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Discrimination of nodular lesions in cirrhotic liver is a challenge in the histopathologic diagnostics. For 

this reason, there is an urgent need for new detection methods to improve the accuracy of the diagnosis of 

liver cancer. Raman imaging allows to determine the spatial distribution of a variety of molecules in cells 

or tissue label-free and to correlate this molecular information with the morphological structures at the 10 

same sample location. This study reports investigations of two liver cancer cell lines, - HepG2 and SK-

Hep1, - as well as HepG2 cells in different cellular growth phases using Raman micro-spectroscopic 

imaging. Spectral data of all cells were recorded as a color-coded image and subsequentially analyzed by 

hierarchical cluster and principal component analysis. A support vector machine-based classification 

algorithm reliably predicts previously unknown cancer cells and cell cycle phases. By including 15 

selectively the Raman spectra of the cytoplasmatic lipids in the classifier, the accuracy has been 

improved. The main spectral differences that were found in the comparative analysis can be attributed to a 

higher expression of unsaturated fatty acids in the hepatocellular carcinoma cells and during the 

proliferation phase. This corresponds to the already examined de novo lipogenesis in cells of liver cancer.

1. Introduction 20 

A range of optical techniques such as infrared, fluorescence, 

Raman and CARS spectroscopy have been widely used in recent 

years and proven to be reliable methods for cancer diagnostics.1–9 

Raman microscopic imaging is an innovative technology, which 

combines the spatial resolution of microscopic imaging with the 25 

highly specific spectroscopic information of classical Raman 

spectroscopy. It allows to excite the vibrational and rotational 

states of molecules in biological samples in a label-free manner at 

submicron resolution. Hence, the biochemical composition of the 

sample can be examined at the subcellular level. Raman spectra 30 

of a biological sample are complex and result in a biochemical 

fingerprint, containing information about the chemical structure 

of proteins, nucleic acids, lipids and carbohydrates. Changes in 

these chemical structures in cells detected by Raman imaging can 

therefore help to differentiate and classify malignant tumors. For 35 

the evaluation of the spectral information, different multivariate 

unsupervised (e.g. clustering) and supervised (e.g. classification) 

methods have been employed.1,10–32 Raman imaging has already 

successfully been applied for the identification of cell lines from 

the same and different origins,1,10–17,28–31 stem cells,18,19,32 the 40 

proliferative status of cells20 and preliminary stages of cell 

apoptosis.21–23 

 The histopathological evaluation of biopsies is a crucial step to 

distinguish unclear nodular lesions in cirrhotic liver. With an 

occurrence rate of more than 85%, the hepatocellular carcinoma 45 

(HCC) is the most prevalent malignant primary liver tumor 

worldwide.33 This second most lethal cancer with a 5-year 

survival rate of 8.9%34 occurs with great frequency in Asia and 

Africa and is increasingly found in Europe. By an earlier 

diagnosis and an appropriate treatment the survival rate of 50 

patients with this malignant tumor can be improved. Despite a 

number of common staining techniques, morphological features 

have not proven to be clinically significant for HCC diagnosis35. 

Therefore, it is often difficult for the pathologist to diagnose the 

underlying disease just by cytohistologic criteria according to the 55 

International Consensus Group for Hepatocellular Neoplasia. 

Consequently, new detection methods are needed to reinforce the 

diagnosis of HCC. 

 In order to support the diagnosis of liver cancer, the aim of this 

research study was to characterize and differentiate two types of 60 

liver cancer cells by Raman spectroscopy and to prove its 

reproducibility. As an in vitro model system the HepG2 cell line 

(human cell line that was derived from liver tissue of a patient 

with well differentiated hepatocellular carcinoma) and the SK-

Hep1 cell line (received from ascitic fluid of a patient with 65 

adenocarcinoma of the liver) were chosen for investigations by 

Raman imaging. Furthermore, we determined the Raman spectra 

of hepatocellular carcinoma cells (HepG2) in the exponential and 

plateau phase of cell growth. These two approaches were 

performed to detect Raman signatures and to generate 70 

classification models for two different types of liver cancer cells 

and also metabolic changes in liver cancer cells during a high cell 

division rate. The cell type and the proliferation behaviour are 

essential distinguishing features of malignant tumors. The results 

suggest that Raman spectroscopy is a particularly suitable method 75 

to easily identify molecular changes in liver cancer. 
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2. Materials and methods 

2.1 Cell cultivation 

HepG2 and SK-Hep1 cells were cultivated in RPMI 1640 liquid 

medium with 20 mM HEPES, stable glutamine (FG 1235; 

Biochrom AG, Germany), 10% fetal bovine serum (DE14-801F; 5 

Lonza, Belgium) and 1% penicillin-streptomycin (15140; 

Gibco®, Life Technologies GmbH, Germany). Both cell types 

were maintained in a 5% CO2 incubator at 37°C in cell culture 

flasks (658170; Greiner Bio-One GmbH, Germany). Every two 

days the medium was changed until approximately 50% 10 

confluence was reached. After that the cells were detached with 

Trypsin/EDTA solution (L2143; Biochrom AG, Germany) and 

transferred onto CaF2 slides at a concentration of 60000 cells/ml. 

The Raman measurements were performed on CaF2 slides in 

order to avoid autofluorescence background from  regular glass 15 

slides. 

2.2 Cell preparation of HepG2 and SK-Hep1 

HepG2 and SK-Hep1 cells were incubated for 24 hours, washed 

twice with phosphate buffered saline (PBS) (0689; Lonza, 

Belgium) and fixed with 10% neutral buffered formalin solution 20 

(HT501128; Sigma-Aldrich, USA) for 20 minutes. One more 

washing step was performed after the fixation process. Finally, 

the slides were stored in PBS buffer at +4°C until the Raman 

measurements were done.  

2.3 Preparation of exponential and plateau growth phase of 25 

HepG2 cells 

To measure HepG2 cells with Raman spectroscopy in the 

exponential phase, the cells were cultivated in fresh medium for 

24h on CaF2 slides. In order to achieve maximum cell 

proliferation, this cultivation process was performed until a 30 

monolayer culture with a confluence of 50% was reached. For the 

Raman measurement of HepG2 cells in the plateau phase, the 

monolayer culture was cultivated for 96h until 100% confluence 

was obtained. Throughout the period of cell cultivation the 

medium was not exchanged, which leads to an inadequate 35 

nutrition of the cells and thus to a growth arrest (plateau phase). 

Afterwards, the samples were fixed with neutral buffered 

formalin solution for 20 minutes. Subsequently a washing step 

was performed and the samples were stored in PBS buffer at 

+4°C.  40 

2.4 Raman image acquisition 

Raman spectra were acquired using a confocal Raman 

microscope (WITec, Ulm, Germany, Model CRM 2000) 

equipped with an air-cooled argon ion laser (LASOS 

Lasertechnik GmbH, Jena, Germany) with a laser power of ca. 5 - 45 

10 mW at the sample (grating 600 g/mm, BLZ=500 nm). An 

excitation wavelength of 488 nm was chose for our 

measurements because Raman scattering intensity is directly 

proportional to λ-4 (λ = laser wavelength), and therefore a blue 

laser with a shorter wavelength of 488 nm results in an increase 50 

in scattering intensity in compare with the longer wavelength. 

The raw Raman spectra acquired with 488 nm laser (Fig. 1) 

showed high signal to noise ratio with an acceptable fluorescent 

signal. The laser was coupled to a microscope by a single mode 

optical fiber. The Raman scattered light was detected by a back-  55 

 

Fig. 1 Raw Raman spectra in the spectral region 4200-200 cm-1

of one HepG2 cells measured in water before any preprocessing 

steps. 

illuminated deep-depletion CCD camera operating at -65°C. The 

system was pre-calibrated to the  520.7 cm-1 spectral line of 

silicon and the laser light was focused on the sample with a 60x/-

NA=1.0 water immersion objective (Nikon NIR Apo, Tokyo, 

Japan). All samples were prepared in four repeats and the Raman 60 

measurements were performed in PBS solution. Raman spectral 

images of the cells were detected in the spectral region of 4100-

200 cm-1 with a step size of 0.5 µm and an integration time for 

each spectrum of 1 second. Subsequently after the measurement 

the cells were stained with haematoxylin and eosin (HE) for 65 

morphological confirmation using a classical HE-staining 

protocol. 

2.5 Data analysis 

For the statistical analysis the complete spectral data set of all 

cells, which were recorded by the WITec software (WITec 70 

GmbH, Germany), were imported and calculated with the 

software packages CytoSpec (CytoSpec Inc., USA), OPUS 

(Bruker Optik GmbH, Germany) and MatLab (MathWorks Inc., 

USA) including the PLS_Toolbox (Eigenvector Research Inc., 

USA). 75 

 For preprocessing, baseline correction and vector 

normalization in the spectral region of 3100-600 cm-1 were 

chosen36, which have been demonstrated to be appropriate and 

are routinously used for Raman data analysis.12,37,38 A 

hierarchical cluster analysis (HCA), which was calculated with a 80 

Euclidean distance measure, clustered with the Ward´s algorithm 

and filtered with the Generalized Least Squares Weighting, was 

applied to the complete data sat of the cell lines, in order to split 

and identify new groups with a high level of similarity in the data 

(inter-individual cell variability). The relations between the data 85 

were illustrated in a dendrogram. For additional visualization of 

the data set, as a Raman image, the CH stretching intensities of 

the detected spectra at each measuring point were plotted. These 

color-coded Raman intensity maps were correlated with the 

underlying cytological compartments (cell organelles) and the 90 

differences in the data were displayed using the HCA. The HCA 

is grouping similar spectral information into different clusters, 

showing the spatial distribution of these clustered spectra 

corresponding to components of the cell (e.g. cell nucleus, 

cytoplasm, lipid storage organelles) as a Raman image. All 95 

spectra of each cell were grouped into five clusters including the 

Page 2 of 18Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



 

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00  |  3 

spectra of nucleus, two different components of cytoplasm,  

cytoplasmatic lipids and background spectra (intra-individual cell 

variability). The surrounding cluster of the cell background was 

removed from the data set. An average spectrum of each cell 

cluster and a difference spectrum were calculated with the OPUS 5 

software. Finally, the averaged data were imported into MatLab. 

 Principal component analysis (PCA) was applied to  

normalized and mean-centred Raman spectra. More than 99% of 

the data variance was represented by the first 20 principal 

components (PCs) and only noise was found in the higher PCs. In 10 

order to recognize a predictive pattern in the spectra, the first 20 

PCs of a training data set were used to develop a supervised 

learning model using the support vector machine (SVM) 

algorithm, which is capable to classify future samples of an 

unknown validation set. Besides other classification algorithms, 15 

the SVM have already been successfully applied in various 

Raman imaging studies12,25,28,38. To estimate the performance of 

this predictive classification model a 10-fold cross-validation was 

performed. 

3. Results 20 

3.1 Unsupervised analysis and classification of HepG2 and 

SK-Hep1 cells 

By analysis of the Raman image data sets, acquired from 100 

cells of HepG2 and SK-Hep1 cell lines, spectral differences based 

on the cytology have been identified. Images of the HE-staining 25 

and of the Raman measurement of the very same cell in 

combination with the corresponding average spectra for each cell 

line in the spectral region of 3100-500 cm-1 are presented in 

Fig. 2. The Raman spectra show the typical characteristics of 

cells, such as CH stretching intensities (3020-2800 cm-1), amide I 30 

band (1680-1620 cm-1), CH2 deformation band (1440 cm-1) and 

the phenylalanine band (1002 cm-1). By subtraction of the  

 

Fig. 3 Dendrogram from HCA of Raman spectra showing the 

clustering of HepG2 (n=48) and SK-Hep1 (n=52) cells with 

assigned sub-clusters. The batches of the cell lines are marked in 

different colors. 

average spectra of the HepG2 and SK Hep1 cells, the spectral 

variations, shown as a difference spectrum, were obtained 

(Fig. 2(A-B)c). The difference spectrum exhibits intensities in the 35 

range of 2900-2850 cm-1 and at 1655, 1440, 1304, 1266, 

1060 cm-1. 

3.1.1 Hierarchical cluster analysis of inter- and intra-

individual cell variabilities. For the detection of the inter-

individual variability of the two different cell lines a HCA of all 40 

HepG2 (n=48) and SK-Hep1 (n=52) cells was performed. This 

way, a clear separation of HepG2 and SK-Hep1 cells was 

achieved based on the cell-type specific Raman pattern (100% 

accuracy). The plotted dendrogram in Fig. 3 displays the distinct 

subdivision according to the cell line. 45 

 For the detection of the intra-individual variability each single 

cell were subdivided by HCA in five clusters corresponding to 

the different cell compartments, which were confirmed by HE 

stained microscope images and Raman maps of CH-stretching 

region (Fig. 4A, B and C). In accordance with the cell nucleus the 50 

average Raman spectra showed the typical bands of the nucleic 

acids at 1575, 1369, 1084 and 782 cm-1, whereas in the average 

spectra of the cytoplasm spectral pattern of proteins and lipids 

without bands of nucleic acids were observed (Fig. 4D and E). 

The data regions of the lipid rich cell components, confirmed by 55 

the typical Raman spectra of lipids, demonstrated intensive bands 

at 3008, 2898, 2854, 1655, 1440, 1304, 1266, 1078, 1059, 968 

and 717 cm-1 (Fig. 4F). The obtained clusters were used to extract 

the spectral data of each single cell compartment and to 

implement them in the SVM-based classification algorithm 60 

described below. 

3.1.2 Principal component analysis. Using PCA the wide 

variety of statistical variables of the extensive spectral data set 

was converted into PCs. The bands at 2900, 2898, 2854, 1660, 

1655, 1440, 1304, 1267, 1266, 1060 cm-1 were identified in the 65 

calculated PCs (Fig. 5). These bands resemble those bands of the 

difference spectrum (Fig. 2B) and are also similar to the bands of 

pure lipids spectra (Fig. 4F). Almost the half (48,76%) of the 

variance in this data set was corresponded to PC1 and can be 

assigned to lipids (2848, 2854, 1655, 1440, 1304, 1266, and 70 

1060 cm-1). 

Fig. 2 Average spectra in the spectral region 3100-2800 cm-1 (x3) 

and 1800-600 cm-1 (x5) of (a) HepG2 cells, (b) SK-Hep1 cells, 

and (c) the corresponding difference spectra for (A) complete cell, 

(B) nucleus, (C) cytoplasm, and (D) lipid droplets. Distinguishing 

Raman bands (in cm-1) are indicated by dashed lines. Shaded 

areas of the spectra a and b represents the standard deviations. 
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3.1.3 Support vector machine classification model. A SVM 

algorithm was trained on the averaged spectra of 60 cells of 

HepG2 (n=30) and SK-Hep1 (n=30) to define a Raman pattern 

that predicts the cell type. For the recognition algorithm the first 

20 PCs were used of which the first four PCs captured the main  5 

 

Fig. 5 (A) Loadings for the first fourth principal components of 

the PCA model of HepG2 and SK-Hep1 cell lines in a spectral 

region 3100-600 cm-1. 

variance (accounting for 96.8%). The PCs higher than 20, which 

mainly contained noise and had less than 1% of the total variance, 

were not included in the classification algorithm. A performed 

10-fold cross-validation, which was calculated by using subsets 10 

of the trainings set, estimates the predictive performance of this 

classification algorithm with 89%. The cross-validation classified 

not more than one HepG2 cell incorrectly as SK-Hep1 cell and a 

maximum of seven SK-Hep1 cells were misclassified as HepG2. 

By the following obtained classification model previously 15 

unknown cells of the two cell lines from a validation set (HepG2: 

n=18; SK-Hep1: n=22) were identified correctly with a prediction 

accuracy of 93% (sensitivity of 97%, specificity of 89%). 

 In addition to the classification model of complete cells, we 

elaborated also the difference spectra and classification algorithm 20 

by using the spectral information of different cell compartments. 

For this putpose, a discriminant analysis was performed and the 

data were imported in the SVM-algorithm. Consequently, for  

 

Fig. 4 (A) HE stained microscopy image, (B) Raman image of the 

CH-stretching region. (C) HCA map with five clusters of the same 

HepG2 cell, including the cluster for nucleus (red), cytoplasm 

(grey and green) and lipid droplets (blue). (D-F) Corresponding 

average spectra to the cluster of (D) nucleus, (E) cytoplasm, and 

(F) lipid droplets in the spectral region 3100-2800 cm-1 (x1) and 

1800-600 cm-1 (x5). 

Fig. 6 Confusion tables of the SVM classification models of 

HepG2 (H) and SK-Hep1 (S) cells. Misclassifications (in %) of 

(A) complete cell, (B) nucleus, (C) cytoplasm, and (D) lipid 

droplets in training and test dataset are shown. 

Fig. 7 Average Raman spectra of (a) proliferating and (b) non-

proliferating  HepG2 cells, and (c) the corresponding difference 

spectra of (A) complete cell, (B) nucleus, (C) cytoplasm, and (D) 

lipid droplets. Shaded areas of the spectra a and b represents the 

standard deviations. 
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each cell compartment, such as the cell nucleus, cytoplasm and 

the lipid storage organelles, separate classification models were 

generated. By using both specific data sets as two independent 

classifiers an accuracy of 91% and 87% for the data of 

cellnucleus and cytoplasm were obtained, respectively. The 5 

spectral information of lipid droplets, confirmed by the typical 

Raman spectra of lipids, were isolated by HCA and also used to 

classify HepG2 and SK-Hep1. This classifier showed a very high 

sensitivity of 93%, specificity of 100% and accuracy of 96%. The 

details of the prediction for individual classification model are 10 

shown in the confusion table of Fig. 6. 

 3.1.4 Test-retest reliability of the sample measurements. To 

verify the test-retest reliability of the generated classification 

algorithm two different data sets of the HepG2 and SK-Hep1 cell 

lines were acquired under the same conditions, but at different 15 

points in time. Data sets were collected from Raman 

measurements of three independent samples of HepG2 and SK-

Hep1 cells from different batches and with a time lag of 3 

months. The second data set was used to train the classification 

model. Therefore, the prediction accuracy of the classification 20 

model was first estimated by performing a 10-fold cross-

validation of the 100 cells. The cross-validation calculated a 

sensitivity of 94% and a specificity of 87% for the predictive 

accuracy. However, the trained classification model based on the 

first data set applied to the independent second data set resulted 25 

then in a sensitivity of 82% and a specificity of 75%. 

3.2 Unsupervised analysis and classification of different 
proliferation performances of HepG2 cells 

The difference spectrum of the proliferating (exponential phase) 

and non-proliferating (plateau phase) HepG2 cells indicated 30 

higher intensities within the spectral region between 3020-

2800 cm-1 and at 1655, 1440, 1304, 1266 and 1002 cm-1 of the 

proliferating cells (Fig. 7A). 

3.2.1 Hierarchical cluster analysis. To detect also the inter-

individual variability in case of HepG2 cells in the exponential 35 

(n=26) and plateau (n=31) growth stages HCA was performed 

and plotted as a dendrogram. The tree structure in the  

 

Fig. 9 First four PC from PCA model performed on proliferating 

(exponential phase) and non-proliferating (plateau phase) HepG2 

cells. 

dendrogram (Fig. 8) shows a perfect discrimination of the 

proliferating and non-proliferating HepG2 cells in two separated 

clusters. Thereby, all HepG2 cells were clustered according to 40 

their growth phase and not one cell were misclassified (100% 

accuracy). 

 Each single HepG2 cell in different proliferating condition 

was as well clustered in intra-individual components of the cell. 

The extracted spectral information of the correspondent nucleus, 45 

cytoplasm and lipid regions was used for classification (Fig. 7). 

3.2.2 Principal component analysis. Analyzing PCs of this data 

set the bands 2888, 2851, 1655, 1440, 1304, 1266, and 1084 cm-1 

seen in PC1 includes more than 93% of variance and are 

equivalent to lipid spectra (Fig. 9A). The positive bands that were 50 

detected in PC2 (Fig. 9B) corresponding to DNA (1577, 1096 and 

790 cm-1) and proteins (2935, 1676, 1340, 1250 and 1005 cm-1), 

while the negative bands can be assigned to lipids (2848 and 

1434 cm-1). 

3.2.3 Support vector machine classification model. In order to 55 

classify the HepG2 cells in different cellular growth stage, a 

training and validation data set of cells in the exponential and 

plateau phases were calculated by the SVM-based classification 

model. The performance of the classification model to predict the 

unknown proliferation phase of HepG2 cells exhibited a 60 

sensitivity of 100% and specificity of 98%. As mentioned above 

for the classification of HepG2 and SK-Hep1, spectra of 

proliferating and non-proliferating HepG2 cell compartments 

were classified separately. Over all accuracies of the 

classification models the classifier based on the Raman spectra of 65 

lipid droplets organelles showed the best result. The details of 

misclassified proliferating and non- proliferating HepG2 cells are 

demonstrated in the confusion table of Fig. 10. 

Discussion 

To prove the concept that Raman imaging technique is suitable 70 

for the detection of malignant cells in liver lesions the 

morphological and proliferating features of cancer cells were 

investigated and classified by this vibrational spectroscopic  

 

Fig. 8 Hierarchical clustering of proliferating HepG2 cells in the 

exponential phase (n=26) and the non-proliferating HepG2 cells 

in the plateau phase (n=30) demonstrated as a dendrogram with 

assigned sub-clusters. The batches of the cells are marked in 

different colors. 
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Fig. 10 Confusion tables of the SVM classification models of 

proliferating (P) and non-proliferating (NP) HepG2 cells. 

Misclassifications (in %) of (A) complete cell, (B) nucleus, (C) 

cytoplasm, and (D) lipid droplets in training and test dataset are 

shown. 

method. 

In previous studies it has already been demonstrated that it is 

possible to detect differences in normal and malignant 

hepatocytes based on single point Raman spectra 13,38. Therefore, 5 

the focus of this study was set on the differentiation and 

classification of different tumor cells. In contrast to previous 

these previous studies, the differentiation was based on spectral 

information collected from whole cell images, rather than from 

single point spectra with a sampling volume of about 1 µm3. A 10 

liver cancer cell line of the hepatocellular carcinoma (HepG2), as 

the most common primary liver cancer, and an adenocarcinoma 

(SK-Hep1), that is found as primary liver cancer in the liver, were 

measured with Raman spectroscopy. The obtained Raman spectra 

were processed with a multivariate analysis method and 15 

implemented into a reliable prediction model. Thus, to the best of 

our knowledge this is the first study that is using vibrational 

spectroscopy as a classifying tool for different types of liver 

cancer cells and their proliferation states. 

 Like a molecular fingerprint the Raman spectra exhibit 20 

spectral differences of cells and to some extent molecular 

contents of various cellular components, such as nucleic acids, 

proteins, carbohydrates and lipids. While the specificity of 

Raman spectroscopy is very high, the signal intensity and thus the 

level of sensitivity of this technique is quite low, which can cause 25 

a reduced detection of molecules with low concentration. Other 

limitations of this technique can arise from an unwanted 

background signal originated from the fluorescence of the sample 

or contamination. 

 In our investigations the difference spectrum of the observed 30 

averaged spectra and the multivariate discriminant analysis of 

HepG2 and SK-Hep1 data sets were able to extract the subtle 

spectral differences between these two cell lines with pronounced 

intensities in the C-H stretching region of 2900-2850 cm-1 and a 

characteristic shape in the fingerprint region between 1800-35 

600 cm-1. The results represent significant spectral differences in 

the peak intensities at 2900-2850, 1655, 1440, 1304, 1266 and 

1060 cm-1. This recognition pattern applied in a multivariate - 

 

Fig. 11 Reference Raman spectra of (a) unsaturated fatty acid 

(oleic acid) and (b) saturated fatty acid (stearic acid) acquired 

with WITec Raman spectrometer. 

HCA allows already a precise separation of the HepG2 and SK-

Hep1 cell line in two major clusters without any 40 

misclassification. Furthermore, by implementing the same 

spectral pattern into the above-mentioned classification algorithm 

the previously unknown cell identity can be predicted with an 

accuracy of 93%. In the discriminant analysis the average spectra 

of both cell lines differ significantly in the specific spectral 45 

characteristics of lipids. Due to this fact, the prediction accuracy 

of the classification model was improved to 96% by the sole use 

of the spectral pattern of the cytoplasmatic lipids. Thus, it was 

possible to show that a majority of spectral information, which 

characterizes and distinguishes different liver cancer cells, is 50 

located in lipids. These detected spectral differences can be 

assigned exactly to the specific wavenumbers of unsaturated fatty 

acids and were verified by a contrasting juxtaposition of the 

averaged spectra according to the lipid clusters to the reference 

spectra of unsaturated fatty acids (Fig. 11). Hence, the quantity of 55 

unsaturated acids is increased in the HepG2 cell line. 

 By instpecting liver cancer cells with Raman microscopic 

imaging, the results confirm that a lot of molecular differences 

are hidden in lipids. Nowadays, it is believed that aberrant lipid 

biosynthesis is involved in the hepatocarcinogenesis. Already in 60 

2005, the mRNA expression of lipogenic enzymes, which are 

involved in the production of fatty acids, was investigated in 10 

human HCC tissue samples and were compared with the 

surrounding non-cancerous liver tissue. An elevated expression of 

mRNA for fatty acid synthase (FASN), acetyl-CoA carboxylase 65 

(ACAC) and ATP citrate lyase (ACLY) in the HCC tissue was 

described39. In a recent large-scale study the expressions of 

enzymes that regulate lipogenesis were evaluated in HCC tissues 

and corresponding surrounding non-tumor liver tissues of 68 

patients as well as in eight normal (disease-free) human liver 70 

tissue of healthy individuals. It was shown by this study that all 

relevant lipogenic enzymes, which are involved in the fatty acid 

synthesis (FASN, ACAC, ACLY, ME, SCD1), the cholesterol 

biosynthesis (SREBP2, HMGCR, MVK, SQS) and their upstream 

inductors (chREBP, SREBP1, LXR-β) were progressively 75 

upregulated from non-tumorous liver tissue toward the HCC. 

Analogously to the upregulation of the lipogenic enzymes and 
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their upstream inductors also the quantity of the chemical end 

products of the respective lipid synthesis (fatty acids, 

triglycerides, cholesterol) increased. Furthermore, the study 

demonstrated that a higher expression of these enzymes correlate 

with an activation of a lipogenic signaling pathway (AKT–5 

mTORC1–RPS6 pathway) and the clinical aggressiveness, 

characterized by shorter (<3 years) and longer (>3 years) survival 

of the patients following partial liver resection.40 In another study 

of three HCC cell lines, it has been observed that the FASN 

protein expression and basal activity levels were higher in HepG2 10 

cells than in the other two HCC cell lines. The inhibition of the 

FASN activity with C75 induced a cell cycle arrest in all three 

HCC cell lines.41 

 As set out in the study of Gao et al.41 in our comparative 

analysis also a higher content of fatty acids in the HepG2 cells 15 

were detected by the Raman imaging technology. Additionally, 

the amount of fatty acids in proliferating HepG2 cells obtained by 

Raman imaging in the exponential phase was higher than in the 

plateau phase, in which the cells are usually not proliferating. 

These findings are also consistent with data of Gao et al.,41 which 20 

indicate that an inhibition of the fatty acid synthesis causes a cell 

cycle arrest. By performing a classification using the spectral 

pattern of HepG2 cells in the exponential and plateau phase the 

state of cell proliferation can be predicted with almost 100% 

accuracy (sensitivity of 100%, specificity of 98%).  25 

 In a previous study it was already possible to detect 

differences in normal and malignant hepatocytes based on single 

point Raman spectra.13,42 Furthermore it was demonstrated that 

Raman spectroscopy is able to distinguish a metastatic from a 

non-metastatic cell line and to associate the detected spectral 30 

differences, which were assigned to a higher unsaturated fatty 

acid content, to the metastatic ability of the two isogenic cancer 

cell lines.17 

Conclusions 

In summary, this study has clearly demonstrated that Raman 35 

imaging spectroscopy in combination with multivariate data 

analysis is able to detect the cell-type specific molecular 

variations and the variation in cell proliferation of liver cancer 

cells. Furthermore, by using a support vector machine-based 

classification algorithm it was even possible to predict with a 40 

high accuracy the unknown identity and proliferation behaviour 

of liver cancer cells and these results have proven to be 

reproducible. The majority of the detected spectral differences 

were attributed to a larger quantity of unsaturated fatty acids in 

the HCC cells and during the proliferation phase. The cell type 45 

and the proliferation behaviour are essential distinguishing 

features of malignant tumors and Raman spectroscopy is a 

particularly suitable label-free method to identify easily this de 

novo lipogenesis in liver cancer. 
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