Analyst Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/analyst

Synthesis of water-soluble Ag₂Se QDs as a novel resonance Rayleigh scattering sensor for highly sensitive and selective conA detection

Analyst

Shuguang Yan,^{ab} Lichun Zhang,^a Yurong Tang,^a and Yi Lv^{a*}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

Ag₂Se quantum dots (QDs) have attracted a lot of interests due to their potential applications in biosensing and bioimaging. A strategy is presented that involves coupling selenium powder reduction with the binding of silver ions, and thioglycollic acid (TGA) and glycine as stabilizer to obtain ultrasmall Ag₂Se QDs at 85 °C in aqueous solution. This strategy avoids high temperatures, high ¹⁰ pressures and organic solvents so that water-soluble 3 nm Ag₂Se QDs can be directly obtained. The conjugation of conA to TGA stabilized Ag₂Se QDs by hydrogen bonds leads to the adsorption of conA to Ag₂Se QDs and forms the aggregation and leads to the generation of resonance Rayleigh scattering (RRS) as a readout signal for the sensing events. The reaction mechanism of Ag₂Se QDs RRS enhancement is studied in this work. The resulting RRS sensor enables the detection of conA with limit

15 of detection reaching 0.08 μ g/mL concentration in a wide linear range from 0.27 μ g/mL to 35 μ g/mL. The recovery of spiked conA in human serum samples ranges from 94% to 106%. The relative standard deviation (RSD) for eleven replicate detections is 3.6%. Our results correlate many important experimental observations and will fuel the further growth of this field.

Introduction

²⁰ Semiconductor nanocrystals (quantum dots, QDs) with fantastic optical properties, such as broad excitation, size-dependent photoluminescence, unusual photochemical stability, and single excitation/multiple emission, have attracted much attention in biosensing¹. Besides biocompatibility and nontoxicity, small size ²⁵ is also important for labeling nanomaterials. In general, existing

QDs are close to or larger than most biological macromolecules in size². Thus, use of QDs in biological labeling may be limited due to their large size, which would interfere with both the recognition between QD-labeled bioprobes and target molecules because of ³⁰ steric hindrance and the movement of the bioprobes³. Therefore, it is still a great challenge to construct new QDs with less toxicity

and small size for bioimaging and biodetection⁴. Ag₂Se QDs, without toxic heavy metal and usually smaller than

Ag₂Se QDS, without toxic neavy ineral and usually smaller main 3 nm, are one kind of the most important NIR QDs^{5,6}. The ³⁵ ultrasmall size makes Ag₂Se QDs have enormous surface area-tovolume ratios, which may be highly susceptible to heterogeneous redox chemistry with the surrounding environment. Such properties make Ag₂Se QDs suitable for surface chemistry research, biosensing and bioanalysis. It has been reported that ⁴⁰ ultrasmall and low cytotoxic of Ag₂Se QDs has been synthesized. For instance, Pang groups^{7,8} reported the organic reagents synthetic route with TOPO (trioctylphosphine oxide) and TOP (trioctylphosphine) as stabilizing reagents. Generally, with water soluble thiols as transferring reagents, Ag₂Se QDs are transferred ⁴⁵ to water soluble semiconductor nanoparticles. It is difficult to efficiently maintain the Ag₂Se QDs fluorescence quantum yields on the transfer from the organic soluble Ag₂Se QDs to water soluble ones⁹. Besides, they are relatively complicated and require additional high cost instruments. Therefore, it is great significant ⁵⁰ to develop a fast and simple method for synthesis water soluble Ag₂Se QDs.

Concanavalin A (ConA), a legume lectin from Jack beans, can specifically bind to the glucose moiety of cell membrane glycoprotein¹⁰, thereby initiating T-cell activation¹¹, cell ⁵⁵ mitogenesis¹², agglutination and apoptosis¹³. Many approaches have been developed to detect ConA because it is an important target for studying the carbohydrate-protein interactions^{14,15}. Recent efforts have led to the development of carbohydrate chips by either covalent or noncovalent immobilization strategies have ⁶⁰ successfully fabricated a glycan chip by immobilizing various carbohydrates on nitrocellulose or nitrocellulose-coated glass slides, which may be used for high-throughput analysis of carbohydrate-protein interactions¹⁶. However, the process is complex and time-wasting. Therefore, developing a fast and ⁶⁵ simple method for homogeneous detection of ConA is of great significance.

Resonance Rayleigh scattering (RRS) has been known for its sensitivity and simplicity as an analytical technique developed in recent years¹⁷. This technique has been applied successfully to ⁷⁰ study macromolecules^{18,19} and the determination of some metal ions²⁰, nonmetals²¹, physicochemical constants²². RRS is very sensitive to the interaction caused by weak binding forces such as intermolecular electrostatic attraction, hydrogen bonding, hydrophobic interaction, and aggregation interaction of biological ⁷⁵ macromolecules²³. The spectral characteristics and scattering

PAPER

intensity are strongly influenced by the molecular size, shape, conformation, and interfacial properties, which further provide favorable new information for the study of the interaction of biological macromolecules and the molecular recognition²⁴.

Herein we demonstrate a new method that synthesis Ag₂Se QD and a new concept that RRS between Ag₂Se QD and conA. Accompanied by an increase in the RRS of Ag₂Se QDs can be used to develop a biosensor for the detection of target biomolecules with high selectivity and sensitivity. In this RRS process, Ag₂Se QD sand conA display weak RRS. The complex is formed between Ag₂Se QDs and conA by intermolecular hydrogen bonding, and then leads to change of the structure of conA and enhance of the RRS of the Ag₂Se QDs and conA (scheme 1). It is the first time that ConA is detected by means of 15 RRS sensor based on Ag₂Se QDs. This scheme would open a new opportunity for design of more novel RRS-based sensing strategies for other biomolecules.

Scheme 1 Schematic illustration for fabricating TGA and glycine ²⁰ modified Ag2Se QDs for RRS detection of conA

Experimental Section

Reagents

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 28

29

30

31

32

33

34 35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 AgNO₃ and TGA were purchased from Shanghai Chemicals Reagent Co., Shanghai. Se powder, NaBH₄ and glycine were ²⁵ purchased from Tianjin kemiou Fine Chemical Co., Tianjin. ConA was purchased from sigma-Aldrich (shanghai) trading Co. Led. Sodium citrate buffer solution (SCBS) was used to control the acidity of the aqueous medium. All the reagents were used of analytical regent grade without further purification and deionized ³⁰ water with conductivity of 18.2 MΩcm⁻¹ was used in this experiment from a water purification system (ULUPURE, Chengdu, China).

Instrumentations

Transmission electron microscopy (TEM) of TGA-stabilized ³⁵ Ag₂Se QDs were carried out on a Tecnai G2 F20 S-TWIN transmission electron microscope at an accelerating voltage of 200 kV (FEI Co., America). X-ray diffractometer (XRD) patterns of the samples were recorded using X' Pert Pro XRD (Philips) with Co K α radiation (λ 1.79 Å). X-ray photoelectron ⁴⁰ spectroscopy (XPS) was performed with a XSAM 800 electron spectrometer (Kratos) using monochromatic Al Ka radiation for the analysis of the surface composition and chemical states of the product. The UV-vis spectra and RRS spectra were obtained with a U-2910 UV-vis spectrophotometer and an F-7000 fluorescence ⁴⁵ spectrophotometer (Hitachi Co., Tokyo, Japan).Fourier Transform Infrared spectra (FTIR) from 4000 to 400 cm⁻¹ was recorded in KBr discs on a Nicolet IS10 FTIR spectrometer (Thermo Inc., America) for evaluating the encapsulation of Ag_2Se QDs.

Preparation of TGA-stabilizedAg₂Se QDs

⁵⁰ Aqueous colloids TGA-Ag₂Se QDs solution was prepared at low temperature according to the reference^{25,26}. It was described in detail as follows: Under N₂ atmosphere, deionized water (10 mL) was added to Se powder (0.0078 g) and excessive NaBH₄ under magnetic stirring at room temperature. After about 0.5 h, the ⁵⁵ colorless solution of NaHSe was prepared.

0.0680 g AgNO₃ was dissolved in 150 mL of deionized water and 110 μ L of TGA and 0.0375 g glycine as stabilizer was added under stirring, followed by adjusting to pH = 11 by dropwising addition of 1.0 mol/L NaOH solution. The solution was placed in ⁶⁰ a tree-necked flask and deaerated by N₂ bubbling for about 30 min. Under magnetic stirring, H₂Se gas generated by the reaction of the solution of NaHSe with diluted HCl (1mol/L) was passed through the oxygen-free original solution together with a slow nitrogen flow for 30 min. Ag₂Se QDs precursors were formed at ⁶⁵ this stage. The molar ratio of Se/Ag+/TGA/glycine was fixed at 1:4:16:5. Then the resulting mixture was subjected to reflux at 85°C for 1 h under oxygen-free condition with condenser. TGA-Ag₂Se QDs were obtained. The concentration of TGA-Ag₂Se QDs was 6.67×10⁻³ mol/L (determined by the HSe⁻ concentration)²⁷.

70 Experimental procedure

150 μL above prepared TGA-Ag₂Se QDs, 300 μL SCBS and appropriate amounts of conA were added into a 2 mL colorimetric tube, then diluted with deionized water to the mark and mixed thoroughly with gentle shake. After incubated for 10 min, the 75 RRS and UV-vis spectra of solution were examined.

Results and Discussion

The growth process of the Ag₂Se QDs

The strategic point in preparing the Ag₂Se QDs was to obtain Ag and Se precursor in the appropriate valence states. In previous ⁸⁰ reports²⁸, Se powder was reduced to low-valence selenium by NaBH₄, which can react with Cd²⁺ to form fluorescent CdSe QDs. This process of Se powder reduction from Se to HSe⁻ was using NaBH₄, as described in scheme 1. Besides the Se precursor, preparing an appropriate form of Ag precursor was of importance ⁸⁵ for preparing the monodispersed Ag₂Se QDs. Glycine and TGA, which can form an Ag⁺-glycine-TGA complex²⁹, were chosen as the stabilizers for Ag₂Se QDs. The freshly prepared Se precursors were injected into the solution of the fresh Ag⁺-glycine-TGA complex precursors, and the mixture was stirred for 1h at 85°C, ⁹⁰ obtaining Ag₂Se QDs.

Characterization of TGA-stabilized Ag₂Se QDs

TEM images displayed that the products obtained were spherical particles with good size distributions (Fig. 1A). The nanocrystals with sizes of 3 nm (100 particles measured in each image) were ⁹⁵ prepared at the reaction time of 1 h. XRD pattern (Fig.2) indicated that the diffraction peaks of the products matched with orthorhombic Ag₂Se (JCPDS Card No. 24-1041). The broadened peaks may be attributed to the low crystallinity of small-sized particles. XPS was used to analyze the surface composition of the

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16 17

18

19

20 21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 10

Analyst

as-prepared products. The survey-scan spectra of the Ag 3d and Se 3d are shown in Fig. 3. The high-resolution XPS spectra of Ag 3d and Se 3d were referenced to the C 1s of aliphatic carbon at 284.9 eV. The peaks at 367.8 and 373.8 eV correspond to Ag $3d_{5/2}$ s and $3d_{3/2}$, the peak at 53.8 eV corresponds to Se 3d of Ag₂Se QDs and the peak at 161.4 eV corresponds to S 2p of Ag₂S. The binding energy obtained from XPS analysis is consistent with a previous report³⁰. The above results indicated that the products prepared were indeed TGA stabilized Ag₂Se QDs.

Fig. 3 XPS pattern of Ag₂Se QDs

The interaction between Ag₂Se QDs and conA and reasons for the enhancement of RRS

The RRS spectra of Ag₂Se QDs, conA and the Ag₂Se QDs-conA complex were shown in Fig.4. The experimental results showed that the RRS intensities of TGA-Ag₂Se QDs and conA were very weak. However, when TGA-Ag₂Se QDs was mixed with trace ²⁵ amounts of conA, the RRS intensity was enhanced greatly and a new RRS spectrum appeared. The maximum RRS peak was observed at 380 nm. RRS increased with an increase in concentration of conA in a certain range.

As for the enhancement mechanism, in theory, RRS enhancing ³⁰ in this system could occur by resonance enhanced Rayleigh scattering effect, increase of the molecular volume and change of

Fig. 4 Validation of the use of Ag₂Se QDs as probes for the detection of Con A. Ag₂Se QDs 5×10^{-4} mol/L; pH=6.0; SCBS buffer 300µL.

- ³⁵ **Fig. 5** UV-vis spectra of (a) Ag₂Se QDs, (b) conA and (c) Ag₂Se QDs in the presence of conA (Ag₂Se QDs as reference). k_1 : Ag₂Se QDs (5×10⁴ mol/L), k_2 : conA (conA, 35 µg/mL), Ag₂Se QDs, 5×10⁻⁴ mol/L; SCBS buffer 300µL, pH=6.0, conA, 35 µg/mL
- ⁴⁰ the conformation of the proteins. Here, several observations proved that RRS occurs in this enhancing process: (1) RRS was an absorption re-scattering process produced by the resonance between the Rayleigh scattering and the light absorption with the same frequency when the wavelength of Rayleigh scattering was ⁴⁵ located at its absorption band. Therefore, RRS spectrum was closely related to the absorption spectrum. From the comparison of RRS spectrum of the Ag₂Se QDs-conA complex with its absorption spectrum, from Fig. 5 it can be seen that the RRS
- peaks at 380 nm were close to the absorption bound, which would ⁵⁰ result in the resonance enhanced scattering³¹. (2) It is well known that the increase of the volume of the scattering molecule was advantageous to the enhancement of scattering intensity. It was clear that conA was negatively charged owing to the amino acid
- residue skeleton of conA (pIconA=5.7) while the surface of TGA-55 Ag₂Se QDs charged negatively in the weak acidic buffer solution (pH=6). Besides, added electrolytes into the Ag₂Se QDs-conA solution, the intensity of RRS did not change obviously, which further suggested that hydrogen bond is very important in the interaction between Ag₂Se QDs and conA. The most important 60 point, though the Fig.6 it was found that The -NH₂ (3388 cm⁻¹) of conA changed obviously. So it was speculated that conA molecules bind onto the surface of TGA-Ag₂Se QDs via the intermolecular hydrogen bonds³², which resulted in the increase of the diameter up from about 3 nm to about 8 nm. Thus, the 65 increase of the molecular volume was one of the reasons for the RRS enhancements. It was proved by the TEM image of Fig. 1B. The way how the conA attached to Ag₂Se QDs was shown in scheme 2. (3) Proteins are stable spherical and small in the aqueous, so the scattering of the proteins are weak, however, 70 when the carbonyl (C=O) of the peptide chain of proteins bind with -COO⁻ on the surface of a Ag₂Se QDs by hydrogen bonds, the original regular and repeating secondary structure of the

protein held together by a peptide chain and a hydrogen bond was destroyed and the structure became extended and loose, which was similar to the denaturing of the protein³³. This can enhance the scattering.

5 Optimization of general procedure

The effect of Ag₂Se QDs concentration on the RRS intensity of the system was investigated. The system had the highest sensitivity and the system was stable when the concentration of Ag₂Se QDs was $4-7 \times 10^{-4}$ mol/L for the system (Fig.7a). ¹⁰ Therefore, the concentration of Ag₂Se QDs 5×10^{-4} mol/L was suitable. The influence of buffer solution on the RRS intensity of the system was investigated. Such as SCBS, Tris-HCl, sodium acetate, and PBS on the reaction system was studied. The results indicated that SCBS was the best buffer solution of the reaction 15 system. Therefore, in this case, we used the SCBS of pH 5.6 and 6.6 to investigate the effect of pH on the RRS intensity (Fig.7b). The SCBS (0.1 M) buffer solution 300 µL (Fig.7c) of pH 6.0 was then chosen as reaction acidity for the system. We investigated the factors of reaction time influencing the RRS of the system. The 20 RRS of Ag₂Se QDs increased quickly in the presence of conA, and reached stability in 10 min. Therefore, 10 min was chosen for further experiments (Fig.7d). The salt effect on the system was also investigated. The intensity of RRS did not change obviously when some NaCl was added (the figure was not showed), which 25 suggested that electrostatic attraction is not very important in the interaction between Ag₂Se QDs and conA.

Fig. 6 FTIR spectra of Ag_2Se QDs, conA, complex of Ag_2Se QDs and $_{30}$ conA. a: Ag_2Se QDs; b: conA; c: complex of Ag_2Se QDs and conA.

Scheme 2 The structure of Ag_2Se QDs-conA and the model of the hydrogen bonds between CdSe QDs-conA.

35 The sensitivity and selectivity of Ag₂Se QDs to conA

Under the optimum conditions, the enhanced RRS intensities of the system are determined at the maximum scattering wavelength. As indicated in Fig. 4, the RRS of the Ag_2Se QDs is sensitive to conA and linearly increase with the concentration of conA from

Fig.7 a: The effect of Ag₂Se QDs concentration on RRS intensities. SCBS buffer 300µL; pH=6.0; conA 35 µg/mL. b: The effect of pH on RRS intensities. Ag₂Se QDs 5×10^4 mol/L; SCBS buffer 300 µL; conA, 35 µg/mL. c: The effect of amount of SCBS on RRS intensities. Ag₂Se QDs, 455×10^4 mol/L; pH=6.0, conA, 35μ g/mL. d: The time-dependent RRS of the system after addition of conA.Ag₂Se QDs, 5×10^4 mol/L; pH=6.0; SCBS buffer 300 µL; conA35 µg/mL.

0.27 µg/mL to 35 µg/mL and the limit of detection is 0.08 µg/mL. ⁵⁰ The linear regression equation is I = 86 + 118C (where C is the concentration of conA, µg/mL). The relative standard deviation (RSD) for eleven replicate detections is 3.6%. It can be seen that this method has a low detection limit and will be a valuable tool for the determination of conA.

Fig. 8 Selectivity of Ag₂Se QDs probe towards conA. Ag₂Se QDs, 5×10^{-4} mol/L; pH=6.0; SCBS buffer 300µL; conA35 µg/mL.The concentrations of all samples were 5mmol/L.

⁶⁰ Further study on the RRS response of the Ag₂Se QDs to various analytes shows good selectivity of the present assay for conA. As shown in Fig.8, only conA cause a significant increase in relative RRS intensity of Ag₂Se QDs, while other species have no evident effect on the RRS intensities. The results demonstrate that ⁶⁵ physiological levels of cation, anion, amino acid and small biomolecules do not interfere with the detection. Specially, large molecules such as BSA and HSA level of 5 mmol/L do not interfere with the detection, conA, BSA and HSA have negative charges, besides, isoelectric point of ⁷⁰ BSA and HSA is lower than conA. Therefore, there is a strong electrostatic repulsion between Ag₂Se QDs and BSA/HSA and the electrostatic repulsion may be stronger than other weak binding forces such as hydrogen bonding, hydrophobic interaction, and

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40 41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 Application of the Ag₂Se QDs to the detection of conA in human serum samples

The potential application of the proposed bioassay is further s demonstrated by detecting conA in human serum samples. The serum samples are ultrafiltrated to eliminate the RRS background of serum. The quantitative recoveries (94-106%) of spiked conA also indicate no interference from such ultrafiltrated serum samples (Table 1). The above results demonstrate that the 10 developed biosensor offers great potential for specific detection of conA in biological fluids.

Table 1 Results of recoveries of heparin in serum samples

sample	Found	Added	Total found	Recovery
	(µg/mL)	(µg/mL, n =5)	$(\mu g/mL, n = 5)$	%
1	0	15	14.06	94
2	0	25	25.06	100
3	0	35	37.28	106

Conclusions

In summary, we have coupled Se powder reduction with the binding of silver ions and glycine to successfully realize the synthesis of small size (3 nm), less cytotoxic, and water-dispersible Ag₂Se QDs at 85 °C. A RRS bioassay for conA determination is established via a strategy of the target involved ²⁰ assembly of the prepared Ag₂Se QDs. This method exhibits favorable in a range and satisfactory selectivity and successfully applied and conA determination in human serum samples. The Ag₂Se QDs will be used as excellent scaffolds for the foundation of RRS-based protocols to directly detect target molecules.

25 Acknowledgment

We appreciate the National Natural Science Foundation of China (Nos. 21375089 and 21105068) for financial support. The authors also would like to show gratitude for Dr. Shanlin Wang of Analytical & Testing Center at Sichuan University for her ³⁰ assistance in the TEM analysis.

Notes and references

^a Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China. Fax & Tel: 86 28 8541 2798; E-mail: <u>lvy@scu.edu.cn</u>.

- ³⁵ ^b College of Energy Resources, Chengdu University of Technology, Chengdu, sichuan 610059, China.
 - The authors declare no competing financial interest.
 - R. Freeman, R. Gill, I. Shweky, M. Kotler, U. Banin and I. Willner, Angew. Chem. Int. Ed., 2009, 48, 309-313
- 40 2. Y. P. Gu, R. Cui, Z. L. Zhang, Z. X.Xie and D. W. Pang, J. Am. Chem. Soc., 2012, 134, 79-82.
 - A. M.Smith, H.Duan, A. M.Mohs and S. Nie, Adv. Drug Delivery Rev., 2008, 60, 1226-1240
 - 4. A. M.Smith and S.Nie, Nat. Biotechnol., 2009, 27, 732-733
- 45 5. C. N. Zhu, P. Jiang, Z. L. Zhang, D. L. Zhu, Z. Q. Tian and D. W. Pang, ACS Appl. Mater. Interfaces, 2013, 5, 1186-1189.
 - B. H. Dong, C.Y. Li, G. C. Chen, Y. J. Zhang, Y. Zhang, M. J. Deng and Q. B. Wang, Chem. Mater., 2013, 25, 2503-2509.
 - C. N. Zhu, P. Jiang, Z. L. Zhang, D. L. Zhu, Z. Q. Tian and D. W. Pang, ACS Appl. Mater. Interfaces, 2013, 5, 1186-1189.
- Y. P. Gu, R. Cui, Z. L. Zhang, Z. X. Xie and D. W. Pang, J. Am. Chem.Soc., 2012, 134, 79-82.

- 9. J. M. Klostranec and W. C. W. Chan, Adv. Mater., 2006, 18, 1953-1964.
- 55 10. K.E. Boubbou, C.Gruden and X.Huang, J.Am. Chem. Soc., 2007, 129, 13392-13393.
 - Q. S. Chen, W. L. Wei and J. M. Lin, Biosens. Bioelectron., 2011, 26, 4497-4502.
 - X. Z. Wang, T. Hou, W. Li, M. Q. Chen and F. Li, Sensors and Actuators B, 2013, 185, 105-109.
 - A. R. M. R. Amin, R. K. Paul, V. S. Thakur and M. L. Agarwal, Cancer Res., 2007, 67, 5617-5621.
- C. C. Huang, C. T. Chen, Y. C. Shiang, Z. H. Lin, and H. T. Chang, Anal. Chem., 2009, 81, 875-882.
- 65 15. C. F. Huang, G. H. Yao, R. P. Liang and J. D. Qiu, Biosens. Bioelectron., 2013, 50, 305-310.
 - 16. S. S. Banerjee, D. H. Chen, Chem. Mater., 2007, 19, 3667-3672.
 - 17. Y. Shi, H. Q. Luo and N. B. Li, Chem. Commun., 2013, 49, 6209-6211.
- 70 18. W. W. Song, N. B. Li and H. Q. Luo, Anal.Biochem., 2012, 422, 1-6.
 - Y. R. Tang, Y. Zhang, Y. Y. Su and Y. Lv, Talanta, 2013, 115, 830-836.
 - G. L. Liu, D. Q. Feng, T. F. Chen, D. Li and W. J. Zheng, J. Mater. Chem., 2012, 22, 20885-20888.
- 75 21. Y. G. Wu, S. S. Zhan, H. B. Xing, L. He, L. R. Xu and P. Zhou, Nanoscale, 2012, 4, 6841-6849.
 - 22. Q. Y. Xu, Z. F. Liu, X. L. Hu, L. Kong and S. P. Liu, Anal. Chim. Acta, 2011, **707**, 114-120.
- 23. Y. Shi, H. Q. Luo and N. B. Li, Chem. Commun., 2013, 49, 6209-6211.
- P. P. Li, S. P. Liu, S. G. Yan, X. Q. Fan and Y. Q. He, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2011, 392, 7-15.
- 25. Y. F. Liu, J. S. Yu, J. Colloid Interface Sci., 2010, 351, 1-9.
- 26. Y. P. Gu, R. Cui, Z. L. Zhang, Z. X. Xie and D. W. Pang, J. Am. 55 Chem. Soc., 2012, **134**, 79-82.
- 27. D.W. Deng, J. S. Yu and Y. Pan, J. Colloid Interface Sci., 2006, 299, 225-232.
- H. Zhang, Z. Zhou, B. Yang and M. Gao, J. Phys. Chem. B, 2003, 107, 8-13.
- 90 29. T. Shoeib, K. W. M. Siu, A. C. Hopkinson, J. Phys. Chem. A, 2002, 106, 6121-6128.
- J. P. Ge, S.Xu, L. P. Liu, Y. D. Li, Chem. Eur. J., 2006, 12, 3672-3677.
- 31. J. J. Peng, S. P. Liu, L. Wang, Z. W. Liu and Y. Q. He, J. Colloid Interface Sci., 2009, **338**, 578-583.
- 32. Q. L. Yang, Q.M. Lu, Z. F. Liu and S. P. Liu, Anal. Chim. Acta, 2009, 632, 115-121.
- 33. S. P. Liu, Z. Yang, Z. F. Liu and L. Kong, Anal. Biochem., 2006, **353**, 108-116.

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry [year]

Schematic illustration for fabricating TGA and glycine modified Ag₂Se QDs for RRS detection of conA