This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Direct White Light Emission from a Rare-Earth-Free Aluminium-Boron-Carbon-Oxynitride Phosphor

T. Ogi* a, H. Iwasaki b, A. B. D. Nandiyanto a, F. Iskandar c, W.-N. Wang d, and K. Okuyama a

White light-emitting diodes offer the possibility of efficient, safe, and reliable solid-state lighting, and thus have various applications. Reported white light-emitting phosphors usually contain expensive rare-earth metals and are generally prepared by high-energy processes (e.g., >1000 °C, H2 and CO reduction atmospheres). These factors limit their applications. Therefore, preparing cost-effective white light-emitting phosphors from environmentally friendly processes is an important challenge. Herein, a direct white light-emitting aluminium-boron-carbon-oxynitride (AlBCNO) phosphor, which can be economically produced using low-energy methods (<900 °C, atmospheric conditions), is reported. To the best of our knowledge, this is the first reported rare-earth-free white light-emitting phosphor. AlBCNO emission spans the entire visible spectrum, and its broad excitation spectrum is comparable to that of near-UV light-emitting diodes. Increasing the relative concentrations of B or Al in AlBCNO enables emission tuning to yellow or blue, respectively. These findings have implications for new methods of preparing white light-emitting phosphors.

Introduction

Solid-state lighting using white light-emitting diodes (LEDs) has attracted much attention because of its energy efficiency, safety, reliability, ease of maintenance, and environmental friendliness. Two main methods are currently used to achieve white light emission from a LED chip. One method is to mix red-, green- and blue-LEDs. However, this approach is rarely used. It is costly and each LED chip has different drive voltages, thermal properties and degradation trends, which restricts its application. The other method is to use a blue- or UV-LED chip combined with down-converting phosphors. The most common way to create a white-LED is to combine a blue InGaN chip with a Y3Al5O12:Ce3+ (YAG:Ce)-based yellow phosphor. Devices based on this phosphor tend to exhibit a poor colour-rendering index and a high correlated colour temperature because of limited emitted red wavelengths, and this limits the LED’s applications. The blue component in white LEDs also reportedly causes retinal stress.

Lighting systems that employ UV-LED chips using red, green, and blue phosphors (tricolour phosphors) can potentially avoid these problems. This approach provides white LEDs with excellent colour-rendering indices, and these generate warm white light without blue component hazards. However, the luminescence efficiency of these systems is low because of the strong reabsorption of blue wavelengths by the red and green phosphors. It is also difficult to control the colour balance in tricolour systems, resulting in complicated and costly devices.

Single component white-emitting phosphors are non-blending red, green, and blue phosphors, and they are currently being investigated to overcome these problems. Much effort has been put into developing single component white-emitting phosphors, as detailed in Table SI-1. However, three distinct problems must be addressed before the currently available white LEDs can be commercially viable. First, expensive raw materials including rare-earth (RE) metals tend to be required for white light emission. Second, most synthetic procedures require temperatures in excess of 1000 °C over extended periods. Reductive atmospheres are also often employed and require hydrogen and carbon monoxide to activate the RE ions, resulting in potential safety issues. Third, quantum yield is an important consideration for practical LED applications; however, few studies have reported the quantum yield of white light-emitting phosphors. In summary, an RE-free white light-emitting phosphor is highly desirable for next-generation solid-state lighting applications.

Boron carbon oxynitride (BCNO) phosphors are good candidates for RE-free white light-emitting phosphors. Their advantages are (1) their composition of inexpensive B, C, N, and O, (2) their relatively low preparation temperatures (~900 °C) at ambient pressure, (3) their colour emission is tuneable from violet to near-red wavelengths (387–571 nm) by varying the C content, (4) their relatively high internal quantum efficiency (IQE), (5) their broad excitation spectrum (254–460 nm), and (6) the variety of morphologies obtainable including nanocrystals and fibers. However, direct white emission from BCNO systems has not yet been reported. The emission colour in BCNO systems is determined by their C content. On the other hand, an alternative RE-free phosphor is Al4O2:C, which has been developed using the same method as that used for BCNO. The Al4O2:C phosphor exhibits intense blue emission under UV excitation. This unique property...
suggests that if Al is introduced to the yellow-emitting BCNO phosphor, it will provide a broad range of luminescence, which will cover both the blue and yellow emission bands. Thus, the hybridization of yellow-emitting BCNO and blue-emitting Al$_2$O$_3$:C phosphors may allow the development of new white light-emitting phosphors. However, no previous study has been carried out to determine if RE-free white light-emitting materials can be used as novel phosphors.

Here, we report the facile synthesis of a RE-free white light-emitting phosphor containing Al, B, C, N, and O (AlBCNO). AlBCNO was prepared from RE-free raw materials, i.e. boric acid, urea, PEI, and aluminium hydroxide in a low-energy process (~900 °C, atmospheric conditions). Upon excitation at 365 nm, AlBCNO exhibited a broad emission band centred at 462 nm and spanning the entire visible spectrum. This resulted in excellent white light emission. Detailed characterization suggests that the AlBCNO phosphor is mainly composed of BCNO and Al$_2$O$_3$:C; but the phosphor is not just a simple mixture since the photoluminescence (PL) spectrum of AlBCNO is very different from that of physically mixed BCNO and Al$_2$O$_3$:C. To the best of our knowledge, this is the first reported RE-free white light-emitting phosphor. Furthermore, varying the relative concentrations of B and Al allows blue and yellow light generation with high colour stability.

Results and discussion

Figure 1(a) and (b) show the PL and photoluminescence excitation (PLE) spectra, respectively, for powder samples 1-3 prepared under the conditions shown in Table 1. Samples 1 and 2 were prepared as a representative model of the BCNO and Al$_2$O$_3$:C phosphors, respectively. The B/Al molar ratio of sample 3 was 2.00. Precursor solutions for all three samples were heated at 800 °C for 30 min under ambient pressure. For sample 3 (representative AlBCNO), a broad emission band centred at 462 nm was observed under excitation at 365 nm. This broad band overlaps those of sample 2 (Al$_2$O$_3$:C) and sample 1 (BCNO), as they are centred at 450 and 500 nm, respectively. The full width at half maximum (FWHM) of the emission peak of AlBCNO is around 170 nm, which is larger than that of Al$_2$O$_3$:C and BCNO. This indicates that AlBCNO exhibits good colour rendering. The PLE spectrum of AlBCNO (Figure 1(b)), which was monitored at 462 nm, gave components at 358 (strongest) and 432 nm. The PLE spectra for Al$_2$O$_3$:C and BCNO, which were monitored at 450 and 500 nm, respectively, exhibited broad bands from 250 to 460 nm. The strongest AlBCNO peak at 358 nm is attributed to Al$_2$O$_3$:C at 349 nm and BCNO at 380 nm. The AlBCNO peak at 432 nm originates from Al$_2$O$_3$:C at 413 nm and BCNO at 468 nm. The PLE spectrum of AlBCNO is relatively broad with one high wavelength and several low wavelength peaks. AlBCNO can potentially be used as a direct white light-emitting source under UV- or visible-light excitation. Figure 1(c) and (d) show chromaticity analyses and digital photographs, respectively, of the three phosphor samples. The chromaticity coordinates (x, y) of AlBCNO, BCNO, and Al$_2$O$_3$:C were (0.28, 0.35), (0.30, 0.43), and (0.20, 0.14), respectively. Those of AlBCNO were the closest to typical values for white light emission (0.35, 0.35). Figure 1(d) shows digital photographs of the samples upon excitation at 365 nm. Figure 1(d1) shows that AlBCNO exhibits white light emission. Yellow emission and blue emission were observable by the naked eye for BCNO and Al$_2$O$_3$:C, respectively (Figure 1(d2) and (d3)). The internal quantum efficiency (IQE) values of AlBCNO, BCNO and Al$_2$O$_3$:C were 14.1, 25.1, and 9.4%, respectively. The IQE of AlBCNO is lower than that of previously reported white light-emitting phosphors (13-30%) composed of Ca$_3$Y$_6$ (SiO$_4$)$_6$:Ce$^{3+}$/Mn$^{2+}$, Tb$^{3+}$. However, AlBCNO has more potential because its synthesis does not require RE materials or high-energy processes. The environmentally friendly preparation of AlBCNO can potentially result in significant energy reduction.

Table 1 Precursor and synthesis temperature conditions of the produced phosphor samples.

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Boric Acid [mol/L]</th>
<th>Urea [mol/L]</th>
<th>PEI [mol/L]</th>
<th>Al[OH]$_3$ [mol/L]</th>
<th>B/Al</th>
<th>Synthesis temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>25.00</td>
<td>329.00</td>
<td>33.33</td>
<td>0.00</td>
<td>0.00</td>
<td>800°C</td>
</tr>
<tr>
<td>Sample 2</td>
<td>0.00</td>
<td>493.50</td>
<td>50.00</td>
<td>1.50</td>
<td>0.00</td>
<td>800°C</td>
</tr>
<tr>
<td>Sample 3</td>
<td>37.50</td>
<td>500.00</td>
<td>75.00</td>
<td>0.38</td>
<td>2.00</td>
<td>800°C</td>
</tr>
<tr>
<td>Sample 4</td>
<td>37.50</td>
<td>0.00</td>
<td>75.00</td>
<td>0.23</td>
<td>3.33</td>
<td>900°C</td>
</tr>
<tr>
<td>Sample 5</td>
<td>37.50</td>
<td>0.00</td>
<td>75.00</td>
<td>0.19</td>
<td>4.00</td>
<td>900°C</td>
</tr>
<tr>
<td>Sample 6</td>
<td>37.50</td>
<td>0.00</td>
<td>75.00</td>
<td>0.13</td>
<td>6.00</td>
<td>900°C</td>
</tr>
<tr>
<td>Sample 7</td>
<td>37.50</td>
<td>0.00</td>
<td>75.00</td>
<td>0.08</td>
<td>10.00</td>
<td>900°C</td>
</tr>
<tr>
<td>Sample 8</td>
<td>37.50</td>
<td>0.00</td>
<td>75.00</td>
<td>0.05</td>
<td>14.00</td>
<td>900°C</td>
</tr>
<tr>
<td>Sample 9</td>
<td>37.50</td>
<td>0.00</td>
<td>75.00</td>
<td>0.04</td>
<td>18.1</td>
<td>900°C</td>
</tr>
</tbody>
</table>

Figure 1 (a) Emission spectrum, (b) excitation spectrum, (c) colour diagram, and (d) digital photographs of the AlBCNO, Al$_2$O$_3$:C, and BCNO powder samples.

Figure 2 XRD patterns of the AlBCNO, BCNO, and Al$_2$O$_3$:C phosphors.
To investigate the white light emission from AlBCNO, the crystal structures and chemical compositions of several samples were analysed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). The XRD pattern (Figure 2) of Al$_2$O$_3$:C corresponded well to that of Al$_2$O$_3$ [JCPDS 29-0063], and that of BCNO corresponded to that of BN [JCPDS 73-2095]. These results are in agreement with previous reports. The XRD peaks corresponding to B$_2$O$_3$ [JCPDS 06-0297], Al$_5$BO$_9$ [JCPDS 77-0395], Al$_2$O$_3$, and BN were also observed in the spectrum of the AlBCNO sample. Thus, AlBCNO contained crystalline BCNO and Al$_2$O$_3$:C, and new B$_2$O$_3$ and Al$_5$BO$_9$ crystal phases were also formed. These results are supported by the FESEM observations shown in Figure 3(a–d). Figure 3(c, d) shows that sample 1 (BCNO) is composed of flake-shaped particles larger than 3 µm, and sample 2 (Al$_2$O$_3$:C) is composed of near-spherical particles smaller than 300 nm. The morphology of AlBCNO is shown in Figure 3(a) and (b), and the flake-shaped particles are composed of needle-like crystals. AlBCNO particles should be expected to appear as mixed Al$_2$O$_3$:C and BCNO materials in which Al$_2$O$_3$:C is coated by BCNO. Needle-like crystals have been previously observed for Al$_5$BO$_9$.

The AlBCNO particle morphology and the local structure of the elemental states were analysed using TEM and electron energy loss spectroscopy (EELS). Figure 4(a1) and (a2) show TEM images of AlBCNO. Some particles larger than 300 nm (Figure 4(a1)) were surrounded by amorphous material. The TEM image (Figure 4(a2)) shows that needle-like crystals also exist within the flake-shaped particle. HRTEM images were obtained from the positions indicated in Figure 4(a1) and (a2) and are shown in Figure 4(b1–3). Figure 4(b1) shows that the flake-shaped particles consist of amorphous material and nanocrystals smaller than 5 nm. Most nanocrystals had a lattice spacing of 0.32 nm, which is consistent with the (002) plane of BN (JCPDS 73-2095). Previous reports suggest this position indicates turbostratic boron nitride (t-BN). The HRTEM observation at position 2 in Figure 4(a1) showed nanocrystals with a lattice spacing of 0.24 nm. This may be due to the (311) plane of Al$_2$O$_3$ (JCPDS 29-0063). High crystallinity was observed for the needle-shaped samples shown in Figure 4(b3). These nanocrystals had a lattice spacing of 0.53 nm, indicating the (020) plane of Al$_5$BO$_9$ (JCPDS 77-0395).

Figure 5 shows the EELS spectra obtained at positions 1 (film) and 2 (particle), as indicated in Figure 4(a1). The results show that B, C, N and O are present in the film (position 1), and Al and O are mainly present in the crystallized particle (position 2). The result obtained for the film is similar to previous EELS results for BCNO. The sharp B–K ionization peak at 194 eV (Figure 5(c)) and the three C–K ionization peaks at 285, 288, and 295 eV (Figure 5(d)) indicate that B is predominantly surrounded by N and O. This implies that there is little B–C bonding. It also suggests a soft sp2 hybridized C framework within the film. A 7 eV peak was detected in the low loss spectrum (Figure 5(a)), which indicated an interband transition for BN. Thus, BN bonding containing strong σ* bands exists in the film. Al–L ionization at 78.9 eV (Figure 5(b)), N–K ionization at 401 eV (Figure 5(e)), and O–K ionization at 540 eV (Figure 5(f)) were observed in the particle. Wu et al. attributed these peaks to Al-N and Al-O bands. Weak characteristic peaks of B, C, and N were observed in the spectrum of the particle; however, the particles were covered to some degree by the film.
Elemental mapping of Al, B, C, N, and O was undertaken for confirmation (Figure 6). These results indicated that the particles were composed of Al, B, C, N, and O. Al and O were predominantly located in the particles while B, C, N, and O were located in the film. X-ray fluorescence (XRF) analysis indicated an AlBCNO composition of 7.9, 9.73, 19.2, 13.5, and 49.7% for Al, B, C, N, and O, respectively. To summarize, the AlBCNO phosphor is a composite of flake-shaped particles and needle-like crystals. The flake-shaped particles are mainly composed of low-crystallinity t-BN including covalently bounded B, N, and O, with a sp² hybridized C framework, which is a representative BCNO. On the other hand, the needle-like crystals predominantly consist of highly crystalline Al₂O₃ and microcrystalline Al₂O₃ contacting Al-N and Al-O bonds and minor carbon impurities.

The proposed particle formation mechanism is shown in Figure 7. The precursor solution of boric acid, urea, aluminium hydroxide and PEI was heated at 130 °C, and B₂O₃ was formed upon solvent evaporation (R1). At higher than 186 °C, B₂O₃ was gradually nitrided by the NH₃ generated from urea decomposition (R2). PEI was heated at 130 °C, and B₂O₃ was formed upon solvent evaporation (R1). At higher than 186 °C, B₂O₃ was gradually nitrided by the NH₃ generated from urea decomposition (R2). The precursor solution of boric acid, urea, aluminium hydroxide and PEI was heated at 130 °C, and B₂O₃ was formed upon solvent evaporation (R1). At higher than 186 °C, B₂O₃ was gradually nitrided by the NH₃ generated from urea decomposition (R2).

Figure 6 Elemental mapping of the AlBCNO phosphor sample.

The PL properties of AlBCNO and physically mixed samples of Al₂O₃:Cr and BCNO were compared. Al₂O₃:Cr (sample 1) powder samples were mixed at Al₂O₃:Cr:BCNO mass ratios of 1:1, 1:2, and 1:3, and the PL was measured at room temperature upon excitation at 365 nm (Figure SI-2). The FWHM of the spectrum for physically mixed 1:1 Al₂O₃:Cr:BCNO was 108 nm, and this was smaller than that of AlBCNO (170 nm). As a result, the emission of the mixed sample appeared green to the naked eye. This is attributed to the different PL intensities of each component. The PL intensity of BCNO was higher than that of Al₂O₃:Cr and, therefore, a red-shifted emission was observed in the mixed sample. Another reason for the colour heterogeneity could be inhomogeneous mixing since it is difficult to homogeneously mix two powders. Mixing the materials during precursor preparation ensured that BCNO and Al₂O₃:Cr were well mixed at the atomic level in AlBCNO. However, AlBCNO is not a pure mixture of Al₂O₃:Cr and BCNO because crystalline Al₂O₃ and B₂O₃ are also present.

Physically mixed powder samples were also heated at 800 °C for 30 min and their PL properties were measured at 365 nm. Figure SI-2(b) shows that heating mixed samples did not yield similar emission spectra to that of AlBCNO. This further supports the conclusion that AlBCNO is not a pure mixture of Al₂O₃:Cr and BCNO. The white-emission mechanism of AlBCNO is complicated and requires further investigation.

Figure 7 Particle formation and emission of AlBCNO phosphor:

R1: 2H₂BO₂→B₂O₃+3H₂O (130°C ~), R2: (NH₂)₂CO→C₃H₆N₂O₂+NH₃ (186°C ~), R3: B₂O₃+NH₃→2B(N-t-BN)+3H₂O (500°C ~), R4: Al(OH)₃→2AlOOH+H₂O (450°C ~), R5: 2AlOOH→γ-Al₂O₃+H₂O (500°C ~), R6: γ-Al₂O₃+5B₂O₃→2Al₂BO₃ (800°C ~)
Urea was removed from the precursor solution to lower the production cost of AIBCN0. Previous reports suggest that PEI promotes nitridation.29 PEI can potentially act as an N source for AIBCN0. Figure SI-3 compares the PL properties of AIBCN0 with and without urea in the precursor solution. There is no significant difference in the spectrum, peak position, or chromaticity coordinates. According to our previous study,29 thermal decomposition of PEI occurs from around 300 °C. Therefore, the nitrogen atoms derived from PEI at this temperature and the nitridation of the intermediate product were apparent without the use of urea.

PL and XRD measurements were obtained for AIBCN0 prepared from precursor solutions with B/Al ratios of 3.33 to 18.1. In this experiment, the AIBCN0 phosphors were prepared at 900 °C in expectation of an enhancement in quantum efficiency. Figure 8(a) shows the PL spectra of multi-colour emitting AIBCN0 prepared using various B/Al ratios. An increase in ratio from 3.33 to 18.1 led to a red-shift in emission from 394 to 488 nm. The emission shifted to longer wavelengths with an increase in B content because the content of yellow-emitting BCNO also increased. This result is supported by XRD measurements (Figure SI-4), in which the BN peak intensity increases with an increase in the B/Al ratio. The red-shift of the maximum peak intensity is attributed to the increase in BCNO content. A low B/Al ratio results in the AlBCNO phases dominating the powder sample and, therefore, the resulting phosphor exhibits blue emission. These phenomena are consistent with the AIBCN0 emission mechanism proposed in Figure 7, and they show the importance of controlling the BCNO and Al2O3:C content of AIBCN0. The emission of AIBCN0 can potentially be tuned from 394 to 488 nm. A chromaticity analysis was performed to further investigate the PL properties of the AIBCN0 phosphors (Figure 8(b)). The chromaticity coordinates (x, y) of the AIBCN0 phosphors with B/Al ratios of 3.33, 4.00, 6.00, 10.0, 14.0 and 18.1, were (0.177, 0.130), (0.184, 0.143), (0.211, 0.247), (0.237, 0.298), (0.288, 0.346), and (0.291, 0.354), respectively. The corresponding IQE values were 17.1, 19.0, 30.9, 35.4, 14.8, and 10.5%, respectively.

Although a more detailed study is required to determine the factors required for an increase in IQE and to better understand the emission mechanism, AIBCN0 is a promising direct white light-emitting phosphor since it can be prepared without RE metals or high-energy processes. Such a preparation can lead to a significant energy reduction and can potentially be scaled-up for industrial application.

Figure 8 Effect of the B/Al ratios of the AIBCN0 phosphor samples on the PL properties. Emission spectra (a), and colour diagram (b).

Conclusions

An RE-free white light-emitting AIBCN0 phosphor was prepared from a precursor solution consisting of relatively inexpensive raw materials, i.e. boric acid, urea, PEI and aluminium hydroxide. The AIBCN0 phosphor prepared at 800 °C exhibited a broad excitation band at 300–450 nm and a broad emission band centred at 462 nm. The chromaticity coordinate (x, y) and internal quantum efficiency of this AIBCN0 phosphor were (0.28, 0.35) and 25.1%, respectively. XRD, TEM, and EELS analyses revealed that the AIBCN0 was composed of low-crystallinity t-BN including covalently bound B, N and O, with a sp² hybridized C framework, highly crystalline Al2O3, and microcrystalline AlO bands and minor carbon impurities. Furthermore, the AIBCN0 phosphor was not a simple mixture of the yellow emission from BCNO and the blue emission from Al2O3:C. In addition, the emission wavelength of AIBCN0 can be tuned from 394 to 488 nm by changing the B/Al ratios from 3.33 to 18.1. The IQE value reached 35.4% when the B/Al ratio and the operating temperature were 10.0 and 900 °C, respectively. Even though the white-emission mechanism of AIBCN0 requires further investigation, AIBCN0 shows promise for white light-emitting applications because of its fascinating properties, low energy requirements and the low cost of preparation.

Experimental

Synthesis of phosphor samples. AIBCN0, BCNO, and Al2O3:C were prepared from liquid precursors. The synthetic method is shown in Figure SI-1. Phosphor precursors were prepared by dissolving boric acid (H3BO3, Wako Chemicals Co., Ltd., Japan), urea ((NH2)2CO, Wako Chemicals Co., Ltd.), polyethyleneimine (PEI) (%CH2CHNH%)n, Mn=1800, Tokyo Chemical Industry Co., Ltd., Japan), and aluminium hydroxide (Al(OH)3, Showa Denko K. K., Japan) in distilled water at 40 °C. The concentrations of boric acid, urea, PEI and aluminium hydroxide used in the precursor solutions are shown in Table 1. The B/Al molar ratio of the precursor solutions varied from 2.00 to 18.1. The mixed precursors were transferred into a ceramic crucible and heated at 800–900 °C for 30 min under ambient pressure, and then cooled to room temperature.

Photoluminescence measurements. The PL and PLE spectra were measured at room temperature using a spectrophotophotometer (RF-5300PC, Shimadzu Corp., Kyoto, Japan) equipped with an Xe lamp. The IQE and Commission Internationale de l’Eclairage (CIE) chromaticity coordinates for all the phosphors were measured using an absolute PL quantum yield measurement system (C9920-02, Hamamatsu Photonics, Shizuoka), with a BaSO4-coated integrating sphere and a Xe lamp source. The PL analyses were performed at room temperature under excitation at 365 nm, which is a standard long UV excitation wavelength.

Materials characterization. Crystal structures were investigated using powder XRD (RINT 2200 V, Rigaku, Tokyo, Japan) with Cu Kα radiation. Morphologies and crystal sizes were observed by FESEM (S-5000, Hitachi Corp., Tokyo, Japan) at 20 kV, and HRTEM (JEM-3000F, JEOL, Tokyo, Japan) at 300 kV. The chemical compositions of the AIBCN0 phosphors were investigated by EELS using a spectrometer attached to the HRTEM instrument. The spectral imaging of the powder samples was carried out using a JEOL JEM-3000F microscope (297 kV) equipped with a post column 90° energy filter (Gatan GIF-2000). Elemental mapping was obtained by the three windows technique from the spectral images. XRF analysis was used to determine the chemical compositions.
Table S1: Summary of single component white-emitting phosphor.

<table>
<thead>
<tr>
<th>Materials</th>
<th>method</th>
<th>operating condition</th>
<th>Emission</th>
<th>excitation</th>
<th>Quantum efficiency</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba₂MgSi₄O₁₀Eu⁺⁺,Mn⁺⁺</td>
<td>solid state reaction</td>
<td>unknown</td>
<td>442, 505, 620 nm</td>
<td>375 nm</td>
<td>unknown</td>
<td>6a)</td>
</tr>
<tr>
<td>Sr₂MgSi₄O₁₀Eu⁺⁺</td>
<td>solid state reaction</td>
<td>1250°C for 4 h under H₂/N₂ atmosphere</td>
<td>470, 570, 680 nm</td>
<td>375 nm</td>
<td>unknown</td>
<td>6b)</td>
</tr>
<tr>
<td>Sr₄MgSi₄O₁₀Eu⁺⁺, Mn⁺⁺</td>
<td>solid state reaction</td>
<td>1250°C for 4 h under CO atmosphere</td>
<td>444, 609 nm</td>
<td>330 nm</td>
<td>unknown</td>
<td>6c)</td>
</tr>
<tr>
<td>Porous Zinc Gallatephosphate</td>
<td>hydrothermal</td>
<td>160 °C for 7 days and heated at 280 °C for 4 h</td>
<td>433, 550 nm</td>
<td>390 nm</td>
<td>unknown</td>
<td>6d)</td>
</tr>
<tr>
<td>Sr₂P₂O₇:Ce⁺⁺, Eu⁺⁺</td>
<td>solid state reaction</td>
<td>900-1000 °C under 25% H₂/Ar atmosphere</td>
<td>454, 574 nm</td>
<td>551 nm</td>
<td>unknown</td>
<td>6e)</td>
</tr>
<tr>
<td>Sr₃Al₂O₆:Ce⁺⁺, Eu⁺⁺</td>
<td>solid state reaction</td>
<td>1250 °C for 4 h under Ar atmosphere</td>
<td>464, 609 nm</td>
<td>330 nm</td>
<td>unknown</td>
<td>6f)</td>
</tr>
<tr>
<td>Ca₃(PO₄)₂:Eu⁺⁺, Mn⁺⁺</td>
<td>solid state reaction</td>
<td>1200°C for 4 h under H₂/N₂ atmosphere</td>
<td>490, 645 nm</td>
<td>254-430 nm</td>
<td>known</td>
<td>6g)</td>
</tr>
<tr>
<td>Ca₂Y(GaO)₂(B₂O₅)₂:Ce⁺⁺,Mn⁺⁺, Tb⁺⁺</td>
<td>solid state reaction</td>
<td>1000°C for 8 h under H₂/N₂ atmosphere</td>
<td>409, 589 nm</td>
<td>365 nm</td>
<td>unknown</td>
<td>6h)</td>
</tr>
<tr>
<td>Ca₃Y₃(SiO₄)₃:Ce⁺⁺/Mn⁺⁺/Tb⁺⁺</td>
<td>solid state reaction</td>
<td>1350 °C for 2 h</td>
<td>410, 614 nm</td>
<td>284-424 nm</td>
<td>13-30%</td>
<td>7)</td>
</tr>
<tr>
<td>LiSr₂(B₂O₅)₂:Ce⁺⁺, Eu⁺⁺</td>
<td>solid state reaction</td>
<td>1227 °C for 15 h under H₂/N₂ atmosphere</td>
<td>430, 612 nm</td>
<td>350 nm</td>
<td>unknown</td>
<td>6i)</td>
</tr>
<tr>
<td>Na(Sr,Ba)PO₄:Eu⁺⁺, Mn⁺⁺</td>
<td>solid state reaction</td>
<td>1150°C for 10 h under H₂/N₂ atmosphere</td>
<td>440-450, 600 nm</td>
<td>390 nm</td>
<td>unknown</td>
<td>6j)</td>
</tr>
<tr>
<td>Dy⁺⁺-activated Dy₅(B₅O₁₅)₃</td>
<td>solid state reaction</td>
<td>1250 °C for 3 h</td>
<td>407, 575 nm</td>
<td>393 nm</td>
<td>unknown</td>
<td>6k)</td>
</tr>
<tr>
<td>Ca₅Sc₂Al₅O₁₈:Ce⁺⁺, Tb⁺⁺, Mn⁺⁺</td>
<td>solid state reaction</td>
<td>1400 °C for 4 h under H₂/N₂ atmosphere</td>
<td>380, 542, 574, 670 nm</td>
<td>330 nm</td>
<td>unknown</td>
<td>6l)</td>
</tr>
<tr>
<td>CaₓYₓP₂O₇:Eu⁺⁺,Mn⁺⁺</td>
<td>solid state reaction</td>
<td>1000 °C for 10 h under H₂/N₂ atmosphere</td>
<td>570 nm</td>
<td>375 nm</td>
<td>17.1-22%</td>
<td>6m)</td>
</tr>
</tbody>
</table>

Supporting Information

Figure SI-1 Experimental method.

Figure SI-2 (a) Comparison of the photoluminescence properties between the AIBCNO phosphor and the physically mixed powder sample of the BCNO and Al₂O₃:C powders, (b) Effects of mixing ratios and heating (800 °C, 30 min) on the photoluminescence properties.

Figure SI-3 Effect of urea on the PL properties. Emission spectra (a) and colour diagram (b). Synthesis temperature: 800 °C.

Figure SI-4 Effect of the B/Al ratio of the AIBCNO phosphor samples on the crystal structures.
Acknowledgements

This research was supported by JSPS KAKENHI (Nos. 30508809, 24656413) and JST No. AS242201588M. The authors thank Kousuke Okino for assistance with the experiments and with powder characterization, and Dr. Eishi Tanabe, Hiroshima Prefectural Institute of Industrial Science and Technology, for assistance with TEM and elemental mapping analyses.

Notes and references

a Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
b Battery Materials Laboratory, Kurashiki Research Center, Kuraray, Co., Ltd., 2045-1 Sakazu, Kurashiki, Okayama 710-0801, Japan
c Department of Physics, Institute of Technology Bandung, Ganesha 10, Bandung 40132, West Java, Indonesia
d Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA

A novel direct white light emitting phosphor material was prepared from rare-earth free precursor solution.

“AlBCNO powder phosphor”

Normalized intensity [a.u.]

Wavelength [nm]

$\lambda_{ex}=365 \text{ nm}$

$\lambda_{ex}=365 \text{ nm}$

IQE=25.1%

Heat (<900°C~) atmosphere