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ABSTRACT 

 

In this work, we investigate the possibility to optimize the operating conditions, namely 

mobilizing pressure, capillary length and capillary radius for doing Taylor Dispersion 

Analysis on solutes having hydrodynamic diameters between 1 and 100 nm. Optimizing 

Taylor Dispersion Analysis means finding the set of operating conditions that verify the 

conditions of validity of this method, and finding the most appropriate conditions that may 

enhance or maximize the separation performances. Our conclusion is that the performances of 

Taylor Dispersion Analysis are independent of the operating conditions, as far as the 

conditions of validity of the method are verified. The inequalities defining the set of 

acceptable operating conditions are given in this work as a function of the maximal relative 

error on the diffusion coefficient fixed by the user. These inequalities define operating zones 

that were represented for three typical capillary diameters (25, 50 and 100 µm). Within these 

zones, all experiments should lead to similar results on D (or Rh) and similar separation 

performances. It was concluded that assuming a 3% relative error on the determination of D, a 

60 cm × 50 µm i.d. capillary can be used by default for doing TDA of analytes in the 1-100 

nm diameter range with mobilizing pressure in the 40-100 mbar range.  
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INTRODUCTION  

Taylor Dispersion Analysis (TDA) is an absolute and straightforward method for determining 

diffusion coefficient and thus, hydrodynamic radius. This method is based on the seminal 

work of Taylor
1
 and Aris

2
, describing the dispersion of a solute plug in an open tube under 

Poiseuille laminar flow. The dispersion is due to the combination of the dispersive parabolic 

velocity profile with the molecular diffusion that redistributes the molecules in cross section 

of the capillary. When axial diffusion is negligible compared to Taylor dispersion, the 

molecular diffusion coefficient, D, is related to the temporal variance of an analyte, σt2, the 

average elution time to and the capillary radius, Rc, of the tube by the following equation
3
:

 
2

o
224

c

t

R t
D

σ
=           (1) 

Knowing the capillary radius, this simple equation allows the absolute determination of the 

solute diffusion coefficient from the experimental values of the temporal variance and the 

average elution time to.  

TDA was first applied to the determination of gaseous diffusion coefficients
4
, then to liquid 

diffusion coefficients
5-7

, in relatively long open tubular columns (14 to 170 m long, with 

about 0.4 - 0.5 mm inner diameter). More recently, owing to the development of capillary 

electrophoresis instrumentations, TDA was performed in small internal diameter capillaries 

requiring the injection of only a few nL of sample
8-13

. TDA is applicable on small molecules, 

polymers, proteins and nanoparticles of virtually any size from Angstrom to sub-micron. It 

can be applied either to monodisperse or polydisperse samples
14-15

, and basically leads to a 

weight-average hydrodynamic radius of the mixture when using a mass-sensitive detector
16

. 

In the case of binary mixtures, the deconvolution of taylorgrams allowed a fast monitoring of 

polymerization reaction
14

. Since TDA is an absolute method, no calibration is required and 

the knowledge of the sample concentration is neither needed. 
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The elution time and temporal variance of unretained analytes in capillary tubes are functions 

of three main operating parameters
17

: (i) the applied pressure, (ii) the capillary effective (and 

total) lengths, and (iii) the capillary radius. The question then arises: is there a particular set of 

operating parameters that will optimize the analysis by TDA? Let’s first discuss what does 

optimization of TDA mean. TDA was shown to provide the individual diffusion coefficients 

and the relative amounts of a mixture of two analytes
14

. It can thus be considered as a 

separation method for which the selectivity is based on dispersion rather than on retention. 

TDA for the analysis of a binary mixture can be envisioned as finding the optimal 

experimental conditions in terms of pressure drop (or linear velocity) and capillary 

dimensions (lengths and diameter) that would lead to the best separation/discrimination 

between the two populations of the mixture (as in the case of the monitoring of a polymer 

reaction).   

On another point of view, when TDA is used for the determination of the diffusivity (and of 

the related molecular or particulate size) of a single compound, its optimization might be also 

thought of finding the range of operating parameters in which the conditions required for the 

validity for eq. (1) are satisfied. In his seminal work, Taylor pointed out two conditions to be 

fulfilled for performing TDA. A first condition is that the elution time to (or time of 

displacement from capillary inlet to detector position) must be much longer than the 

characteristic time of diffusion of the analyte across the capillary radius
1
. A second condition 

is that the contribution due to the parabolic velocity profile to the peak variance must be much 

larger than the dispersion due to the longitudinal molecular diffusion
18

. 

Two additional conditions that are linked to the practical measurement procedure 

(determination of the temporal, rather than spatial, variance of the peak and use of the time of 

the peak apex for the elution time) are also considered in the following. The constraints on the 
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operating parameters that should be fulfilled for a given maximal relative error on the 

determination of D are established.  

 

 

THEORETICAL BACKGROUND 

Normalization of the taylorgram of a single component 

 Let assume that we are analyzing a single component, labelled 1, in solution in the carrier 

liquid. Its taylorgram, i.e. the detector signal S1 vs. time t, depends on various operating 

parameters (flow rate, pressure drop, capillary radius, temperature, effective capillary length, 

sample volume, analyte concentration in the sample...). Let assume that the taylorgram can 

reasonably well be approximated by a Gaussian curve with mean elution time to and temporal 

standard deviation σt,1. The signal S1(t) is assumed to be that of a concentration-sensitive 

detector, i.e.: 

 ( )1 1 1S t k c=  (2) 

where c1 is the analyte concentration in the detector cell, k1 the response factor which 

depends on the detector characteristics and on the nature of the analyte. Thus, the elution 

curve is: 

 ( ) ( )2o
1 1 2

1

exp
2 t ,

t t
S t h

σ

 −
 = −
  

 (3) 

where h1 is the peak height equal to : 

 

o
1 1

1
1 2π

inj

t ,

k c V
h

Qσ
=  (4) 
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where o
1c  is the analyte concentration in the sample, Vinj the injected sample volume and Q 

the carrier flow rate. Changing any operating parameter will change the peak height and 

standard deviation. One can normalize the peak shape by plotting y1 equal to : 

 1
1

1

S
y

h
=  (5) 

versus a reduced time x given by: 

 o

1t ,

t t
x

σ
−

=  (6) 

Then, whatever the values of the operating parameters, the expression of the normalized peak 

is: 

 ( )
2

2
1

x

y x e
−

=  (7) 

In the reduced coordinates y1 and x, the peak height is equal to 1, the mean x value is 0 and 

the standard deviation equal to 1. 

Normalization of the taylorgram of a mixture of two components 

 Let assume that we now add a second component, labelled 2, to the component 1 described 

above. The taylorgram, S(t), of the binary mixture is made of the sum of the two signals of the 

individual components 1 and 2, S1 and S2: 

 ( ) ( ) ( )1 2S t S t S t= +  (8) 

since the detector is assumed to be linear. The signal S2 is equal to: 

 ( ) ( )2o
2 2 2

2

exp
2 t ,

t t
S t h

σ

 −
 = −
  

 (9) 

with, by comparison with eq 4: 

 

o
2 2

2
2 2π

inj

t ,

k c V
h

Qσ
=  (10)  
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h2 and σt,2 being respectively the height and standard deviation of the individual peak of 

component 2, o
2c  the concentration of component 2 in the sample. 

 We now attempt to normalize the taylorgram as it was done above using the characteristic 

values h1 and σt,1 of the peak of the first component: 

 ( ) ( ) ( ) ( ) ( ) ( )1 2
1 2

1 1 1

S x S x S x
y x y x y x

h h h
= = + = +  (11) 

It was shown above that y1 does not depend on the values of the operating conditions. For y2, 

from eqs 6, 9 and 11, we have: 

 ( )
( )

2
2

2 2
1 2 1

exp

2 t , t ,

h x
y x

h σ σ

 
 = −
 
 

 (12) 

i.e., with eqs 4 and 10: 

 ( )
( )

o 2
12 2

2 o 2
1 21 2 1

exp

2

t ,

t , t , t ,

k c x
y x

k c

σ

σ σ σ

 
 = −
 
 

 (13) 

The ratio k2/k1 of the response factors depends on the nature of the two analytes. It is then 

independent of the operating conditions. The ratio o
2c / o

1c  of the component concentrations in 

the sample depends solely on the sample at hand and is independent of the TDA operating 

conditions. The standard deviation ratio, σt,2/σt,1, might depend on the operating conditions. 

However, if one is operating in required conditions for TDA, σt,2/σt,1 is equal to 1 2D D  

according to eq. (1), so that it depends only on the nature of the components 1 and 2, but not 

on the operating conditions. Therefore, if, upon changing the operating parameters, one 

normalizes the signal of component 1 so that it is invariant, then the signal of component 2 is 

also invariant. So is obviously their sum. One is led to conclude that the TDA separation is 

independent of the operating conditions and cannot be optimized.  
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 Such a conclusion can be substantiated by looking at the chromatographic resolution. If the 

normalization of the chromatogram of two components is performed along the same 

transformation rules as those used above, it is easily shown (see Appendix 1) that the 

resolution is unchanged and that it depends on the relative position of the centers of mass of 

the two peaks and on the ratio of their standard deviations. TDA can be viewed as the limiting 

case of a chromatographic separation in which the two centers of mass converge to the same 

position. Even if the numerical value of the resolution becomes then zero, the important point 

is that, in this case, it solely depends on the ratio of the standard deviations of the two peaks, 

hence, according to eq. (1), on the ratio of the diffusion coefficients of the two analytes, 

independently of the operating conditions. 

 Clearly, such a conclusion derived above from the analysis of the behaviour of a mixture of 

two components can be extended for a mixture of any number of components. Experimental 

confirmation of this demonstration is given below for a bimodal mixture.  

 It should be noted, however, that the above conclusion relies on the independency of the  

σt,2/σt,1 ratio on operating parameters, as a result of Taylor expression of the peak variances 

for straight tubes. It cannot be generally extended to the case of coiled or helicoidal tubes as 

the σt,2/σt,1 ratio then depends, in a relatively complex way, not only on the sample 

components and mobile phase properties but also on the flow velocity, tube internal radius 

and tube radius of curvature, through dimensionless numbers (Dean and Schmidt numbers, 

ratio of the capillary internal radius to its radius of curvature)
19

. However, the smaller are the 

flow velocity and the ratio of the capillary internal radius to its radius of curvature, the smaller 

is the effect of the tube curvature. For small enough values of these numbers, it can be 

concluded that the TDA separation is independent of the operating conditions. In the 

experimental conditions of the present study, the values of the dimensionless numbers are far 

below the maximum threshold values allowing to neglect the influence of the tube curvature
3
. 
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EXPERIMENTAL SECTION 

Reagents 

Borax (disodium tetraborate decahydrate) was purchased from Prolabo (Paris, France). 

Phthalic acid was obtained from Aldrich (Milwaukee, WI, USA). Standard of poly(styrene 

sulfonate) (PSS, weight average molecular masses Mw 29 × 10
3
 g/mol) was purchased from 

Polymer Standards Service (Mainz, Germany). The polydispersity index of the PSS is below 

1.2. The degree of sulfonation of the PSS is higher than 90%. The water used to prepare all 

buffers was further purified with a Milli-Q-system from Millipore (Molsheim, France). The 

borate buffers were directly prepared by dissolving the appropriate amount of borax in water.  

Taylor dispersion analysis  

Taylor dispersion analysis (TDA) experiments were performed on a PACE MDQ Beckman 

Coulter (Fullerton, CA) apparatus. Capillaries were prepared from bare silica tubing 

purchased from Composite Metal Services (Worcester, United Kingdom). Various capillary 

dimensions were used and are given in the figure captions. New capillaries were conditioned 

with the following flushes: 1 M NaOH for 30 min, 0.1 M NaOH for 30 min and water for 10 

min. Before sample injection, the capillary was filled with the buffer (80 mM borate buffer, 

pH 9.2). Phthalate / PSS sample mixtures were dissolved in the buffer. Sample injection was 

performed hydrodynamically on the inlet side of the capillary (see figure captions for the 

injection time and pressure). Between two TDA analysis, the capillary was successively 

flushed with: (i) water (50 psi, 1 min); (ii) 1M HCl (50 psi, 2 min) and (iii) buffer (50 psi, 3 

min). Solutes were monitored by UV absorbance at 200 nm. The temperature of the capillary 

cartridge was set at 25 °C. 

The elution time was corrected from the delay in the application of the pressure using the 

following equation (in min)
16

: 
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0 125= −R R,obst t .          (14) 

The corrections due to the finite injection plug on the observed elution time and on the peak 

variance remain very small since the injected volume was lower than 1% of the capillary 

volume to the detector (see Table 1). 

Deconvolution of bimodal taylorgrams were performed by non-linear curve fitting (Microcal 

Origin 6.0) with two Gaussian functions having the same average elution time.  

 

RESULTS AND DISCUSSION 

Optimizing Taylor dispersion analysis of mixtures  

To investigate the influence of the operating parameters (mobilizing pressure, capillary 

length, capillary diameter) on the TDA of mixtures, a binary mixture containing a small 

molecule (phthalate) and a standard of polymer (PSS, 29×10
3
 g/mol) was analyzed. 

Taylorgrams obtained from this mixture are the sum of two Gaussian peaks (one solute being 

monodisperse and the second having a low polydispersity). Nevertheless, the variances of the 

two Gaussian peaks constituting the whole signal depend on to and Rc, and thus vary 

according to the experimental conditions as stated by eq. (1). We thus experimentally 

investigated the influence of the main operating parameters (mobilizing pressure, capillary 

length and diameter) on the taylorgrams to see if the separation or discrimination between the 

two components of the sample can be optimized / maximized. According to the theoretical 

section (see Eq. 11 and 12), all the taylorgrams obtained for a bimodal mixture should lead, 

after normalization, to a general curve that depends only on the ratio of the diffusion 

coefficients of the two components and on the relative composition (mass proportion) of the 

two components in the mixture. We propose here to experimentally verify this feature. All the 

experimental operating conditions studied in this work are presented in Table 1. The injected 

volume was kept as low as possible and was always lower than 1% of the capillary volume to 
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the detector (see last column in Table 1) to limit the contribution of the finite injected volume 

to the global variance of the elution peak. 

The mobilization pressure was first studied since it controls the linear velocity of the mobile 

phase in the capillary. Figure 1A displays four different taylorgrams obtained for the analysis 

of binary Phthalate / PSS mixture, at different mobilizing pressures (from 0.8 to 2.0 psi, i..e. 

from ~ 50 to 150 mbar) on a 60 cm (50 cm to the detector) × 50 µm i.d. fused silica capillary. 

As expected, elution times and peak variances decrease with increasing mobilizing pressures. 

For each taylorgram, the signal S(t) was converted into y(x) using equation (11) by dividing 

the signal S(t) by h1, the peak height corresponding to the contribution of phthalate, and by 

changing the variable from t to o

1t ,

t t
x

σ
−

= . σt,1 and h1 were obtained by deconvolution of the 

taylorgram into the sum of two Gaussian peaks. The peak variances and the ratio of the two 

peak areas (A1/A2) obtained by curve fitting are gathered in Table 1. While σt,1 and σt,2 values 

decrease with increasing mobilization pressure, similar σt,2/σt,1 ratios were obtained 

(σt,2/σt,1 ~ 3.0) for the different experiments. The invariance of A1/A2 ratio is just representative 

of the conservation of the relative proportion of components 1 and 2 in the mixture for each 

experiment. The four y(x) signals obtained from the taylorgrams at different pressures were 

superposed in Figure 1B showing a good overlay of the normalized taylorgrams and 

demonstrating that the intrinsic separation between the two populations does not depend on 

the mobilization pressure used to perform the TDA.  

 The influence of the capillary length at constant mobilization velocity was next 

investigated on the same bimodal mixture. Two effective lengths from the injection point to 

the detector were tested (30 cm and 50 cm) and the corresponding taylorgrams are displayed 

in Figure 2A. Similar variance ratios and peak area ratios were obtained for the two 

experiments, but also in comparison to the previous set of experiments at different 
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mobilization pressures (see Table 1). The overlay of the y(x) signals displays comparable 

normalized taylorgrams, as expected by the theory.  

Finally, we investigated the influence of the capillary diameter (on 50, 75 and 100 µm i.d.) 

at constant capillary lengths and for similar linear velocities (see Figure 3A for the 

taylorgrams). Elution times are not exactly the same because the applied mobilization 

pressures could not be exactly matched to the desired value (commercial CE instrumentation 

only allows increment of 0.1 psi for the setting pressure). As expected, the peak variances 

were found to increase with the capillary diameter (see Table 1 for numerical values) but the 

ratio was still similar to what was previously observed σt,2/σt,1 ~ 3. After normalization, 

Figure 3B displays a common trace for the three taylorgrams demonstrating that the capillary 

diameter cannot change the intrinsic separation between the two populations of the mixture.  

 

Choosing the optimal operating conditions for TDA 

If the operating conditions are not intrinsically modifying the separation obtained by TDA 

between the different components of the sample mixture, they should be chosen in such a way 

that the different conditions of validity of TDA are fulfilled. As mentioned in introduction, the 

first Taylor condition for performing TDA is that the elution time to must be much larger than 

the characteristic diffusion time of the solute in the capillary cross section. This leads to a 

minimum value for to in order to perform the determination of D within an acceptable error. 

The expression of this minimum to value is given in Appendix 2.1. In fact, two other 

conditions, linked to the practical procedure of determination of D, also lead to a minimum 

value of to. One is due to the fact that the time of apex is often used for to. As discussed in 

Appendix 2.2, the error associated with this approximation decreases with increasing to. The 

other practical condition is linked to the limited validity of the relationship between the spatial 

variance, computed by Taylor
1
, and the temporal variance which makes eq 1 rather simple. It 
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is discussed in Appendix 2.3. These three conditions are associated to systematic errors in the 

value of D which partially compensate each other. Their resulting effect is discussed in 

Appendix 2.4 and is expressed as follows for the minimum value of to:  

 

2

o
3

80

cRt
Dε

≥           (15a) 

where ε is the relative error on the determination of D that can be tolerated. If one takes 

ε = 3%, which corresponds to the typical relative standard deviation obtained by studying the 

repeatability on D determination by TDA, ineq 15a becomes: 

 

2

o
1 25 c. R

t
D

≥           (15b) 

Noting that ot l / u=  and that the mean velocity, u, of the mobile phase is related to the 

pressure drop ∆P applied for mobilizing the mobile phase by means of the Poiseuille law, 

( )2 8cu R P Lη= ∆ , the condition 15b is fulfilled if ∆P satisfies the following condition 

 
4

6 4

c

. D l L
P

R

η
∆ ≤          (16a) 

where L is the total capillary length, l is the effective capillary length (to the detector), η is the 

mobile phase viscosity. Ineq 16a can also be expressed as a function of the hydrodynamic 

radius, Rh, of the solute, independently of the solvent viscosity: 

  
4

0 34

h c

. kT l L
P

R R
∆ ≤             (16b) 

The second Taylor condition that should be fulfilled for eq 1 to be valid is that the mobilizing 

linear velocity u should be fast enough so that the longitudinal molecular diffusion could be 

Page 14 of 35Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



14 

 

neglected compared to the Taylor dispersion term as expressed in ineq 17a (see Appendix 3 

for more details):  

 
48

c

D
u

R ε
≥           (17a) 

Taking ε =3% in ineq 17a leads to: 

 
40

c

D
u

R
≥            (17b) 

Combining ineq 17b with the Poiseuille law gives: 

 
3

320

c

D L
P

R

η
∆ ≥           (18a) 

  
3

17

h c

kTL
P

R R
∆ ≥                 (18b) 

Ineqs 16b and 18b define a zone of operating applied pressure drop that depends on the 

capillary length, capillary diameter and solute hydrodynamic radius. To select the appropriate 

pressure drop for a given capillary length, Figure 4 displays the operating zones between the 

plain and dashed lines for different solute sizes (0.5, 5 and 50 nm hydrodynamic radius) on a 

25 µm (Figure 4A), 50 µm (Figure 4B) or 100 µm (Figure 4C) i.d. capillary. A logarithmic 

scale was selected for ∆P since the ranges of validity are very different depending on the 

solutes. These graphs are of high practical interest since they set the range of accessible 

operating conditions (∆P vs L) for sizing (macro)molecules with diameters between 1 and 

100 nm by TDA. It is interesting to notice that on a 60 cm long × 50 µm i.d. capillary (see 

Figure 4B), the 40-100 mbar range, which is the typical range accessible experimentally using 

CE apparatus, is optimal for sizing solutes in the 1-100 nm diameter range by TDA using eq 
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1. For that reason, a 60 cm × 50 µm i.d. capillary can be considered as an optimal choice for 

doing TDA in the 1-100 nm diameter range. Using a 60 cm × 25 µm i.d. capillary would 

require operating in a significantly higher pressure range (500-3000 mbar) which is not 

always accessible on commercial CE apparatus. On the other hand, Figure 4C demonstrates 

that longer capillaries (L ~ 2.5 m) would be required for doing TDA on 100 µm i.d. in the 

same diameter range and using ∆P ~ 30-200 mbar range. For a given pressure drop ∆P, the 

analysis time scales as to ~
2
c

Ll

R
according to Poiseuille law. Therefore, for a given pressure 

drop, a 2.5 m × 100 µm i.d. capillary would lead to an analysis time five times longer than on 

a 60 cm × 50 µm i.d. capillary, assuming that the detector is positioned 10 cm before the 

capillary outlet. For that reason, a 50 µm i.d. appears to be a good compromise for the typical 

pressure drop range accessible on CE apparatus. 

Ineqs 16b and 18b show that the extent of the pressure range within which TDA can be 

implemented depends on the capillary length and on the solute hydrodynamic radius. There is 

a minimum value of the effective capillary length below which the conditions 16b and 18b for 

∆P cannot be fulfilled simultaneously. It corresponds to the point where the upper and lower 

curves in the graphs of Figure 4 cross. It is given as a function of the tolerated error on D by 

(see Appendix 4) 

 
3 2

3 3

20c

l

R ε
≥  (19) 

i.e. l/Rc larger than 50 for a 3% error. The required length increases strongly with decreasing 

tolerated error. Although this condition is very largely satisfied with present-day CE 

instruments, it should be kept in mind if TDA is to be performed using microfluidic or 

nanofluidic technologies. 
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CONCLUSION 

In conclusion, TDA, which can be considered as a separative method based on dispersion 

(and not on retention as for chromatography), leads to separations that are not affected by the 

operating conditions (capillary length and diameter, mobilizing pressure), as far as the 

conditions of validity of eq. (1) are satisfied. This is an important feature of TDA, since it 

means that, in practice, there is no interest to spend time in trying to optimize TDA separation 

by changing the operating conditions. All acceptable operating conditions will give similar 

TDA separations. However, operating conditions should be chosen so that conditions of 

validity of eq. (1) are fulfilled. Assuming a 3% relative error on the determination of D, this 

work demonstrates that, by default, it seems preferable to use 60 cm × 50 µm i.d. capillary for 

doing TDA of 1-100 nm analyte diameters using mobilizing pressure in the 40-100 mbar 

range. It is also important to keep in mind that the injected volume should be lower than 1% 

of the capillary volume to the detector. 
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Figure 1. Influence of the mobilization pressure on taylorgrams in time-scale (A) and in 

normalized coordinates (B). Experimental conditions: Fused silica capillary 60 cm (50 cm to 

the detector) × 50 µm i.d. Mobile phase: 80 mM sodium borate buffer, pH 9.2. Hydrodynamic 

injection: 0.3 psi, 3 s. Mobilization pressure: 0.8; 1.0; 1.5 and 2.0 psi as stated on the graph. 

Temperature: 25 °C. Sample: 2g/L phthalate + 2g/L PSS29000 in the mobile phase. 

Normalized taylorgrams (Figure 1B) were obtained using eq 11, σ1 and h1 being calculated by 

deconvolution of the experimental taylorgrams of Figure 1A.  
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Figure 2. Influence of the capillary length on taylorgrams in time-scale (A) and in normalized 

coordinates (B). Experimental conditions: Fused silica capillary 50 µm i.d. × 40 cm (30 cm to 

the detector) or 60 cm (50 cm to the detector) as stated on the graph. Mobile phase: 80 mM 

sodium borate buffer, pH 9.2. Hydrodynamic injection: 0.3 psi, 3s. Mobilization pressure: 1.3 

psi for 40 cm capillary and 2.0 psi for the 60 cm capillary. Temperature: 25 °C. Sample: 2g/L 

phthalate + 2g/L PSS29000 in the mobile phase.  
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Figure 3. Influence of the capillary diameter in time-scale (A) and in normalized coordinates 

(B). Experimental conditions: Fused silica capillary, 60 cm (50 cm to the detector) × 50 µm; 

75 µm or 100 µm i.d. as stated on the graph. Mobile phase: 80 mM sodium borate buffer, pH 

9.2. Hydrodynamic injection: 0.3 psi, 3s on 50 µm; 0.2 psi, 3s on 75 µm; 0.1 psi, 2s on 100 

µm. Mobilization pressure: 0.8 psi on 50 µm; 0.4 psi on 75 µm and 0.2 psi on 100 µm. 

Temperature: 25 °C. Sample: 2g/L phthalate + 2g/L PSS29000 in the mobile phase. 
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Figure 4: Selection of the operating pressure drop as a function of the capillary length on a 

25 µm (A), 50 µm (B) and 100 µm (C) i.d. capillary and for different solute sizes (Rh=0.5 nm; 

5 nm and 50 nm). Taylor validity expressed by eq 16b is displayed by plain lines (upper 

limit). The condition of validity of eq. (1) relative to low axial diffusion and expressed by eq 

18b is displayed by dotted lines (lower limit). These calculations are based on a maximal 

relative error on D of 3%. Note that the solvent viscosity η is not required for these 

calculations. The effective capillary length l from the injection point to the detector is 

supposed to be equal to the total capillary length L minus 10 cm.  
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Table 1 : Experimental conditions, peak variances of the two populations, ratio of the two peak 

area, and ratio of injected volume to the capillary volume obtained for different taylorgrams. σ1 

and A1 are respectively the peak variance and the peak area corresponding to the contribution of the 

phthalate. σ2 and A2 are respectively the peak variance and the peak area corresponding to the 

contribution of the PSS. σ1, σ2, A1, A2 were determined by deconvolution of the experimental 

taylorgrams by curve fitting with the sum of two Gaussian peaks. Vi/Vc is the ratio of injected volume 

to the capillary volume to the detector.  

 
Capillary 

diameter 

(µm) 

Capillary 

lengths 

(cm) 

Mobilization 

pressure (psi) 
σσσσt,1  

(min) 

σσσσt,2  

(min) 

σσσσt,2/σσσσt,1 A1/A2 Vi/Vc 

(%) 

 

Influence of 

the 

mobilization 

pressure 

50 50 × 60 0.8 0.083 0.250 3.01 1.83 0.18 

50 50 × 60 1 0.074 0.224 3.03 2.09 0.18 

50 50 × 60 1.5 0.060 0.183 3.05 2.01 0.18 

50 50 × 60 2 0.052 0.158 3.04 1.89 0.18 

Influence of 

the capillary 

length 

50 30 ×  40 1.3 0.041 0.127 3.10 1,89 0.45 

50 50 × 60 2 0.052 0.158 3.04 1.89 0.18 

 

Influence of 

the capillary 

diameter 

100 50 ×  60 0.2 0.165 0.530 3.21 1.80 0.16 

75 50 ×  60 0.4 0.118 0.375 3.18 1.56 0.27 

50 50 × 60 0.8 0.083 0.250 3.01 1.83 0.18 
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Appendix 1 – Influence of the change of the variables on the resolution in 

chromatography. 

Let consider the chromatographic separation of two Gaussian peaks in chromatography. The 

overall signal, S(t), is given by eq 8 as the sum of the two individual signals, S1(t) and S2(t), 

which are themselves given, respectively, by eqs 3 and 9, except that the mean elution times 

are now t1 and t2, respectively, instead of to. We normalize the ordinate by the height of peak 

1, as in eq 11, and the abscissa time axis by x, now based on the first moment and second 

central moment of peak 1: 

 1

1t ,

t t
x

σ
−

=  (A1) 

The resolution, Rs, is defined as 

 
( )

2 1

1 22
s

t , t ,

t t
R

σ σ
−

=
+

 (A2) 

In the reduced coordinate system, the mean elution reduced time are x1, equal to 0 according 

to eq A1 and x2 equal to 

 2 1
2

1t ,

t t
x

σ
−

=  (A3) 

Let τ1 and τ2 be the standard deviations of peaks 1 and 2 in the reduced coordinate system. In 

this system, the resolution, *
sR , is defined as 

 
( ) ( )

2 1 2

1 2 1 22 2

*
s

x x x
R

τ τ τ τ
−

= =
+ +

 (A4) 

Their variances are defined as 

 
( )

2

1 1
22

1 1 11 1 12
1 2

11 11

1 1

d

d d1

dd d

t , t ,

t ,

t ,

S t t t

y x x S t t th

S ty x S t

h

σ σ
τ

σ
σ

 −
   − = = =

∫∫ ∫
∫ ∫∫

 (A5) 
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The last fraction in the right-hand side (RHS) term of this equation is recognized as the 

variance 
2
1t ,σ  of peak 1. Hence τ1 is equal to 1. Similar, the variance of the second peak in the 

dimensionless system is given as 

 
( ) ( )

2

2 2
2 2

2 2 2 21 1 12
2 2

22 21

1 1

d

d d1

dd d

t , t ,

t ,

t ,

S t t t

y x x x S t t th

S ty x S t

h

σ σ
τ

σ
σ

 −
  − − = = =

∫∫ ∫
∫ ∫∫

 (A6) 

The last fraction in the RHS of eq A5 is the variance 
2
2t ,σ  of peak 2. Hence, 

 
2

2
1

t ,

t ,

σ
τ

σ
=  (A7) 

Combining eqs A3, A4 and A7, it comes 

 
( ) ( )

2 1

12 2 1

1 2 1 22

1

2 2
2 1

t ,*
s

t , t ,t ,

t ,

t t

x t t
R

σ

τ τ σ σσ
σ

−

−
= = =

+   +
+  

 

 (A8) 

Comparing eqs A2 and A8 shows that *
sR  is equal to Rs. Hence the resolution in 

chromatography is not changed by the transformation of the actual coordinate system into the 

dimensionless coordinate system by means of eqs 5 and A1. Hence the resolution in 

chromatography depends on the reduced time and on the ratio of the standard deviations of 

the two peaks. 

 

Appendix 2 – Conditions leading to a lower value of the migration time 

2.1. Condition associated with the long-term approximation of the dispersion coefficient 

(first Taylor condition) 

 In his seminal work
1
, Taylor computed the spatial variance, 

2
z ,limσ , at time t after injection 

of an infinitesimally narrow analyte band in the capillary tube under laminar flow as 
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2 2

2

24

c
z,lim

R u t

D
σ =  (A9) 

In this expression, 
2
z ,limσ is the spatial variance of the zone at time to, the time required for the 

centre of mass of the analyte zone to reach the detector at position l along the tube. However, 

eq A9 is a long-time asymptotic expression, hence the subscript "lim" given to this spatial 

variance. Physically, it assumes that the analyte molecules spend enough time in the capillary 

tube to sample uniformly the various flow streamlines, hence that their characteristic diffusion 

time across the capillary radius is much shorter than the migration time. In a detailed 

investigation of the time dependence of the spatial variance, Alizadeh et al.
3
 found out that the 

actual spatial variance, 
2
z ,actσ , is expressed as 

 ( )
2 2 4 2

2

2

128

24

c c
z,act

R u t K R u
R t

D D
σ = − +  (A10) 

with K = 2.1701 10-5. R(t) is a residual term which is equal, in absolute value, to the second 

term of the righ-hand side of eq A10-1 for t = 0, so that the initial spatial variance is zero. 

This residual term decreases faster than exponentially with increasing time. It can be 

calculated that the relative contribution of this residual term to the spatial variance is less than 

1%, 0.1% or 0.1% when 2
cDt R  ≥ 0.23, 0.36 or 0.50, respectively As shown in the 

following, we are, in practice, concerned with elution times that are larger than these time 

values. Therefore, this residual term can be neglected and, in combination with eq A9, the 

actual spatial variance at time t = to can be written 

 
2

2 2

o

1
15

c
z,act z ,lim

R

Dt
σ σ

 
= − 

 
 

 (A11) 

since 24 × 198 K is very close to 1/15.  
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 It is interesting to compare this result with the empirical expression obtained by Atwood 

and Golay
20

 from the fitting of numerical simulation data of dispersion of peaks in short 

tubes, i.e. (eq 5 of [19]) 

 

1 4
1 2 3

1
z,act

N
l N

σ −
−  = + 

 
 (A12) 

where N is the theoretical plate number, equal to 
2 2

z,liml σ  Combing eqs A9 and A12, noting 

that to = l / u, and developing the result in a Maclaurin series limited to the first order in 

( )2
c oR Dt , this gives 

 
2

2 2

o

1
16

c
z,act z ,lim

R

Dt
σ σ

 
= − 

 
 

 (A13) 

Taking into account the limited accuracy of the empirical expression A12, the agreement 

between eqs A11 and A13 is remarkably good. 

 If a relative error lower than ε on the measurement of D from eq 1, which derives from A9, 

can be tolerated, the relative error on 
2 2
z,act z,limσ σ  must be lower than ε, which, according to 

eq A11 implies that to must obey the following condition 

 o
2

1

15
c

Dt

R ε
≥  (A14) 

Accepting a 3% error, this gives 2
o cDt R  ≥ 2.2. The interest of eqs A11 and A14, which 

derive from the expression of Alizadeh et al.
3
 is that a tolerated error can be associated with 

the condition for to. For example, it shows that the somewhat arbitrary condition given by 

Taylor
1
 ( 2

o cDt R  ≥ 1.4) corresponds to a 4.8% error on D. However, the condition given by 

inequality A14 can be combined with other conditions which lead to a lower value of to (see 

Appendix 2.4). 
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2.2. Condition linked to the use of elution time of peak apex for to 

 In TDA, the taylorgram of a single analyte looks usually symmetrical. In fact, it is not 

exactly so and the time of elution of the peak apex, tapex, which is usually taken as to is not 

exactly equal to to.The cross-sectional average concentration distribution of the analyte in the 

TDA process can be modelled by a one-dimensional convection-diffusion equation for an 

analyte injected as a Dirac pulse at position z = 0 along an infinite tube in the flow, at velocity 

u, of the carrier fluid and having a dispersion coefficient D, defined as
21

  

 

2

2

z ,lim

t

σ
=D  (A15) 

If m is the amount of analyte injected, the concentration profile, c(z,t), is expressed as
3,22-26
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 (A16) 

where m is the amount of analyte injected in the tube. Letting z = u to in this equation provides 

the temporal concentration distribution given by a concentration-sensitive detector located at 

z = l. Differentiating the resulting equation with respect to t, then solving the derivative for its 

positive root provides the expression of tapex in combination with eqs A9 and A15 as
22
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 (A17) 

and a development in Maclaurin series limited to the first order in ( )2
c oR Dt  gives 
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 (A18) 

It should be noted that the use of the first moment, t1, of the taylorgram would not be an exact 

estimate of to. Indeed, it can be shown that t1 is related to to as
3,22-24,26,27
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 (A19) 

While tapex undersestimates to by a given amount, t1 overestimates it by a double amount. 

Accordingly, to can be estimated from the determination of tapex and t1 as 

  ( )o 1
1

3
apex apext t t t= + −  (A20) 

 

2.3. Condition linked to the use of the temporal variance instead of the spatial variance 

 The temporal standard deviation, σt, of the concentration distribution recorded by a 

concentration detector located at z = l, i.e. c(l,t), is generally related to the spatial standard 

deviation of the zone profile taken at the time to at which the centre of mass of the analyte 

zone reaches the detector position, by the following relationship 

 z
t

u

σ
σ =  (A21) 

which considers that σt is the time required to displace the zone by a distance σz in the tube. 

This relationship, however, is correct as a limiting expression for very narrow zones. Indeed, 

the second central moment of the concentration distribution expressed by eq A16, for z = u to, 

is given as
3,22-24,26,27
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Combined with eq A15 for t = to, this gives 
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Hence, the temporal variance classically obtained from eq A21 is undersestimated. 

 

2.4. Combination of the three above conditions 
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 In practice, the experimentally determined diffusion coefficient is obtained as 
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224
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exp

t ,meas

R t
D

σ
=  (A24) 

where 
2
t ,measσ  is the temporal variance directly obtained from the distribution of the 

concentration recorded by a concentration detector located at position z = l along the tube. 

The true diffusion coefficient that results from the genuine Taylor method is equal as 

 
2

2

2
24

c o
true

z,lim

R t
D

u

σ
=

 
 
 
 

 (A25) 

 The relationship between tapex and to is given by eq A18. The relationship between the 

measured temporal variance and the actual spatial variance in the tube at time to, 
2
z ,actσ , is, 

according to eq A23, 
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 (A26) 

and the relationship between 
2
z ,actσ  and 

2
z ,limσ  is given by eq A13. 

 From eqs A13, A18, and A24-A26, it appears that the effects of the use of the time of apex, 

of the temporal variance instead of the spatial one and of the finite rate of radial diffusion, but 

neglecting the contribution of axial molecular diffusion combine together to the following 

expression for Dexp 
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or, making a series development limited to the first order in ( )2
ocR Dt , 
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which leads to the following condition for to 
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Appendix 3 – Condition leading to an upper value of the migration time 

 The expression of the spatial variance obtained by Taylor (eq A9) accounts solely for the 

contribution to the analyte dispersion due to the non-uniformity of the velocity profile of the 

laminar flow of carrier in the tube cross-section. It does not include the contribution of the 

axial molecular diffusion. When the latter is accounted for, the expression of the spatial 

variance becomes, as intuitively suggested by Taylor
18

 and demonstrated by Aris
2
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instead of eq A9. For t = to, this can be written as 
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When comparing eqs A9 and A31, the second term in the brackets of eq A31 appears as the 

relative error made when neglecting the contribution due to the axial molecular diffusion. 

Letting this error be lower than ε, the condition to be satisfied for neglecting this contribution 

(second Taylor condition) is then 

 
48cR u

D ε
≥  (A32) 

The condition Rc u / D ≥ 69 suggested by Taylor
18

 corresponds to a relative error of 1% on D. 

Noting that u = l / to, the inequality 14 to an upper limit to to expressed as 
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This upper limit for to increases with increasing error, but only as the square root of the error. 

 

Appendix 4 – Condition on capillary tube geometry 

 In order to perform the determination of D by means of TDA with an error lower than or 

equal to ε, the elution time, to, must be found between the two limits given by ineqs A29 and 

A33, i.e. 

 o
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 (A34) 

 This double condition shows that a time window for to can be found in order to perform 

TDA using eq 20 only if 
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The larger l / Rc, the larger the to window for performing TDA at a constant error level.  
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