribution maps and binned mass spectra (ST matrix) of the 

resolved components are shown in Figure 3. 

 

In this second example, the interpretation of the MCR-ALS 

resolved components resulted not to be as straightforward as in 70 

previous case. Three different lung regions were distinguished 

based on differences in resolved mass spectra and distribution 

maps. In Figure 3, resolved MCR-ALS components 4, 8 and 9 are 

mostly present at the external membrane of the lung (pleura). 

These MCR-ALS components showed two groups of signals at 75 

m/z values around 650 and 875 which can be assigned to lipids. 

Resolved MCR-ALS components 1 and 2 are related to the 

parenchyma region and explain most of the data variance. 

Resolved mass spectra showed peaks in the m/z range from 400 

to 800. A third group of MCR-ALS components 3, 5, 6 and 10 80 

can be related to the blood vessels present in the lung as it can be 

seen from their distribution maps. Whereas MCR-ALS 

components 3 and 6 can be attributed to thinner blood vessels, 

MCR-ALS components 5 and 10 are probably more related to 

thicker (main) blood vessels.  Their mass spectra showed a 85 

profile with several peaks at the region between 400 and 800 m/z 

which corresponds mostly to different families of biological 

compounds (proteins, lipids …) 23, 42. Other components (for 

instance, such as MCR-ALS component number 8) can also have 

a small contribution in the same blood vessels region. 90 

Finally, it is also interesting to remark the behaviour of MCR-

ALS resolved component number 7, whose distribution map 

spreads around the whole lung region with some pixels at higher 
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concentrations and, also, with an intense spot outside the lung. Its 

MCR-ALS resolved mass spectrum presents a well defined MS 

peak at m/z value of 392.02 (LS obtained exact mass 392.0991). 

After literature searching, this peak can be assigned to tiotropium 

which results to be a bronchodilator in previous studies by 5 

Végvári and Nilsson 43, 44. 

 

Total explained variance by this MCR-ALS model was similar to 

that explained by the PCA model with the same number of 

components (99.1% vs 98.9%). The sum of the variances 10 

explained by each component individually grows up to 142.1%, 

showing that the amount of variance overlapping between 

different MCR-ALS components is considerable. It is worth to 

mention the significant amount of variance explained individually 

by the MCR-ALS component number 3 (almost 60%). As it can 15 

be seen in its resolved distribution map, this component is present 

at a relatively high intensity in almost the whole lung tissue. 

 

 
Fig. 3 MCR-ALS results of lung data set. Distribution maps after refolding and MS spectra of all resolved components. 20 

Conclusions 

The combination of Mass Spectrometry Imaging (MSI) and 

advanced data analysis tools such as Multivariate Curve 

Resolution has allowed the extraction of valuable information 

from the two highly complex massive data sets investigated in 25 

this work. Such a combination is proposed to be used in –omics 

studies in which the spatial information about the location of a 

target molecule is required as well as for the detection and/or 

confirmation of possible biomarkers. Multivariate Curve 

Resolution application to MSI data is rather simple and results are   30 

easy to interpret, providing the distribution maps and mass 

spectra of the individual resolved components present in the 

analyzed samples, from which qualitative and semi quantitative 

relative information about their distribution over  different 

sections of the scanned surface can be further recovered. More 35 

work is needed however, to overcome some of the drawbacks still 

present in this type of analysis such as the decision about the total 

number of components to be finally included in the analysis, and 

the computational limitations due to the huge size of Mass 

Spectrometry Imaging data sets at full resolution. 40 
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Application of MCR-ALS to Mass Spectrometry Imaging data provides spatial distribution and MS spectra of 
pure species allowing compound identification.  
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