This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Lanthaneide CPs: the Guest-Tunable Drastic Changes of Luminescent Quantum Yields, and Two Photon Luminescence

Cheng-Hui Zeng, a,b Jing-Ling Wang, a Yang-Yi Yang, a Tian-Shu Chu, a Sheng-Liang Zhong, b Seik Weng Ng, c Wing-Tak Wong d

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

Four kinds of guest-driven lanthanide coordination polymers (CPs) have been synthesized. They have the similar formula of [Tb(NPA) 3 CH 3 CN] n (1), [Tb(NPA) 3 CH 3 OH]CH 3 OH}CH 3 OH n (2), [Ln(NPA) DMF] n (Ln = Tb(3a), Gd(3b), Eu(3c)) [Tb(NPA) 3 DMSO] n (4). These complexes were characterized by single-crystal diffraction, PXRD, FT-IR, TGA, DTA, EA, UV-vis spectra and luminescence lifetime. They are all high thermostable, acid and base resistant. The luminescence quantum yields (QY) of Tb complex: 1, 2, 3a and 4 are 4.0%, 9.0%, 44% and 46% respectively. Interestingly, there is a drastic change from 4.0% to 46% in luminescence QY by exchanging the coordination solvent, the oscillation of small molecule nearby the Tb causes the drastic change. Furthermore, the octupolar-like structure of 4 has been found a high two-photon luminescence.

1 Introduction

The development in the field of lanthanide CPs is very rapid in the past decade because these materials possess a variety of potential applications, such as catalysis, drug delivery, supramolecular chirality, photophysics, magnetism, ion sensing and imaging. 1-14 These applications are due to the best properties of organic and inorganic components, and decrease/eliminate their drawbacks by a synergic effect. In order to get functional lanthanide materials, appropriate synthetic methods are critical. Deacon et al. contributed much to DMF and DMSO induced structural variations in rare earth benzoate complexes. 15, 16 Cepeda has studied the condition to preventing oxalate formation to participate in the structure of lanthanide CPs. 17 Gustafsson has reported single-crystal to single-crystal transformation of lanthanide CPs. 18 Paryzek has reported a solvent-controlled supramolecular self-assembly of ytterbium complex. 19 Recently Shen has reported polar solvent-water mixtures induced morphology control of lanthanide CPs, 20 some other methods of synthesizing lanthanide materials have also been reported, 21-24 but only a few works reported the solvent-tuned synthesis of lanthanide CPs. 18-21, 25-27
There are numerous studies of solvents effect on the luminescence properties of lanthanide complexes oligomer, however, due to the difficulties in getting accurate structural information, the effects of solvents on the lanthanide CPs luminescence has been less reported, with most available reports basing only on structural speculation. In order to get more luminescent lanthanide CPs materials, studies of solvents effect on tuning the structure of CPs, and relationship between structures and luminescence properties are imperative.

Luminescence QY is one of the important parameters for luminescent lanthanide complexes. There are three problems to be solved in preparing highly QY lanthanide complexes. First, f-f transitions in lanthanide ions are parity forbidden, the absorption coefficient is usually very low, therefore suitable antenna (usually aromatic ligands or diketon) are introduced to bind lanthanide ions, absorbing energy and transferring it to the lanthanide ions. Second, the triplet excited states of the antenna should be in a suitable energy level to matches well with the emitting energy state of Ln$^3^+$. Third, the energy on lanthanide ions could be easily de-excited when there are O-H, N-H or C-H groups within a radius of 20 Å. Robertson has been able to overcome these problems and reported some europium complexes with very high luminescence QY of 80%, Raymond also reported new terbium complexes with high luminescence QY of 47.2% and 48% in 2012. Some other efforts were also devoted to improve the luminescence QY of lanthanide complexes.

Inspired by the above considerations, and our previous experience that triplet excited states of ligands with one benzene chromophore matches well with 5D$_4$ emission state of Tb$^{3+}$, also based on nascent studies of luminescent lanthanide complexes (non-single-crystal structure, based on structural speculation) with ligand of N-phenylanthranilic acid (H-NPA) reported by Yan and Fu. For further studying the relation between luminescence properties and solvent tuned structures, H-NPA was selected to synthesize single-crystal structure of Tb$^{3+}$ complexes. Solvent effects on modifying structures and luminescence properties were investigated. These complexes were characterized by single-crystal diffraction, powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), differential thermal analysis (DTA), elemental analysis (EA), UV-visible spectra (UV-Vis) and luminescence lifetimes. Luminescence properties of the four series of Tb$^{3+}$ CPs were systematically studied. Low luminescence QY of 4% and 9% were found in CH$_3$CN and CH$_3$OH coordination CPs 1 and 2, respectively. But when DMF and DMSO coordinated to Tb$^{3+}$, the luminescence QY increased sharply to 44% and 46%, respectively. By analyzing the relationship between their structures and luminescence QY in detail, it was found that several reasons may cause the drastic changes in luminescence QY of 1, 2, 3a and 4. Besides, two photon luminescence of octupolar-like structure of 4 was also studied in detail.

2 Experimental

2.1 Materials and methods

Tb(NO$_3$)$_3$·6H$_2$O was prepared by dissolving Tb$_2$O$_3$ (99.9%) with concentrated HNO$_3$ (68%), and then evaporated at 100 °C until a crystal film was formed. H-NPA (99%) was purchased from Sigma-Aldrich. All other chemicals were commercially available and used without further purification.

Single crystal X-ray diffraction data were collected on a Bruker SMART 1000 CCD or Agilent 2011 diffractometer, with Cu-Kα or Mo-Kα radiation. Structures were refined by full-matrix least-squares methods with SHELXL-97 module. Phase purity of bulk sample was determined using a DMAX2200VPC diffractometer at 30 kV, 30 mA. TGA and DTA were performed under nitrogen atmosphere, on a Netzsch-Bruker TG-209 unit with heating rate of 10 °C ·min$^{-1}$. FT-IR was obtained in KBr pellets and recorded on a Nicolet 330 FT-IR spectrometer in the range of 4000-400 cm$^{-1}$. Luminescence spectra were recorded on a RF-5310PC (Shimadzu) Spectrofluorophotometer, and the excitation and emission slits were 3/3 nm. Luminescence lifetimes were collected by a combined fluorescence lifetime and steady-state spectrometer (FLSP920, Edinburgh) with a 450 W Xe lamp. The luminescence QY was determined by the
same spectrometer using a 450 W Xe lamp and an integrating sphere as our previous method. Two-photon luminescence experiment was carried out as described in our previous work.

2.2 Synthesis of [Tb(NPA)₃CH₂CN]ₙ (1)
H-NPA (39.6 mg, 0.24 mmol) and 15 ml water were mixed and the pH value was adjusted to about 9 with 0.1 M NaOH solution. 25 ml CH₂CN including 4.5 mg Tb(NO₃)₃·6H₂O (0.01 mmol) was slowly added to the ligand solution, making the system into two layers, and sealed in a long test tube and keeping still for 3 weeks at room temperature about 21–32 °C, yellow needle-like crystals were obtained. Yield: 50.1% based on Tb³⁺. Anal. Calcd (%): C, 58.86; H, 3.975. Found (%): C, 58.57; H, 3.941. FT–IR (Figure S1a) (KBr pellet, cm⁻¹): 3323 (s), 1595 (m), 1576 (m), 1541 (m), 1502 (s), 1488 (m), 1448 (m), 1396 (s), 1282 (s), 1161 (w), 748 (m), 696 (m), 553 (w), 523 (w).

2.3 Synthesis of [Tb(NPA)₃CH₂OH][CH₂OH]ₙ (2)
Tb(NO₃)₃·6H₂O (0.03 mmol) and H-NPA (0.09 mmol) were mixed in a 24 ml solution of H₂O/CH₂OH (V : V = 1 : 3). 0.1 M NaOH aqueous solution was added dropwise and the pH value was adjusted to 6.5. The resulting mixture was sealed into a Teflon reactor and heated at 80 °C for 3 days under autogenous pressure, then cooled to room temperature naturally followed by slow evaporation for three weeks. Yellow prism crystals of 2 were then obtained. Yield: 19.3% based on Tb³⁺. Anal. Calcd (%): C, 57.28; H, 4.455. Found (%): C, 57.32; H, 4.501. FT–IR (Figure S1a) (KBr pellet, cm⁻¹): 3432 (s), 2920 (m), 1498 (s), 1406 (s), 1279 (s), 1157 (m), 1115 (m), 1074 (m), 1030 (w), 893 (w), 748 (m), 675 (w).

2.4 Synthesis of [Ln(NPA)₃DMF]ₙ (Ln = Tb(3a), Gd(3b), Eu(3c))
The synthesis procedure for 3a, 3b and 3c were similar. 0.03 mmol Ln (NO₃)₃·6H₂O and 0.09 mmol H-NPA were mixed in 24 ml solution of H₂O/DMF (V : V = 1 : 3). Then 0.1 M NaOH solution was added dropwise to adjust the pH to about 6.5. The mixture was sealed into a 10 ml Teflon reactor and heated at 80°C for 3 days, then cooled to room temperature naturally. Colorless block crystals were obtained.

[Tb(NPA)₃DMF]ₙ (3a) Yield: 33.7% based on Tb³⁺. Anal. Calcd (%): C, 58.07; H, 4.293. Found (%): C, 58.17; H, 4.271. FT–IR (Figure S1d) (KBr pellet, cm⁻¹): 3305 (s), 3039 (m), 2931 (w), 1936 (w), 1670 (m), 1612 (s), 1597 (s), 1543 (m), 1500 (s), 1446 (m), 1396 (s), 1282 (s), 1161 (w), 748 (m), 696 (m), 523 (w).

[Gd(NPA)₃DMF]ₙ (3b) Yield: 32.1% based on Tb³⁺. Anal. Calcd (%): C, 58.18; H, 4.301. Found (%): C, 58.17; H, 4.311. FT–IR (Figure S1e) (KBr pellet, cm⁻¹): 3305 (s), 3041 (m), 2931 (w), 1936 (w), 1670 (m), 1612 (s), 1597 (s), 1543 (m), 1500 (s), 1446 (m), 1396 (s), 1282 (s), 1161 (w), 748 (m), 696 (m), 523 (w).

[Eu(NPA)₃DMF]ₙ (3c) Yield: 27.3% based on Tb³⁺. Anal. Calcd (%): C, 58.54; H, 4.327. Found (%): C, 58.59; H, 4.332. FT–IR (Figure S1f) (KBr pellet, cm⁻¹): 3303 (s), 3041 (m), 2931 (w), 1936 (w), 1670 (m), 1612 (s), 1597 (s), 1543 (m), 1500 (s), 1448 (m), 1396 (s), 1282 (s), 1161 (w), 748 (m), 696 (m), 523 (w).

2.5 Synthesis of [Tb(NPA)₃DMSO]ₙ (4)
Tb(NO₃)₃·6H₂O (0.03 mmol) and H-NPA (0.09 mmol) were mixed in 18 ml solution of H₂O/DMSO (V : V = 1 : 1). 0.1 M NaOH aqueous solution was added and the pH value was adjusted to 6.5. The mixture was sealed into Teflon reactor and heated at 80°C for 3 days, then cooled to room temperature slowly. Colorless block crystals were obtained. Yield: 31.3% based on Tb³⁺. Anal. Calcd (%): C, 56.36; H, 4.153. Found (%): C, 56.32; H, 4.131. FT–IR (Figure S1c) (KBr pellet, cm⁻¹): 3398 (s), 3034 (m), 2916 (w), 1936 (w), 1595 (s), 1541 (s), 1502 (s), 1448 (m), 1398 (s), 1282 (s), 1161 (w), 1011 (m), 958 (w), 752 (m), 698 (m), 523 (w).

3 Results and discussion

3.1 Syntheses
When H-NPA and Tb(NO₃)₃·6H₂O were mixed in two layer solutions of H₂O and CH₂CN, respectively, we got single crystal 1. X-ray diffraction data and elemental analysis results revealed that one CH₂CN coordinated to Tb³⁺, the coordinated CH₂CN is
among the big ligands of NPA and may play the role of satisfying high coordination number of Tb$^{3+}$. This encouraged us to synthesize more single crystals by replacing CH$_3$CN with small molecules such as CH$_3$OH, C$_2$H$_5$OH, DMF, DMSO, H$_2$O, pyridine, acetone or acetylacetone. After ten months of efforts, small molecules of CH$_3$OH, DMF and DMSO were assembled to Tb$^{3+}$ in crystals 2, 3a and 4 (Figure 1) by different synthetic procedures. In synthesizing 1, the pH of ligand solution was 9, which was different from the pH = 6.5 of ligand solutions in synthesizing 2, 3a, 3b, 3c and 4, so the pH value may also have effects on the crystal structures. Since these structures are very similar, 1 and 2 even have the same space group of C2/c, single-crystal-to-single-crystal (SCSC) transform experiments were performed. When 1 was immersed in CH$_3$OH, DMSO or DMF; 2 was soaked in CH$_3$CN, DMSO or DMF, 3a was soaked in CH$_3$OH, CH$_3$CN or DMSO, 4 was soaked in CH$_3$OH, CH$_3$CN or DMF for three weeks, single crystal data and PXRD experiment results (not shown) indicated that the crystal structures did not change, inferred that SCSC did not happen. These might due to the steric hindrance of phenylamino that prevented the coordinated solvent escaping and prevented the vast peripheral solvent getting into the cavities encompassed by ligands, and also infer the excellent stability of these complexes.

![Figure 1](https://example.com/figure1.png)

Figure 1. Guest-driven approach to synthesize four kinds of lanthanide CPs and comparison of their luminescence QY.

<table>
<thead>
<tr>
<th>Table 1. Crystallographic data of 1, 2, 3a, 3b, 3c and 4.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex 1 2 3a 3b 3c 4</td>
</tr>
<tr>
<td>Empirical formula</td>
</tr>
<tr>
<td>Formula weight</td>
</tr>
<tr>
<td>Temperature / K</td>
</tr>
<tr>
<td>Wavelength / Å</td>
</tr>
<tr>
<td>Crystal system</td>
</tr>
<tr>
<td>Space group</td>
</tr>
<tr>
<td>a / Å</td>
</tr>
<tr>
<td>c / Å</td>
</tr>
<tr>
<td>α / (°)</td>
</tr>
<tr>
<td>β / (°)</td>
</tr>
<tr>
<td>γ / (°)</td>
</tr>
<tr>
<td>V / Å3</td>
</tr>
<tr>
<td>Z</td>
</tr>
<tr>
<td>Calculated density/mg·m$^{-3}$</td>
</tr>
<tr>
<td>F(000)</td>
</tr>
<tr>
<td>Crystal size/mm</td>
</tr>
<tr>
<td>Theta range for data collection / (°)</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
</tr>
</tbody>
</table>
3.2 Structural analysis

Crystallographic data and structural refinement parameters for 1, 2, 3a, 3b, 3c and 4 are listed in Table 1. Selective bond lengths and angles for these complexes are listed in table S1 (ESI†).

Complex 1 has the space group of C2/c (No. 15), it is constructed by dinuclear SBUs and featured a 1D structure of [Tb(NPA)₃CH₃CN]ₙ in the ob direction. Each second building units (SBU) consists two equivalent Tb³⁺, six NPA, two coordination CH₃CN (Figure 2-I), the packing is shown in Figure 2-II and the 1D structure is similar to a butterfly (Figure 3). Tb³⁺ is eight coordinated by one N from CH₃CN and seven O of carboxyl, the eight coordinated atoms are arranged in the mode of distorted dicapped prism (Figure S2). Bond lengths of Tb-O are among 2.226-2.877 Å, the longer Tb···Tb distance of 5.386 Å is bridged by two carboxyl, and the shorter distance of Tb···Tb is 3.98 Å, which is bridged by four carboxyl, two O bridged mode make the Tb···Tb distance even shorter than 1 which bridged by four carboxyls (Figure 4). This is consistent with our previous result that stronger bridge forth would pull the metal ions closer. Ligands in 1 have two kinds coordination mode of µ₂-η²⁻¹ and µ₂-η¹⁻¹ (Figure S3). Experimental PXRD pattern corresponded well with the results simulated from single-crystal 1, indicating high phase purity of powder sample (Figure S4). When 1 was immersed in pH = 1 and pH = 12 water solutions for one week, the main peaks of PXRD patterns matched well with the simulated results of 1. This confirmed 1 is an acid- and alkali-resistant material.

![Figure 2](image2.png)

Figure 2. I) ORTEP view (30% thermal ellipsoids) shows the coordination environment and SBU of 1. All the hydrogen atoms are omitted, only Tb and coordinating atoms are labeled for clarity; II) Packing diagram of 1.

![Figure 3](image3.png)

Figure 3. Octupolar-like structure of 1 along the ob direction.

![Figure 4](image4.png)

Figure 4. Short and long Tb···Tb distances in 1.

Complex 2 featured a 1D structure of ([Tb(NPA)₃CH₃OH]CH₃OH]ₙ. It has the same space group as 1, the cell parameters of 1 and 2 are very similar (Table 1, cell volume difference is as small as 0.45%), we think the very small difference is induced by instrumental error or calculation error, but not induced by the coordination solvents. 2 is constructed by dinuclear SBUs (Figure 5-I), each SBU consists two equivalent Tb³⁺, six deprotonated ligands NPA, two coordination CH₃OH and two crystalline CH₃OH molecules. SBU is connected by ligands to form a 1D chain in the ob direction; SBUs stretch to form the packing structure of Figure 5-II. 1D chain of 2 looks...
like a spider from the ob direction (Figure S5). Tb\(^{3+}\) is coordinated by seven O, not in the range of most coordination number of 8-9. The seven O around Tb\(^{3+}\) are arranged in a distorted one-capped triangular prism (Figure S6a). Ligands in 2 have only one coordination mode of \(\mu_2\eta^1\eta^1\) to bridge two Tb\(^{3+}\) (Figure S6b). Bond lengths of Tb-O are among 2.269-2.486 Å, which are usually seen in other lanthanide complexes. Distances of Tb···Tb are 4.216 and 5.294 Å, the shorter distance of 4.216 Å is bridged by stronger strength of four carboxylic acid, and the longer distance of 5.294 is bridged by only two carboxyls (Figure S7). PXRD patterns corresponded well with the results simulated from the single-crystal, indicating the high phase purity of bulk sample (Figure S8).

Figure 5. I) ORTEP view (30% thermal ellipsoids) shows the coordination environment and SBU of 2. All the hydrogen atoms are omitted; only Tb and coordinated atoms are labeled for clarity; II) Packing diagram of 2.

Single crystal data (table 1) reveals that complexes 3a, 3b and 3c are isostructural and all featured a 1D structure of \([Ln(NPA)_3DMSO]_n\) (Ln = Tb(3a), Gd(3b), Eu(3c)). As an example, structure 3a would be described in detail. 3a belongs to the triclinic space group P\(-1\) (No. 2), SBUs (Figure 6-I) extend to form a packing structure of Figure 6-II. 1D structure of 3a extends in oa direction (Figure S9). Eight O around Tb\(^{3+}\) are arranged in a distorted bi-capped triangular prism (Figure S10). The Tb···Tb distances are 5.535 and 4.028, similar to 1, longer Tb···Tb distance is bridged by two carboxyl, shorter Tb···Tb distance is bridged by four carboxyl and two O (Figure S11). PXRD experiment indicating a high phase purity of the powder samples 3a (Figure S12). The acid and base resistance experiment was done with the same procedure as 1; results showed that 3a is an excellent acid- and alkali-resistant material.

Figure 6. I) ORTEP view (30% thermal ellipsoids) shows the coordination environment and SBU of 3a. All hydrogen atoms are omitted; only Tb and coordination atoms are labeled for clarity; II) Packing diagram of 3a.

Complex 4 has the formular of \([Tb(NPA)_3DMSO]_n\) and crystallizes in the monoclinic space group P2\(\text{I}/c\) (No. 14). Packing structure of 4 was constructed by dinuclear SBUs (Figure 7) and featured octupolar-like 1D structure along the ob direction (Figure S13). Bond lengths of Tb-O were among 2.269-2.486 Å. NPA in 4 has the same coordination modes as 1. Similar to complex 1, the Tb···Tb distance in 4 are 5.576 and 3.979 Å (Figure S14). PXRD indicated high phase purity of powder sample 4. When 4 was soaked in pH = 1 and pH = 12 water solutions for one week, the main peaks of PXRD matched well with the simulated results of single crystal 4 and proved that 4 is stable material in acid and base environment (Figure S15).

Figure 7. I) ORTEP view (30% thermal ellipsoids) shows the coordination environment and SBU of 4. All hydrogen atoms are omitted; only Tb and coordination atoms are labeled for clarity; II) Packing diagram of 4.

3.3 Thermogravimetric analyses

Figure 8(II) showed the TGA and DTA curves of complex 2. The TGA plot showed a weight loss of 3.81% before 65 \(^\circ\)C, which corresponding to one crystalline CH\(_3\)OH loss (calculated: 3.72%). From 65 to 379 \(^\circ\)C, there was another weight loss of 3.78%, which corresponded to one coordination CH\(_3\)OH.
(calculated: 3.72%) on each Tb$^{3+}$. There was another obvious weight loss from 379 °C to the end, which corresponded to the decomposition of ligands. Figure 15(I), (III) and (IV) showed similar TGA and DTA behaviors of sample 1, 3a and 4, respectively. TGA plots show a weight loss of 4.96% before 183 °C, 2.28% before 201 °C and 8.99% before 232 °C, that corresponded to one coordinated CH$_3$CN, DMF and DMSO loss on each Tb$^{3+}$ in 1, 3a and 4 (calculated: 4.91%, 7.03% and 8.94%), respectively. From 377, 370 and 383 °C, the ligands in 1, 3a and 4 began to decompose, respectively. The DTA curve showed two big endothermic peaks during this process, which indicated the ligands in these complexes decomposed in two steps.

![Figure 8](image)

Figure 8. TGA and DTA curves of I, II, III and IV for 1, 2, 3a and 4, respectively.

3.4 UV-vis spectra analysis

UV-vis spectra of complexes 1, 2, 3a and 4, together with the ligand of H-NPA in four different solvents, are shown in Figure S16. Table 2 showed the UV-vis spectra parameters of these complexes. Coordination complexes and ligand exhibited intense absorption bands at ca. 340 nm, which could be assigned to the n–π* transition of ligand. It was obvious that the n–π* transitions of Tb$^{3+}$ complexes were slightly bathochromically-shifted. It could be seen that the absorption intensities (A) and molar absorption coefficient values (E) of complexes 2, 3a and 4 were nearly three times as that of ligand, because there were three ligands coordinated to every Tb$^{3+}$. The A and E values of H-NPA and complex 1 are similar, which might be due to bad solubility of 1 in CH$_3$CN.

Table 2. UV-vis spectra parameters of 1, 2, 3a, 4 and ligand.

<table>
<thead>
<tr>
<th>Comp.</th>
<th>medium</th>
<th>C/mol·L$^{-1}$</th>
<th>λ/nm</th>
<th>A</th>
<th>E/ dm2·mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H-NAP</td>
<td>CH$_3$CN 1×105</td>
<td>349</td>
<td>0.310</td>
<td>3.10×105</td>
</tr>
<tr>
<td>2</td>
<td>H-NAP</td>
<td>CH$_3$OH 8×105</td>
<td>341</td>
<td>0.593</td>
<td>7.41×104</td>
</tr>
<tr>
<td>3a</td>
<td>H-NAP</td>
<td>DMF 2×105</td>
<td>347</td>
<td>0.817</td>
<td>4.35×105</td>
</tr>
<tr>
<td>4</td>
<td>H-NAP</td>
<td>DMSO 5×105</td>
<td>340</td>
<td>0.636</td>
<td>1.27×105</td>
</tr>
</tbody>
</table>

3.5 One photon luminescence

Luminescent properties of 1, 2, 3a and 4 were investigated in the solid state at room temperature. As shown in Figure 9, under the best excitations of 391, 399, 396 and 409 nm, respectively, these complexes displayed characteristic emission bands of Tb$^{3+}$ at about 489, 545, 586 and 622 nm, which were assigned to the characteristic transitions of $^{5}D_{4}$–$^{7}F_{6}$, $^{5}D_{4}$–$^{7}F_{5}$, $^{5}D_{4}$–$^{7}F_{4}$ and $^{5}D_{4}$–$^{7}F_{3}$ of Tb$^{3+}$, respectively.

![Figure 9](image)

Figure 9. Excitation and emission spectra of 1, 2, 3a and 4.

The total luminescence QY of Tb$^{3+}$-centered complexes 1, 2, 3a and 4 are 4.0%, 9.0%, 44% and 46%, under the best excitations of 399, 391, 409 and 396 nm, respectively. The overall luminescence QY of these complexes are in the order of 4 > 3a > 2 > 1. Luminescence QY of complexes 3a and 4 are obviously larger than those of 1 and 2, 3a and 4 are ten more times than 1, four times as that of 2. Since the antenna of NPA and its number in these four lanthanide CPs are the same and...
only coordination solvents are different, several reasons such as weight atom in coordination molecule; distance between Tb\(^{3+}\) and oscillators; oscillator number and hydrogen bond which fix the oscillator, which effect the energy lose on Tb\(^{3+}\) through oscillation of C-H, N-H and O-H groups within a radius of 20 Å were analyzed in detail.\(^{31, 32}\) Exhibits the largest luminescence QY of complexes between oscillators and Tb\(^{3+}\). Comparing with solvent of DMSO would decrease the oscillation of oscillator, which could decrease the energy lose on Tb\(^{3+}\) through non-radiation. 3a also has highly luminescence QY of 44%, and this may due to the long distance between oscillators(H-C-N-O) and Tb\(^{3+}\). Although 2 has more oscillators and the distances between oscillators and Tb\(^{3+}\) center are nearer than 1, 2 has larger luminescence QY. This can be ascribed to the hydrogen bond of oscillators, in 2, the very near oscillator of O-H is fixed by a short (2.502 Å) and tight hydrogen bond (figure S17), two of other three oscillators of C-H on methyl group are also fixed by hydrogen bond, but only one oscillator of C-H in CH\(_3\)CN is fixed by hydrogen. The high luminescence QY of complexes 4 and 3a suggest the triplet energy state of ligand NPA matches well with the \(I_{\text{D}}^{0}\) emission state of Tb\(^{3+}\).

![Figure 10](image)

Figure 10. Luminescence lifetimes of solid samples of 1, 2, 3a and 4 at room temperature.

Luminescence lifetimes of complexes 1, 2, 3a and 4 were investigated in solid state. The curves of the luminescence decay at 545 nm were illustrated in Figure 10. Complexes 1 and 2 followed single exponential decay law, and the equation of \(I_t = A_0 + A_1 \times \exp(-t/\tau)\) (\(\tau\) is the luminescence lifetime, \(A_0\) and \(A_1\) are the weighting parameters) was utilized for fitting the luminescence decay curves, lifetime values were determined to be 0.419 and 0.635 ms for 1 and 2, respectively. The decay curves for complexes 3a and 4 could fit well to the function of \(I_t = A_0 + A_1 \times \exp(-t/\tau_1) + A_2 \times \exp(-t/\tau_2)\) (\(\tau_1\) and \(\tau_2\) are the fast and slow components of the luminescence lifetimes, \(A_0\), \(A_1\) and \(A_2\) are the weighting parameters), and the luminescence lifetime values for 3a and 4 were 1.192 and 0.917 ms. Luminescence lifetimes of four complexes were in the order of 4 > 3a > 2 > 1, which was consistent with the results of luminescence QY described above.

3.6 Two-photon luminescence

Since complexes 4 has very high QY and is similar to octupolar organic structures, which are apt to show two-photon absorption,\(^{50, 51}\) the upconversion luminescence of 4 was studied. When solid sample 4 was excited by an 800 nm picosecond laser at different power densities, a strong two-photon absorption inducing luminescence could be seen (Figure 11). The characteristic emission bands of Tb\(^{3+}\) at about 489, 542, 590 and 619 nm could be detected, which were assigned to the transitions of \(4\text{D}_{\text{g}} \rightarrow 4\text{F}_n, 5\text{D}_{\text{g}} \rightarrow 7\text{F}_n, 5\text{F}_{\text{g}} \rightarrow 7\text{F}_n\) and \(5\text{F}_{\text{g}} \rightarrow 7\text{F}_n\), respectively. In this study, two-photon luminescence signal was clear when the input power decreased to 0.532 µJ, it is much stronger than our previous results in which the two-photon luminescence can nearly not be seen when the input power was 1.10 µJ at the same instrument.\(^{45}\) And this infers a highly two-photon luminescence of the highly luminescence QY of 4.

Multiple-photon luminescence intensity and pump power density can be expressed as follows:

\[
I_{\text{up}} \propto I_{\text{pump}}^n
\]

(1)

Where \(I_{\text{up}}\) is the intensity of multi-photon luminescence, \(I_{\text{pump}}\) is the pump power density of laser, \(n\) is the number of photons involved in the absorption processes, which can be experimentally determined from a log–log plot between luminescence intensity and pump power density. Figure 15 shows the slope of the double logarithmic fitted line at 545 nm is 1.9172, which is very close to 2, indicating two-photon excitation dominated this process.\(^{50}\)
4 Conclusions

In summary, four kinds of lanthanide CPs were synthesized with
the guest-driven approach. They were characterized by
single-crystal diffraction, PXRD, EA, FT-IR, UV-vis spectra and
luminescence lifetime. These complexes were thermostable, acid-
and base-resistant materials. The luminescence QY of 1, 2, 3a
and 4 are 4.0%, 9.0%, 44% and 46%, in which there is a drastic
change from 4.0% to 46%. The oscillation of small molecule
nearby the Tb$^{3+}$ affects the luminescent QY, weight atom in
coordination molecule, distance between Tb$^{3+}$ and oscillators,
oscillator number and hydrogen bonds which fix the oscillators
could change the energy transmitting to Tb$^{3+}$, and lead to the QY
alter dramatically. The octupolar-like structure of 4 was found a
high two-photon luminescence, which will have potential
application in infrared imaging for the living cell.

Acknowledgements

The authors acknowledge the financial support of National
Science Foundation of China (NO. 20973203, 91022012), the Fundamental Research Funds for the Central
Universities, and the Ministry of Higher Education of Malaysia
(grant No. UM.C/HIR/MOHE/SC/12).

Notes and references

6. M. Ballesteros-Rivas, H. H. Zhao, A. Prosvirin, E. W. Reinheimer, R.
7. Z. S. Pillai, P. Ceroni, M. Kubeil, J.-M. Heldt, H. Stephan and G.
6413-6416.
1115-1124.
Tong, C.-Y. Su and W.-T. Wong, *J. Mater. Chem. A*, 2013, 1,
11312-11319.