This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Highly Efficient Single-layer Organic Light-emitting Devices Based on a Bipolar Pyrazine/Carbazole Hybrid Host Material

Yuan Liu, Lin-Song Cui, Mei-Feng Xu, Xiao-Bo Shi, Dong-Ying Zhou, Zhao-Kui Wang,* Zuo-Quan Jiang,* and Liang-Sheng Liao*

Received (in XXX, XXX) Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXXX 20XX
DOI: 10.1039/b000000x

Organic light-emitting diodes (OLEDs) have attracted tremendous interest and have already become the prevalent technology in MP3 players, smartphones and cameras. In response to the call for large-scale application of OLEDs, the complicated and costly process for preparing a device is a major challenge should be conquered. Herein, a novel bipolar host material 26PyzCz which contains the pyrazine/carbazole hybrid has been designed and synthesized. 26PyzCz-based single-layer (SL) fluorescent (F)/phosphorescent (P) OLEDs with various colors have been successfully fabricated. Green and orange SL phosphorescent OLEDs (PHOLEDs) have exhibited efficiencies as high as 63.3 and 62.1 cd A⁻¹ at 1000 cd m⁻², and 55.7 and 53.8 cd A⁻¹ at 10000 cd m⁻², respectively. Meanwhile, a SL warm white OLED based on fluorescent blue and phosphorescent orange has demonstrated excellent performance with a maximum current efficiency of 27.5 cd A⁻¹ and a maximum power efficiency of 21.6 lm W⁻¹. In addition, the charge carrier behavior have been evaluated by impedance spectroscopy, which revealed that the dopant trapping effect plays a critical role on charge balance and exciton generation in the SL PHOLEDs.

Introduction

Organic light-emitting diodes (OLEDs) have attracted both scientific and industrial interest in flat-panel displays and solid-state lighting applications due to their lightweight body, low power consumption, flexibility, and so on.1–3 The efficiency and brightness of state-of-the-art OLEDs could be dramatically improved by using phosphorescent emitters, which contain transition metal complexes especially the second- and third-row transition metals, with a fact of effective harvesting of both singlet and triplet excitons simultaneously through efficient intersystem crossing.4,5 A typical OLED sandwiches emission layers within functional layers (such as the hole injection layer, hole transport layer, hole blocking layer, electron transport layer, electron injection layer etc.) to achieve balanced charge fluxes. In addition, many methods and techniques including electrode modification,6 doping of transport layers,7 charge/exciton confinement,8, 9 emissive layer with mixed hosts,10 stepwise doping11 and tandem structure with multiple emission units,12 have been developed to improve the device efficiency. In short, in order to pursue high-efficiency OLEDs, multilayer configuration is considered indispensable and has been widely used in most works. However, the use of these complicated device structures in OLEDs will inevitably increase the complexity of the production cycle and the fabrication cost, which introduces new obstacles on the way to OLEDs commercialization. On the other hand, the presence of heterojunction interfaces in the multilayer structure is unfavourable for the device stability owing to accumulation of charges and generation of higher electricfield at interfaces.13,14 Therefore, there is strong incentive to develop simplified OLEDs. An “ideal simplified” structure consists of only one layer in a device due to least types of material are required and easy to be industrialized application. This layer has to bear the versatilities of the functional layers presented above. Therefore, the challenge becomes how to synthesize and incorporate a material that will act as the desired functional layer. This material must fulfill the requirements of an appropriate highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO), have a high triplet energy level suitable for dopants and high mobility for both electrons and holes. In theory, if we can get a host material with appropriate energy levels for hole/electron injection and transport, we could dope it with different guest emitters to achieve SL OLEDs.

Recently, SL OLEDs fabricated using some bipolar host materials, which possess both (more or less) hole and electron
transport properties simultaneously, have been reported by several groups. Lin et al. developed a series of efficient SL OLEDs emitting blue light (2.5 cd A\(^{-1}\), 2.5% of external quantum efficiency (EQE)),\(^9\) green light (7.7 cd A\(^{-1}\), 3.1% of EQE),\(^10\) and orange light (5.21 cd A\(^{-1}\), 1.43% of EQE).\(^17\) To improve the device efficiency, Ma et al. reported a new carbazole/oxadiazole hybrid molecule as a bipolar host for SL green PHOLEDs with a maximum current efficiency up to 45.6 cd A\(^{-1}\).\(^18\) Lu et al. demonstrated a N-heterocyclic carbazole-based host (CBP-like) material for SL green PHOLEDs with a current efficiency up to 73.3 cd A\(^{-1}\) at 100 cd m\(^{-2}\).\(^19\) However, the development of SL OLEDs is severely limited by the absence of efficient bipolar host materials with excellent charge transport properties. Particularly, there are very few reports of the SL white OLEDs to this day.\(^20\) Moreover, the operational mechanism including the charge carrier behavior in SL OLEDs, which is beneficial for the rational design and control of bipolar host materials, has rarely been studied directly while the device is in operation.

In this paper, we demonstrate a new carbazole/pyrazine hybrid bipolar host material, named as 2,6-bis(9-phenyl-9H-carbazol-3-yl) pyrazine (26PyzCz), for fabricating fluorescent (F)/phosphorescent (P) SL OLEDs with various colors. Green and orange SL PHOLEDs exhibit efficiencies as high as 63.3 and 62.1 cd A\(^{-1}\) at 1000 cd m\(^{-2}\), and 55.7 and 53.8 cd A\(^{-1}\) at 10000 cd m\(^{-2}\), respectively. Meanwhile, a SL warm white OLED based on fluorescent blue and phosphorescent orange demonstrates an excellent performance with a maximum current efficiency of 27.5 cd A\(^{-1}\) and a maximum power efficiency of 21.6 lm W\(^{-1}\). Furthermore, the electrical transport properties such as the charge carrier behavior in the SL PHOLEDs are systematically investigated by using the impedance spectroscopy technique while the device is in operation. A circuit model is proposed to simulate the device performance based on the assumption that the dopant trapping effect plays a critical role during the exciton generation in the SL PHOLEDs.

Results and Discussion

Material Design and Physical Characteristics

Carbazole-based molecules have drawn tremendous attention as host materials in OLEDs due to their high triplet energy and excellent hole-transporting abilities.\(^21\)\(^22\) In this molecular design, 2,6-bis(9-phenyl-9H-carbazol-3-yl) pyrazine (26PyzCz) was synthesized by introducing the pyrazine group to the carbazole ring as a spacer to connect two carbazole groups with the goal of balanced carrier transport. From the viewpoint of molecular topology, 26PyzCz was designed by directly connecting the pyrazine to the carbazole ring in the C3 position instead of connecting it to the N-phenyl ring based on a previous study that the former configuration will facilitate higher carrier transport.\(^22\) The new material was synthesized via the classic Suzuki-Miyaura cross coupling reaction. Detailed synthetic procedures are described in the experimental section. The thermal characteristics were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). \(T_g\) is clearly observed to be 127 °C with reversible cycles during heating and cooling. The decomposition temperature (\(T_d\)) with 5% loss is estimated to be 410 °C (Fig. S1). This suggests that a morphologically stable and uniform amorphous film could be formed by vacuum deposition for OLEDs fabrication. Absorption, photoluminescence (PL), and low-temperature PL emission spectra of the 26PyzCz are shown in Fig. 1. The optical bandgap is 3.03 eV, calculated from the edge of the absorption spectrum of solid film. PL emission of 26PyzCz is observed at 418 nm, which is consistent with the film-based device (419 nm). This means that no significant intermolecular interactions occur in the ground state. The triplet energy of 26PyzCz is 2.51 eV, obtained from the first phosphorescent emission peak (\(\lambda_e\) = 494 nm) of the low-temperature PL spectrum measured at 77 K. Such high triplet energy is sufficient for 26PyzCz using as a host material for green/orange/red phosphors. All related physical parameters are summarized in Table S1.

The HOMO level of 26PyzCz measured by ultraviolet photoelectron spectroscopy (UPS) is 5.83 eV (Fig. S2) and the LUMO level is estimated to be 2.80 eV from the HOMO level and optical bandgap. The cyclic voltammetry (CV) result of 26PyzCz is shown in Fig. S3. Such LUMO and HOMO levels are suitable for efficient electron and hole injections, respectively. To understand the electronic structure of 26PyzCz at the molecular level, density function theory (DFT) calculations were performed at a B3LYP/6-31G (d) level for the geometry optimization (Fig. S4). The HOMO of 26PyzCz is situated on the entire molecule backbone because the nitrogen atom of carbazole can participate in the HOMO conjugation. On the other hand, the LUMO distribution is delocalized from the pyrazine center to the neighboring phenyl rings of the carbazole units. This suggests that the 26PyzCz, with the incorporation of a pyrazine group at the C3 position of carbazole, might possess improved electron-injection and transport properties compared to the unipolar carbazole derivatives.

To evaluate the carrier injection and transport properties of 26PyzCz, hole-only devices with a structure of ITO/MoO\(_3\) (10 nm)/26PyzCz (or CBP) (100 nm)/MoO\(_3\) (10 nm)/Al (120 nm) and electron-only devices with a structure of ITO/TmPyPB (10 nm)/26PyzCz (or CBP) (100 nm)/LiQ (2 nm)/Al (120 nm) were fabricated. Molybdenum trioxide (MoO\(_3\)) and 1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene (TmPyPB) were utilized to block electron and hole injection from the cathode and anode.
The current density–voltage (J–V) curves for hole-only and electron-only devices are shown in Fig. 2. The current density versus voltage characteristics in the hole-only and the electron-only devices are different. Obviously, the electron current density in 26PyzCz-based device is higher than that in CBP-based device, suggesting that 26PyzCz has better electron injection and transport properties than CBP. Meanwhile, the difference in current density between the hole-only and electron-only devices based on 26PyzCz is much smaller than that based on CBP at the same voltage. This means that 26PyzCz is a potential bipolar material capable of transporting electrons and holes by incorporating the electron-drawing moiety pyrazine and the electron-donating unit carbazole.

OLED performance

Utilizing the ambipolar property of 26PyzCz, blue, green and orange SL monochrome OLEDs were fabricated with the same device configuration of ITO/MoO3 (5 nm)/26PyzCz (40 nm)/PO-01, with peaks located at 476 nm, 524 nm and 564 nm, respectively (Fig. S5).

Fig. 3 Energy levels and molecular structures of the materials for the devices.

The devices exhibit typical emissions that originate from the dopants of DSA-Ph, Ir(ppy)2(acac) and PO-01, with peaks located at 476 nm, 524 nm and 564 nm, respectively (Fig. S5).

Fig. 4(a) illustrates the current density–voltage–luminance (J–V–L) characteristics of these devices. The operating voltage in the green-device (6.7 V) at 20 mA cm² is lower than that in both blue and orange devices (7.0 V), which is presumably attributed to the different trapping effect of the dopants. It has been reported that the doped emitters can capture the charge carriers directly and the trapping ability of holes (electrons) strongly depends on the gap between the HOMO (LUMO) levels of the host molecule and the matrix molecule. The material mobility can be approximated as

$$\mu \propto \exp \left(- \frac{E_a - \beta N_p}{KT} \right)$$ (1)

where E_a is the zero-field activation energy, β the Poole-Frenkel constant, F the external electric field strength, and KT is the thermal energy at temperature T. For doped materials, E_a is mostly determined by the energy level difference between the host material and the dopant. In present devices, the dopants actually serve as the deep trapping states for holes while the shallow trapping states for electrons with respect to significantly different gaps of HOMO and LUMO levels between the host and the dopants (as seen in Fig. 3). Therefore, as the HOMO level of a dopant becomes shallower, a higher driving voltage is required.

The efficiency versus luminance curves are displayed in Fig. 4(b) and the detailed efficiency characteristics are summarized in Table 1. The DSA-Ph-based fluorescence blue device exhibits a maximum current efficiency of 12.0 cd A⁻¹ and a maximum power efficiency of 9.3 lm W⁻¹ with a voltage of 4.0 V and CIE of (0.17, 0.39) at 24 cd m⁻². The Ir(ppy)2(acac)-based green and PO-01-based orange devices show attractive EL efficiencies (65.5 cd A⁻¹, 52.1 lm W⁻¹ and 65.5 cd A⁻¹, 51.9 lm W⁻¹) at 131 cd m⁻² which are among the best levels in reported SL OLEDs.

Furthermore, the efficiency roll-offs are impressively low. At the practical brightness of 1000 cd m⁻² and even at the high brightness of 10000 cd m⁻², the current efficiency roll-offs are only 3% (63.3 cd A⁻¹) and 15% (55.7 cd A⁻¹) for green and 5% (62.1 cd A⁻¹) and 17% (53.8 cd A⁻¹) for orange, respectively.

White OLED

The excellent SL monochrome OLEDs inspired us to further investigate the performance of 26PyzCz for SL White OLEDs. Thus, a fluorescent/phosphorescent (F-P) hybrid warm white OLED with the structure of ITO/MoO3 (5 nm)/26PyzCz (40 nm)/26PyzCz: 3% DSAph (10 nm)/26PyzCz (5 nm)/26PyzCz: 6% PO-01 (15 nm)/26PyzCz (30 nm)/Liq (2 nm)/Al (120 nm) was fabricated. The proposed device can be referred to as a single-layer (SL) structure since only one homogenous organic layer of 26PyzCz is contained in the device. Fig. 5 shows the...
current efficiency and power efficiency characteristics of the white device and the inset is its corresponding electroluminescence spectrum. The device obtained maximum current efficiency of 27.5 cd A⁻¹ and power efficiency of 21.6 lm W⁻¹, respectively. Noticeably, there exists no organic/organic heterojunctions in the device. This helps to eliminate the redundant interfaces near the exciton formation zones and avoids charge-carrier accumulation, generation of higher electric field and exciton quenching at interfaces. Thus, the device lifetime is expected to be longer than conventional multilayer F-P hybrid white OLEDs.

Operation Mechanism of Single Layer OLEDs

As mentioned above, the operational mechanism in SL OLEDs is presently not well understood. Herein, we investigate the charge carrier behaviour with an impedance spectrum from the SL orange PHOLEDs while the device is in operation.

Carrier behaviour

The impedance versus bias voltage (Z-V) and phase versus bias voltage (θ-V) characteristics measured at various frequencies in 26PyzCz: PO-01 based SL OLEDs are depicted in Fig. 6. From Z-V curves, an obvious transition in impedance corresponding to a characteristic transition voltage (Vc) was observed at various frequencies. This is ascribed to a decrease in the dielectric relaxation time due to the injection behaviour of charge carriers into the device. As seen in Fig. 2, the hole injection is easier than the electron injection. Hence, in the present case, Vc represents the beginning of electron injection and shows a considerable frequency dependence due to the deterioration of electron-injection ability by the alternating current (AC) electric field. As

Table 1 Summary of OLEDs Performances.

<table>
<thead>
<tr>
<th>Device (Host/dopants)</th>
<th>η_max/η_p max [cd A⁻¹/ lm W⁻¹]</th>
<th>η_c,500/η_c,1000 [cd A⁻¹/ lm W⁻¹]</th>
<th>η_c,1000/η_c,1000 [cd A⁻¹/ lm W⁻¹]</th>
<th>CIE (x,y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue (DSA-Ph)</td>
<td>12.0/9.3</td>
<td>8.3/4.6</td>
<td>7.5/3.8</td>
<td>0.17 0.39</td>
</tr>
<tr>
<td>Green (Ir(ppy)2(acac))</td>
<td>65.5/52.1</td>
<td>64.3/44.5</td>
<td>63.3/40.5</td>
<td>0.31 0.64</td>
</tr>
<tr>
<td>Orange (PO-01)</td>
<td>65.5/51.9</td>
<td>63.8/43.3</td>
<td>62.1/39.5</td>
<td>0.48 0.50</td>
</tr>
<tr>
<td>White (F-P)</td>
<td>27.5/21.6</td>
<td>25.1/15.5</td>
<td>23.9/13.6</td>
<td>0.41 0.46</td>
</tr>
</tbody>
</table>

Fig. 4 (a) Current density-voltage-luminance (J–V–L) characteristics, (b) current efficiency and power efficiency versus luminance of monochrome OLEDs.

Fig. 5 Current efficiency and power efficiency versus luminance of white OLED. The inset is the EL spectrum at 5 mA cm⁻².
seen from the \(\theta - V \) curves, the device exhibits purely capacitive response when the driving voltage is lower than \(V_c \). With further increase of the applied voltage, a non-negligible drift current appears and the phase \(\theta \) deviates from \(-\pi/2\) to 0. This corresponds to conductive behaviour and an electron-hole recombination process. For example, in the case of 100 Hz, electrons can be effectively injected into the device and recombine with holes over 2.5 V, which is consistent with the analysis of current density-voltage (\(I-V \)) and capacitance-voltage (\(C-V \)) characteristics (Fig. S6). It is apparent that 26PyzCz containing an electron-withdrawing pyrazine group possesses a well-matched LUMO to the work function of the cathode and improved electron-injection and transport properties.

Trapping mechanism

In general, dopant in a host: dopant system tends to act as a charge trapping center or an additional transporting channel. Both of these significantly influence the charge transport ability. From the energy levels of 26PyzCz and dopants revealed in Fig. 3 and the \(J-V-L \) characteristics of monochrome OLEDs, the dopants are inclined to act as the hole trapping states in our devices.

As depicted in Fig. 7(a), the modulus curves show two obvious plateaus in the low- and high-frequency regions. For the capacitance attribution, the modulus changes with \(1/(\omega P) \) in the medium frequency range, which agrees with a common equivalent circuit containing a single RC parallel circuit plus a series resistance. However, an interesting feature appears in the phase spectrum as displayed in Fig. 7(b). At voltages higher than 4V, only one peak emerges. While at low bias (<4V), an additional peak around 1 KHz is observed. This means that there are at least two RC times in the device. We ascribed it to the trapping states that originated from PO-01 dopants.

Based on the analysis from impedance spectra measurement, an equivalent circuit model is proposed and shown in Fig. 8(a). \(R_t \) represents the series resistance due to the effect of contacts, \(R_p \) and \(C_p \) are the resistance and geometric capacitance of the intrinsic layer, and \(C_t \) and \(R_t \) correspond to the contributions from trapping states. For simplicity, the dopant trapping states are described with one discrete intra-gap state. By carefully adjusting the circuit parameters (\(R_p, R_t, S_p, R_{in}, C_p \)), the simulated spectra using the equivalent circuit agreed well with the measured data as shown in Fig. 8(b). The detailed values of element parameters are summarized in Table 2. The capacitance values (\(C_p \) and \(C_t \)) roughly stay constant, while \(R_p \) and \(R_t \) decrease sharply with the voltage increase because of the injection of carriers. By combining these data and the aforementioned performance of the charge only devices and electroluminescence spectrum, it can be concluded that: i) 26PyzCz possess improved electron-injection and transport properties with the incorporation of an electron-withdrawing pyrazine group compared to those unipolar carbazole derivatives; ii) actually the injection and transport performances of holes are better than the performances of electrons; iii) the dopants act as deep trapping states for the holes while shallow trapping states for electrons, and the charge balance is greatly enhanced by carrier trapping effect; iv) because
of the trapping effect, the excitons are mainly generated on the dopants when the driving voltage is lower than 4 V. Additionally, the process of exciton generation on the host and then subsequent harvest by the dopants also exist in a higher driving voltage; v) the excitons are well confined in the emission layers with respect to the electroluminescence spectra of devices.

Taking into account the trapping effect, two phenomena are worthwhile to note: i) As holes get trapped in the dopant molecules to reduce electron–electron repulsion, the LUMO levels of dopants shift to lower and electron injection becomes easier. This contributes to a low driving voltage. ii) Combined with the bipolar characteristic of 26PyzCz, the hole trapping effect of dopants results in a broad recombination zone, which corresponds to the low roll-offs of the devices efficiencies.

Conclusions

In conclusion, we have synthesized and characterized a new bipolar material 26PyzCz by introducing a strong electron-withdrawing subunit pyrazine. The corresponding SL blue (F), green (P), and orange (O) monochrome and F-P hybrid warm white OLEDs achieved the maximum power efficiencies of 9.3 lm W⁻¹, 52.1 lm W⁻¹, 51.9 cd A⁻¹, and 11.6 lm W⁻¹, respectively. All SL OLEDs exhibit low efficiency roll-offs. Additionally, we carried out an investigation on the charge carrier behaviour and the trapping mechanism in the SL PHOLEDs based on impedance spectroscopy measurements. The experimental results demonstrate that the dopant trapping effect plays a critical role on charge balance and exciton generation in the SL OLEDs. This can provide helpful information for further work in the simpler and more practical SL OLEDs.

Experimental Section

Materials and General Instrumentation

Boric acid and dibromopyrazine were purchased from Bepharm limited. Tetrakis (triphenylphosphine)-palladium (0) [Pd(PPh₃)₄] was obtained from Strem Chemicals. All other chemicals were obtained from commercial sources (Sinopharm, Aladdin, and TCI) and used as received without further purification. THF was purified by the PURE SOLV (Innovative Technology) purification system. Chromatographic separations were carried out by using silica gel (200–300 nm).

¹H NMR and ¹³C NMR spectra were recorded on a Varian Unity Inova 400 spectrometer at room temperature. Mass spectra were obtained on a Thermo ISQ mass spectrometer by using a direct exposure probe. UV-Vis absorption spectra were recorded on a Perkin Elmer Lambda 750 spectrophotometer. PL spectra and phosphorescent spectra were carried out on a Hitachi F-4600 fluorescence spectrophotometer. Differential scanning calorimetry (DSC) was performed on a TA DSC 2010 unit at a heating rate of 10 °C min⁻¹ in a nitrogen atmosphere. The glass transition temperatures (Tg) were determined from the second heating scan. Thermo gravimetric analysis (TGA) was performed on a TA SDT 2960 instrument at a heating rate of 10 °C min⁻¹ in a nitrogen atmosphere. Temperature at 5% weight loss was used as the decomposition temperature (Td). Cyclic voltammetry (CV) was carried out on a CHI600 voltammetric analyzer at room temperature with a conventional three-electrode configuration consisting of a platinum disk working electrode, a platinum wire auxiliary electrode, and an Ag wire pseudo-reference electrode with ferrocenium–ferrocene (Fc⁺/Fc) as the internal standard. Nitrogen-purged dichloromethane was used as the solvent for the oxidation scan and DMF for the reduction scan with tetrabutylammonium hexafluorophosphate (TBAPF₆) (0.1 M) as the supporting electrolyte. The cyclic voltammograms were obtained at a scan rate of 100 mV s⁻¹.

2,6-bis(9H-carbazol-3-yl)pyrazine (26PyzCz)

In a 100 mL flame-dried two-necked flask, 3-[9H-carbazol-9-
yl]phenyl]boronic acid (2.65 g, 9.25 mmol), 2,6-
dibromopyrazine (1.0 g, 4.20 mmol), and Pd(PPh3)4 (0.53 g, 0.46
mmol) were added and subject to three vacuum/nitrogen fill
cycles. Nitrogen-degassed THF (40 mL) and aqueous 2 M K2CO3
solution (10 mL) were subsequently added. The reaction mixture
was heated to 60 °C for 8 h in an argon atmosphere. After cooling
to room temperature, the organic layer was separated and
evaporated to remove the solvent. The residue was purified by
column chromatography with 1:3 (v/v)
dichloromethane/petroleum ether as the eluent and recrystallized
from dichloromethane/petroleum to produce the final product as a
yellow solid (2.17 g, 92%).1H NMR (400 MHz, CDCl3) δ (ppm): 9.06
(s, 2H) 8.99 (d, J = 16.0 Hz, 2H) 8.32-8.25 (m, 4H) 7.69-
7.41 (m, 16H) 7.40
7.30 (m, 2H).

Device Fabrication and Measurements

The OLED devices were fabricated on commercially available
ITO-coated glass substrates, which were ultrasonically cleaned
with a standard regiment of acetone, methanol, and deionized
water for 5 min each, dried at 120 °C and treated by UV ozone
for 5 min. All layers were deposited under a base pressure of
2×10^{-6} Torr. The deposition rates and doping concentration of the
films were monitored in situ by the calibrated thickness monitors.
The typical evaporation rate for MoO3, organic layer and Liq were
0.4-0.8, 2-3 and 0.2-0.5 Å s^{-1}, respectively. Finally, the Al
electrode was evaporated (5 Å s^{-1}) through a shadow mask
without breaking the vacuum. The active area of each device was
3×3 mm². Electroluminescence (EL) and current-voltage (I-V)
characteristics were measured by a constant current source
(Keithley 2400s Source Meter) combined with a photometer
(Photonic Research PR 655 spectrophotometer). The impedance
spectroscopy (IS) measurements were taken by Wayne Kerr
6550B precision impedance analyzer in a frequency range from
100 Hz to 10 MHz, with 30 mV perturbation oscillation signal.

Acknowledgements

We acknowledge financial support from the Natural Science
Foundation of China (Nos. 61036009, 61177016, and
21161160446), and the Key University Science Research Project
of Jiangsu Province (12KJB510028). This is also a project funded
by the Priority Academic Program Development of Jiangsu
Higher Education Institutions (PAPD) and by the Fund for
Excellent Creative Research Teams of Jiangsu Higher Education
Institutions.

Notes and references

2010, 22, 572.
2. L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Kong, J. Kido,
4. M. A. Bald, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley,
7. K. Walzer, B. Maennig, M. Pfeiffer, K. Leo, Chem. Rev., 2007,
107, 1233.
13. H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, G. Xu,
Interfaces, 2011, 3, 2496.
2008, 47, 581.
Mater., 2006, 18, 602.
18. X. Qiao, Y. Tao, Q. Wang, D. Ma, C. Yang, L. Wang, J. Qin,
Mater., 2012, 24, 2922.
20. Y. Yin, X. Piao, Y. Li, Y. Wang, J. Liu, K. Xu, X. Xie, Appl.
Matoliukstyte, J. Simokaitiene, S. Grigalevicius, J. V.
22. L. S. Cui, S. C. Dong, Y. Liu, Q. Li, Z. Q. Jiang, L. S. Liao,
23. Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson,
24. G. Schwartz, S. Reineke, T. C. Rosenow, K. Walzer, K. Leo,
034506.
28. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer,
12964.
49, 01AA02.
2010, 97, 203302.
34. F. Niësch, D. Berner, E. Tutšl, M. Schauer, C. Ma, A. X. Wang,
| High efficiency blue (F), green (P), orange (P) and F-P hybrid warm white single-layer OLEDs fabricated through simple manufacturing process.