Journal of Materials Chemistry A

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsA

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Journal of Materials Chemistry A Accepted Manuscr

The beneficial effect of protic ionic liquids on the lithium environment in electrolytes for battery applications

Thomas Vogl^a, Sebastian Menne^a, Ruben-Simon Kühnel^a and Andrea Balducci^{*a}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

This work reports about the improved rate performance of ionic-liquid based lithium-ion batteries by replacement of the conventional aprotic ionic liquid (AIL) N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR₁₄TFSI) by protic ionic liquids (PILs). Two model pyrrolidinium-TFSI PILs lithium are synthesized and their mixtures with 10 bis(trifluoromethanesulfonyl)imide (LiTFSI) are characterized in terms of conductivity, viscosity and self-diffusion coefficients. Raman measurements show pronounced differences in terms of TFSI coordination to Li⁺ between the AIL and the PILs. Li⁺ is coordinated by significantly fewer TFSI⁻ anions in the investigated PILs, which is discussed as likely cause for the much improved rate performance of lithium vanadium phosphate-based electrodes in these electrolytes.

15

1. Introduction

Lithium-ion batteries (LIBs) are nowadays one of the most important energy storage devices. LIBs are already dominating the consumer portable electronics market and have been indicated ²⁰ as the most promising electrochemical devices for the realization of hybrid and electric vehicles, as well as for advanced delocalized energy storage units. However, in order to be increasingly used in these new applications, the performance and safety of LIBs need to be improved ¹.

²⁵ The commercially available LIBs contain electrolytes based on organic carbonates (e.g. ethylene carbonate (EC), diethyl carbonate (DEC)). These electrolytes feature good conductivities, but since they are easily flammable and volatile, their use strongly reduces the safety as well as the temperature range of ³⁰ use of LIBs. For these reasons, in the last years tremendous efforts have been focused on the development of alternative electrolytes ¹.

Ionic liquids (ILs) are presently considered as one of the most promising candidates for the replacement of organic ³⁵ carbonates ²⁻⁴. The main advantages of ILs towards organic carbonates are the high thermal, chemical and electrochemical stability as well as the negligible vapor pressure and the reduced flammability ². So far, several aprotic ionic liquids (AILs) have been investigated as electrolytes for LIBs. The results of these ⁴⁰ studies showed that AILs can be successfully introduced in LIBs, and their use has beneficial effects on the safety as well as on the

temperature range of use of these devices ³. Nevertheless, AILs are rather expensive and the performance of AIL-based LIBs still needs to be improved in order to be fully competitive with that of conventional electrolytes. Such improvement is particularly 5 necessary for applications where high current densities are needed. In these applications the reduced lithium-ion transport of AIL-based electrolytes, compared to that of conventional electrolytes, might significantly affect the rate performance of LIBs. In order to overcome this limitation, the use of mixtures of 10 ionic liquids and organic electrolytes appears as a promising strategy ^{3, 5, 6}. Nevertheless, since such mixtures contain organic solvents, their safety is still lower compared to that of electrolytes containing only ILs 5, 6. For these reasons, the development of new IL-based electrolytes with improved lithium-ion mobility 15 compared to the one of present AIL-based electrolytes appears nowadays of importance for the introduction of ILs in LIBs. Taking into account the high costs of AILs, it would also be very beneficial to develop cheaper ILs, as they could be easier introduced in commercial devices.

Protic ionic liquids (PILs) are a subset of ILs and they are typically synthesized by neutralization reactions of a Brønsted acid (proton donor) and a Brønsted base (proton acceptor) ⁷. PILs display all favorable properties of ILs, but they have the advantage of being easier to synthesize and cheaper compared to ²⁵ AILs ^{7, 8}. Clearly, these properties make them interesting candidates for the use as electrolyte component for electrochemical devices. So far PILs have been successfully introduced as electrolytes for fuel cells and supercapacitors ⁸⁻¹¹. In the case of fuel cells, PILs appear as interesting candidate for ³⁰ non-humidifying intermediate-temperature fuel cells operating at relatively high temperature ¹¹. In the case of supercapacitors, a recent work showed that the use of PILs allow the realization of devices with stable performance at different temperature, but with

lower operative voltage compared to that of conventional systems 35¹⁰.

It is worth to notice that the use of PILs as electrolyte for LIBs was not considered in the past. The availability of an acidic proton and their strong reactivity towards lithium were seen as an obstacle for the introduction of PILs into these devices, and 40 consequently all efforts were focused on AILs. Nevertheless, we recently showed that in dry PILs the labile proton of the cation is not "free" and these cations are not subject to reversible protonation-deprotonation ¹⁰. We also proved that battery materials, e.g. lithium iron phosphate (LFP), can be used in 45 combination with dry PILs without being subject to structural changes ¹². Moreover, we showed that lithium-ion batteries containing PIL-based electrolytes can be realized and that they display promising performance in terms of capacity and cycling stability¹³. Taking into account these results, PILs can therefore 50 be regarded as a new class of electrolytes for LIBs. However, since only few studies have been dedicated to these electrolytes, a deeper investigation of PIL-based electrolytes is needed to understand the advantages and the limits related to their use in LIBs.

In this manuscript we report about the use of two pyrrolidinium-based PILs, pyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR_{HH}TFSI) and Nbutylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR_{H4}TFSI) in combination with lithium 60 bis(trifluoromethanesulfonyl)imide (LiTFSI) as electrolyte for lithium-ion batteries. Initially the thermal stability, viscosity and conductivity of the two PIL-based electrolytes were considered. Afterwards, with the goal to get new insight about this class of electrolytes, the lithium mobility of these PIL-based electrolytes 65 was investigated for the first time. Finally, the use of PIL-based electrolytes in combination with lithium vanadium phosphate

(LVP) was evaluated. For all investigations, a comparison with the behavior of a pyrrolidinium-based AIL, 0.5M LiTFSI in *N*butyl-*N*-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ($PYR_{14}TFSI$), was made.

5 2. Experimental Section

The pyrrolidinium-based PILs, PYR_{HH}TFSI and PYR_{H4}TFSI were synthesized following a procedure similar to that described elsewhere ¹⁴. Pyrrolidine (Aldrich, >99%) and 1-butylpyrrolidine (Aldrich, >98%) were distilled directly before use. HCl (37%) ¹⁰ and LiTFSI (3M) were used as received. At the end of the synthesis, the obtained PILs were dried under vacuum at 60 °C. The water content of the PILs was measured using coulometric Karl-Fischer titration, and was found to be lower than 10 ppm.

Thermogravimetric analysis was carried out using a Q5000 ¹⁵ TGA instrument (TA Instruments). Ionic liquid samples with a typical weight of 20-30 mg were used during the experiments. The samples were heated from room temperature to 600 °C with a heating rate of 5 °C min⁻¹ using nitrogen as purge gas (10 cm³ min⁻¹).

The conductivity and the viscosity of the prepared ILs were determined as reported in reference ¹². Self-diffusion coefficients were determined at 30 °C by pulsed field gradient (PFG)-NMR with an Avance III spectrometer (Bruker) equipped with a Diff30 probehead (Bruker) with selective RF-inserts for ¹H, ⁷Li and ¹⁹F ²⁵ using the pulsed gradient stimulated echo (diffSte) sequence ¹⁵. Gradient pulse length, minimum gradient strength and diffusion time were set to 1 ms, 10 Gs cm⁻¹ and 100 ms for the ¹H and ¹⁹F and 3 ms, 20 Gs cm⁻¹ and 70 ms for the ⁷Li measurements. The maximum gradient strength was chosen in order to obtain a ³⁰ strong signal damping. A typical maximum gradient strength was 800 Gs cm⁻¹. The fitting was done with TopSpin 3.0 (Bruker) software using the Stejskal-Tanner equation. All proton signals were considered for the determination of the pyrrolidinium diffusion coefficients.

- Raman spectra were recorded with a software-controlled Bruker Vertex 70 RAM II FT-Raman device with HeNe-laser, a CaF₂ beam splitter and a LN-Ge diode as detector. The number of scans was set to 512 and the laser power was set to 500 mW. The Raman spectra were recorded at room temperature.
- Lithium vanadium phosphate (LVP) composite electrodes were prepared as in reference ¹⁶. The composition of the electrodes was 70 wt.% of the active material LVP, 20 wt.% of conductive agent Super C65[®] and 10 wt.% of polyvinylidene fluoride (PVDF) as binder. The electrode mass loading was 1 mg ⁴⁵ cm⁻²; the electrode area was 1.13 cm². All the electrochemical tests were carried out with 3-electrode Swagelok® type cells. The cells were assembled in an argon-filled glove box with oxygen and water contents lower than 1 ppm. LVP-based electrodes were used as working electrodes, a silver wire was used as pseudo-⁵⁰ reference electrode and an oversized activated carbon-based electrode was used as counter electrode. For all experiments, a 3-layered non-woven separator (Freudenberg) drenched with 100 µL of electrolyte was used.

Electrochemical impedance spectroscopy (EIS) was ⁵⁵ recorded at 30 °C using a VMP multichannel potentiostaticgalvanostatic system (Biologic Science Instruments, France). Prior to the measurements, 20 galvanostatic cycles with a current corresponding to a rate of 1C were carried out. Afterward, impedance spectra were recorded at the fully lithiated state (fully ⁶⁰ discharged) and in a partially lithiated state (at the first plateau of the discharge) in the frequency range between 1 MHz and 10 mHz with an alternating voltage of 5 mV.

The electrochemical measurements were carried out using a MACCOR Series 4000 battery tester. Constant current cycling ⁶⁵ (CC) was carried out at 30 °C using current densities ranging

from 1C to 20C taking into account the theoretical capacity of LVP of 131 mAh g^{-1} when cycled between 3.0 and 4.3 V vs. Li/Li⁺.

3. Results and discussion

⁵ The chemical-physical properties of ILs are dramatically affected by the presence of impurities and the presence of water ^{2-4, 13}. As mentioned in the introduction, a pre-requisite for the utilization of PILs in LIB is the use of dry electrolytes (with water content lower than 20 ppm) as in these conditions the labile ¹⁰ proton(s) of the cation is not "free" and it does not interfere with the lithiation-delithiation process of the LIB electrodes ^{10, 13}. As indicated in the experimental section, the investigated PILs displayed water contents below 10 ppm, and therefore they appear both suitable for use as electrolytes for LIBs.

15

3.1. Thermal stability

Figure 1 compares the thermal stability of the PILbased electrolytes 0.5M LiTFSI in PYR_{HH}TFSI and 0.5M LiTFSI in PYR_{H4}TFSI, with those of the AIL-based electrolyte ²⁰ 0.5M LiTFSI in PYR₁₄TFSI. LiTFSI was selected as lithium salt since it has the same anion of all ILs. As shown, both PIL-based electrolytes are thermally stable up to 250 °C. Among the two, the electrolyte containing PYR_{HH}TFSI appears slightly more stable than the one containing PYR_{H4}TFSI. The electrolyte ²⁵ containing the AIL PYR₁₄TFSI, on the other hand, appears more stable as a significant weight loss begins at more than 300 °C. These results clearly indicate that PIL-based electrolytes display high thermal stability, significantly higher than those of conventional organic electrolytes ⁶.

Figure 1. Thermal stability of the electrolytes 0.5M LiTFSI in PYR_{HH}TFSI, 0.5M LiTFSI in PYR_{H4}TFSI and 0.5M LiTFSI in 35 PYR₁₄TFSI.

3.2. Conductivity and viscosity

Figure 2. Conductivity (a) and viscosity (b) of the electrolytes 0.5M LiTFSI in PYR_{HH}TFSI, 0.5M LiTFSI in PYR_{H4}TFSI and 0.5M LiTFSI in PYR₁₄TFSI.

45

Figure 2 compares the conductivity and viscosity of two PIL-based electrolytes, 0.5M LiTFSI in $\ensuremath{\text{PYR}_{\text{HH}}}\ensuremath{\text{TFSI}}$ and 0.5M LiTFSI in PYR_{H4}TFSI, with those of the AIL-based electrolyte 0.5M LiTFSI in PYR₁₄TFSI. As shown (Figure 2a), 5 the two PIL-based electrolytes display similar conductivity in the investigated temperature range. At 30 °C they both display conductivity in the order of 2 mS cm⁻¹, which increases to 7 mS cm⁻¹ at 80 °C. These values are comparable with the ones shown by the electrolyte 0.5M LiTFSI in PYR14TFSI in the same 10 temperature range. It is worth notice that it is often reported in literature that PILs display higher conductivity compared to AILs ¹⁷. Nevertheless, most of the reported values refer to PILs containing high amounts of water and, most likely, the presence of water is the origin of this high conductivity ¹³. As shown 15 above, when dry PILs are considered a marked difference in terms of ionic conductivity between PILs and AILs cannot be observed. Figure 2b shows the variation of the viscosity over the temperature for two PIL-based electrolytes. As for the conductivity, also the viscosity of the PIL-based electrolytes was 20 comparable to that of 0.5M LiTFSI in PYR14TFSI. Nevertheless, it is interesting to note that at 30 °C the electrolyte 0.5M LiTFSI in PYR_{HH}TFSI displays a viscosity of 130.1 mPa s, which is higher than the one of 0.5M LiTFSI in PYR_{H4}TFSI (96.0 mPa s). Taking into account the conductivities of the two electrolytes, the 25 higher viscosity of PYR_{HH}TFSI compared to PYR_{H4}TFSI appears somehow surprising. This behavior might be originated by the different size of the cations of these PILs as well as by their different interaction with the TFSI⁻ anion. The PYR_{HH}^{+} cation is obviously smaller than the PYR_{H4}⁺ cation and this characteristic 30 might be responsible for the higher conductivity of the electrolyte containing PYR_{HH}TFSI compared to the one containing PYR_{H4}TFSI. At the same time, as it is less shielded, the cation PYR_{HH}^{+} is probably subject to a stronger interaction with the

anion TFSI⁻ compared to the cation PYR_{H4}^+ , and this interaction ³⁵ might explain the higher viscosity of the electrolyte containing $PYR_{HH}TFSI$ compared to the one containing $PYR_{H4}TFSI$. At higher temperatures, the viscosity of both electrolytes decreases and becomes more similar. At 80 °C, both electrolytes have viscosities in the range of 14.4-18.0 mPa s.

The temperature dependence of the measured conductivities and viscosities did not show Arrhenius-like behavior, but it could be well described by the Vogel Tammann Fulcher (VTF) model. Figure 3 shows the VTF plots for conductivity and viscosity of all electrolytes. The VTF-equations (1) and (2) are shown below and 45 the VTF fitting parameters are reported in Table 1.

$$\sigma = \sigma_0 * \exp\left[\frac{-B_c}{T - T_{0c}}\right] \tag{1}$$

$$\eta = \eta_0 * \exp\left[\frac{-B_v}{T - T_{0v}}\right] \tag{2}$$

50 Figure 3. VTF plots of conductivity (a) and viscosity (b) of the electrolytes 0.5M LiTFSI in PYR_{HH}TFSI, 0.5M LiTFSI in PYR_{H4}TFSI and 0.5M LiTFSI in PYR₁₄TFSI.

ournal of Materials Chemistry A Accepted Manuscript

Table 1. VTF fitting parameters for the conductivity and viscosity of solutions of 0.5M LiTFSI in ionic liquids.

	Conductivity			Viscosity		
	T_0c / K	$\sigma_0 / \text{mS cm}^{-1}$	B _c / K	T/ K	$\eta_0^{}$ / mPa s	B _v / K
Pyr _{H4} TFSI	230.5	49.49	168.0	203.0	0.356	-562.7
Pyr _{HH} TFSI	249.5	84.64	268.9	190.0	0.225	-718.5
Pyr ₁₄ TFSI	224.5	95.94	305.0	206.5	0.587	-526.9

3.3. Diffusion measurements

As shown above, conductivity and viscosity of dry pyrrolidinium-based PILs are rather similar to those of 10 pyrrolidinium-based AILs. As mentioned in the introduction, one of the main limitations of AIL-based electrolytes is their reduced lithium-ion mobility compared to the ones of conventional electrolytes. The ion mobility as well as the lithium coordination of AILs has already been investigated in the past 18, 19. ¹⁵ Nevertheless, to the best of our knowledge, so far the Li⁺ mobility as well as the lithium coordination in PIL-based electrolytes has not been investigated. Considering the importance of these properties for the development of advanced IL-based electrolytes in LIBs, we therefore investigated both of them. Table 2 lists self-20 diffusion coefficients and the dissociation degree for the investigated electrolytes. Only relatively small differences in selfdiffusion coefficients between the different electrolytes were found. This was surprising; it was expected that reducing the size of the pyrrolidinium cation by substituting one or both of the $_{25}$ alkyl chains of PYR₁₄⁺ with a hydrogen atom would accelerate its diffusion, in line with the increasing conductivity (Figure 2a). Substituting the methyl group of PYR_{14}^{+} by a hydrogen atom had the opposite effect: all self-diffusion coefficients became slightly smaller, although the conductivity of this electrolyte was found to 30 be higher than the one of PYR14TFSI-0.5M LiTFSI. This can be

understood by considering that it cannot be distinguished between un-paired and aggregated ions with the NMR measurements. Hence, also ion pairs and other neutral aggregates can contribute to the measured self-diffusion coefficients. These neutral species ³⁵ do not contribute to the electrolyte conductivity, which is consequently lowered by their presence. The Nernst-Einstein equation (Equation 3) allows calculation of an apparent conductivity treating all diffusing species as charge carriers contributing to conductivity:

$$\sigma_{NMR} = \frac{e^2}{kT} \sum N_{V,i} D_i \tag{3}$$

Here, *e* is the elementary charge, *k* is the Boltzmann constant, *T* is the absolute temperature, $N_{V,i}$ is the number density of ion i (derived from the concentrations of the ions and the density of the electrolyte) and D_i is the self-diffusion coefficient of ion *i*. The ⁴⁵ ratio between the measured conductivity σ_{AC} and σ_{NMR} can be interpreted as dissociation degree Δ , *i.e.*, the higher is the dissociation degree the more ions of the electrolyte contribute to its conductivity, although it should not be understood in a strict sense due to the complexity of the ion interactions in ILs. The 50 dissociation degree of 87% calculated for PYR_{H4}TFSI-0.5M LiTFSI indicates that this electrolyte is more dissociated than the electrolyte PYR14TFSI-0.5M LiTFSI with a dissociation degree of 74%. This higher degree of dissociation explains the higher conductivity of the PYR_{H4}TFSI-0.5M LiTFSI electrolyte 55 compared to PYR14TFSI-0.5M LiTFSI. Substituting also the butyl chain of PYR_{14}^+ by a hydrogen atom slightly increased all the self-diffusion coefficients. The PYR_{HH}^{+} cation is significantly smaller than the PYR_{14}^{+} cation. Hence, a pronounced increase of its diffusivity could be expected. However, the corresponding 60 self-diffusion coefficient increased only from 12.0x10⁻¹² to 12.2×10^{-12} m² s⁻¹. At the same time, the dissociation degree decreased from 74% to 59%. Taking these two findings into

stronger with PYR_{HH}^{+} than with PYR_{14}^{+} . The positive charge at the nitrogen atom is much less shielded in the case of PYR_{HH}^{++} than in the case of PYR_{14}^+ . As a result, ion pairing between $5 \text{ PYR}_{\text{HH}}^+$ and TFSI⁻ can be expected, as expressed by the lower dissociation degree. The same is most likely true for PYR_{H4}^{+} , but to a lower extent. As a consequence of the differences in PYR_{XY}⁺-TFSI⁻ interaction, the viscosity of the electrolyte containing PYR_{HH}TFSI is higher than that of the electrolyte 10 containing PYR_{H4}TFSI (as reported above). The lower selfdiffusion coefficient for the smaller PYR_{H4}⁺ cation compared to the one of the bigger PYR_{14}^+ cation, although at the same time the viscosity was lower for the PYR_{H4}TFSI-based electrolyte, indicates that also in the case of PYR_{H4}^{+} the interaction with 15 TFSI is more pronounced thus increasing the effective size of the diffusing PYR_{H4}^{+} species. It is important to mention that increased interaction between PYR_{XY}^+ and TFSI⁻ should also change the interaction between Li⁺ and TFSI⁻.

account, it can be concluded that TFSI is interacting much

²⁰ **Table 2.** Self-diffusion coefficients (D_i) and dissociation degree (Δ) of 0.5M LiTFSI solutions of PYR₁₄TFSI, PYR_{H4}TFSI and PYR_{HH}TFSI, respectively, at 30 °C.

· · · · ·		σ_{AC}		
Ionic liquid	PYR _{XY} ⁺	TFSI	Li ⁺	$\Delta = \frac{1}{\sigma_{NMR}}$
PYR14TFSI	12.0	8.1	5.3	74%
PYRH4TFSI	10.5	6.9	4.7	87%
PYRHHTFSI	12.2	9.1	5.7	59%

25

3.4. Lithium-ion environment

To investigate the different ion-ion interactions in AIL and PIL-based electrolytes in more detail, Raman spectra were recorded for all electrolytes. A characteristic (and strong) signal ³⁰ relative to the interaction of TFSI⁻ with other ions is the mode, found at a wavenumber of 742 cm⁻¹, which is generated by the

signal is typically assigned to non-coordinating or "free" TFSIanions ²⁰⁻²². Coordinating (or interacting) TFSI⁻ anions generate 35 an additional signal, which is shifted to higher wavenumbers in the Raman spectra (e.g. lithium ion coordinating TFSI, ca. 748 cm⁻¹) ^{23, 24}. Table 3 lists the assigned peak positions for the two modes (non-coordinating/coordinating) observed in the investigated electrolytes. The non-coordinating TFSI⁻ (TFSI_{non}) 40 mode for 0.5M LiTFSI in PYR14TFSI was found to be at 742.4 cm⁻¹. This value is in agreement with values reported in literature for "free" TFSI- anions 23. In the case of the PIL-based electrolytes, the TFSInon mode was shifted to higher wavenumbers, indicating the presence of relatively important ion-45 ion interactions between the IL-cations and TFSI in these electrolytes. The presence of these interactions is also confirmed by the shift of the peak wavenumbers corresponding to the Li⁺ coordinating TFSI⁻ (TFSI_{coor}) to higher wavenumbers, which is more marked in the case of the two PILs-based electrolytes than 50 for the electrolytes containing PYR14TFSI (Figure 4). In order to evaluate the ratio between coordinated and free ionic species, a useful method is to compare the areas of these species in the Raman spectra 24.

expansion/contraction of the whole TFSI⁻ anion. In literature, this

Figure 4 shows the Raman spectra of the three ⁵⁵ electrolytes and the fitted areas for non-coordinating and coordinating TFSI. From the figures it can be seen that the areas for TFSI_{coor} became smaller moving from PYR₁₄TFSI to PYR_{H4}TFSI to PYR_{HH}TFSI. Accordingly, the fraction of TFSI_{coor} decreases (as indicated in Table 3), following the same trend. ⁶⁰ When the lithium coordination number in the investigated electrolyte is calculated ¹⁹ the different behavior of PIL and AIL became evident. As indicated in Table 3, in PYR₁₄TFSI the Li⁺ ions are well coordinated by ca. 2 TFSI⁻ anions, while in PYR_{HH}TFSI the Li⁺ ions are coordinated by only 0.4 TFSI⁻

Journal of Materials Chemistry A Accepted Manuscript

anions. Taking this result into account, it is reasonable to suppose that the less shielded PIL-cations restrain TFSI⁻ anions from coordinating to Li⁺ ions. As a consequence of this "cation competition", the Li⁺ in PIL-based electrolytes results ⁵ significantly less coordinated compared to AIL ²⁵.

Table 3. Raman peak positions of non-coordinating TFSI⁻ (TFSI_{non}) and Li⁺ coordinating TFSI⁻ (TFSI_{coor}), fraction of the corresponding peak area of TFSI_{coor} compared to the sum of the peak areas of TFSI_{coor} and TFSI_{non}) and calculated Li⁺ coordination number n for 0.5M LiTFSI solutions of PYR₁₄TFSI, PYR_{H4}TFSI and PYR_{HH}TFSI, respectively.

Ionic liquid	TESI / cm ⁻¹	TESI / am ⁻¹	TESI / 0%	n in
Tome fiquid	11-Sinon / Chi	11 Si _{coor} / Chi	11-51 _{coor} / /0	$(Li^{+})(TFSI^{-})_{n}$
PYR14TFSI	742.4	748.5	27.04	1.9
PYR _{H4} TFSI	744.6	749.0	16.47	1.2
PYR _{HH} TFSI	745.6	749.7	9.12	0.4

15 Figure 4. Raman spectra in the spectral range from 730-760 cm⁻¹ of 0.5M LiTFSI in PYR₁₄TFSI (a), PYR₁₄TFSI (b) and PYR_{1H}TFSI (c).

The results reported above clearly indicate that AIL and PIL-based electrolyte, although they display similar ionic ²⁰ conductivity and viscosity, display marked differences in terms of ion coordination. As shown by the Raman study, the interaction between Li⁺ and TFSI⁻ is much stronger in the AIL-based electrolyte than in the case of the PIL-based ones. The lower interaction in these latter electrolytes in due to the presence of ²⁵ less shielded cations, which "compete" with the Li⁺ for the coordination of the anion. Nevertheless, it is very interesting to notice that the differences in coordination did not lead to pronounced changes of the lithium diffusion coefficient, as indicated by the NMR measurement. Taking these finding into ³⁰ account, the main difference between AIL and PIL-based electrolytes appear to be the lithium environment (see Figure 4). Li⁺ is certainly more loosely coordinated in the investigated PILs than in the investigated AIL. This difference appears extremely interesting as it could have a positive impact on the power ³⁵ performance of lithium-ion batteries.

3.6. Electrochemical characterization

With the aim to verify this latter point, we investigated the performance of LVP-based electrodes in the three 40 investigated electrolytes. Specifically, we carried out a C-rate test, at 30 °C, using currents ranging from 1C to 20C. In order to have a more exhaustive comparison, also the conventional electrolyte 1M LiPF₆ in EC:DMC was used for this test. As shown in Figure 5, when a current density corresponding to 1C 45 was applied, LVP cathodes displayed in both PIL-based electrolytes specific capacities in the order of 120 mAh g⁻¹. These values are close to the theoretical capacity of LVP (131 mAh g⁻¹ between 3.0 V and 4.3 V vs. Li/Li⁺) and they were comparable to those observed for the same electrodes in the conventional 50 electrolyte. This capacity was 10% higher than that observed for 0.5M LiTFSI in PYR₁₄TFSI (110 mAh g⁻¹). When the C-rate was increased, the differences between AIL and PIL-based electrolytes became even more severe. At 5C, the LVP electrodes used in combination with PIL-based electrolytes displayed 30% 55 higher capacity than those cycled in the AIL-based electrolyte. At 20C, the LVP electrode cycled with 0.5M LiTFSI in PYR14TFSI delivered a capacity of ca. 20 mAh g⁻¹, while the ones cycled in 0.5M LiTFSI in $\ensuremath{\text{PYR}_{\text{HH}}}\ensuremath{\text{TFSI}}$ and 0.5M LiTFSI in $\ensuremath{\text{PYR}_{\text{H4}}}\ensuremath{\text{TFSI}}$ displayed a capacity three times higher, in the order of 55-60 ⁶⁰ mAh g⁻¹. As shown in the figure, at high C-rates (higher than 5C) the performance of all IL-based electrolytes was still lower than

the one obtained with the conventional electrolyte. Nevertheless, the results of this investigation indicate that the presence of loosely coordinated Li⁺ ions in PIL-based electrolytes, compared to that in AIL-based electrolytes, has dramatic consequences on s the electrode performance.

Figure 5. Comparison of the specific discharge capacity of LVP electrodes during charge-discharge tests carried out at C-rates ranging from 1C to 20C in the electrolytes 0.5M LiTFSI in PYR_{HH}TFSI, 0.5M
¹⁰ LiTFSI in PYR_{H4}TFSI, 0.5M LiTFSI in PYR₁₄TFSI and 1M LiPF₆ in EC:DMC at 30 °C.

Figure 6. Comparison of voltage profile and impedance spectra at the fully lithiated and partially delithiated state of LVP electrode in the electrolytes 1M LiPF₆ in EC:DMC at 30 °C (a, b), 0.5M LiTFSI in PYR_{H4}TFSI (c, d) and 0.5M LiTFSI in PYR_{H4}TFSI (e, f).

behavior of the LVP electrodes in the investigated electrolytes, impedance spectra were recorded at the fully lithiated state (after full discharge) and in a partially lithiated state (at the first plateau of the discharge). This latter state was selected in order to have 25 indication about the charge-transfer resistance in the electrolytes. Since the two PILs display similar behavior, only the electrolyte 0.5M LiTFSI in PYR_{H4}TFSI was used for this test. As shown in Figure 6, in all electrolytes the impedance spectra of the LVP electrodes in the fully lithiated state presented a semicircle at 30 high-medium frequency, followed by a diffusion part at low frequency ²⁶. As expected, the charge-transfer resistance observed in the conventional electrolyte was the lowest (Fig. 6b) which was also shown in literature before ²⁷. Both ILs-based electrolytes show higher charge-transfer resistance due to their lower 35 conductivity. Nevertheless, it is important to notice that the overall resistance observed on the PIL-based electrolytes (Fig. 6d) was lower than in the AIL-based one (Fig. 6f). The impedance spectra of the LVP electrodes in the partially lithiated state was significantly different. In all electrolytes a second 40 semicircle, located in the medium frequency region, appeared. The presence of this additional semicircle in the partially lithiated state is correlated to the charge-transfer resistance associated to the lithium insertion into the LVP structure ^{26, 28}. Also in this case, the charge-transfer resistance observed in the conventional 45 electrolyte was the lowest. However, it is very interesting to notice the remarkable difference between the PIL-based electrolyte and the AIL-based one. As shown, the semicircle in the case of 0.5M LiTFSI in PYR14TFSI was significantly larger than the one of 0.5M LiTFSI in PYR_{H4}TFSI, indicating the 50 presence of a much higher charge transfer resistance in the AIL. Taking into account the Raman results reported above, it appears reasonable to suppose that the lithium desolvation process is

In order to understand the reasons of the different

easier in PILs than in AILs, and that this difference could be the origin of the different charge-transfer resistance between these two types of ILs. As shown in Figure 5, this different chargetransfer resistance affects significantly the behavior of the s electrodes during tests at high current densities and, most likely, is one of the main responsible reasons for the higher capacity observed in PIL-based electrolytes compared to the AIL-based one.

Finally, also the cycling stability of the LVP electrodes ¹⁰ in the electrolytes 0.5M LiTFSI in PYR_{H4}TFSI and 0.5M LiTFSI in PYR_{H4}TFSI was investigated. The tests were carried out at 30 °C using a C-rate equal to 1C. As shown in Figure 7, the LVP electrodes display high capacity, between 120-130 mAh g⁻¹, in both PIL-based electrolytes. This values are in agreement with ¹⁵ those observed during the C-rate test and are comparable with those shown by the LVP electrode in conventional electrolytes ¹⁶. As indicated in the figure, such high capacity can be fully maintained for 100 cycles and it is important to notice that the efficiency of the charge-discharge process was close to 100% ²⁰ during all cycles. These results clearly indicate that systems containing dry PIL-based electrolyte can also display high cycling stability.

Figure 7. Cycling stability of LVP electrodes in the electrolytes 0.5M ²⁵ LiTFSI in PYR_{HH}TFSI and 0.5M LiTFSI in PYR_HTFSI at 30 °C. The constant current cycling was carried out at a C-rate of 1C.

Conclusions

Protic ionic liquids display all typical and favourable properties of ILs, but they have the advantage of being easier to 30 synthesize and cheaper compared to aprotic ionic liquids. In this work, we considered two pyrrolidinium-based PILs, PYR_{HH}TFSI and PYR_{H4}TFSI in view of their use as electrolyte for LIBs. We showed that the (dry) electrolytes 0.5M LiTFSI in PYR_{HH}TFSI and 0.5M LiTFSI in PYR_{H4}TFSI display conductivity, viscosity 35 and lithium-ion self-diffusion coefficient comparable to those of a pyrrolidinium-based AIL. However, they have the important advantage of displaying an improved performance of LVP-based electrodes during tests at high C-rate. The lithium ions in PILbased electrolytes do not move faster than in AIL-based 40 electrolytes according to their self-diffusion coefficients. However, fewer TFSI⁻ anions form the solvation sphere of Li⁺ in the investigated PILs. We showed that the improved performance of LVP electrodes in the PIL-based electrolytes is related to a reduced charge-transfer resistance at the LVP-electrolyte 45 interface. Also an increased Li⁺ mobility at the presence of an electric field in the PILs compared to the one in the AIL (which is not reflected by the self-diffusion coefficients) could play a significant role and investigations about this latter point are currently in progress. Taking into account that the limited 50 performance at high rate of IL-based LIBs is presently considered as one of the main limitations of these devices, the use of PILbased electrolytes can be regarded as a new and promising strategy to overcome this drawback. Additionally, since PILs are typically cheaper than AILs, the introduction of this innovative 55 electrolyte could also be of importance for the development of safe and cheaper IL-based lithium-ion batteries.

70

75

Acknowledgements

The authors wish to thank the Westfälische Wilhelms-Universität

Münster and the Ministerium für Innovation, Wissenschaft und

Forschung des Landes Nordrhein-Westfalen (MIWFT) for the

5 financial support.

Notes and references

^a Westfälische Wilhelms-Universität, Institut für Physikalische Chemie-MEET, Corrensstraße 28/30, 48149 Münster, Germany

10 *E-mail: and rea.balducci@uni-muenster.de (corresponding author)

 B. Scrosati and J. Garche, J. Power Sources, 2010, 195, 2419-2430.

- 2. M. Armand, F. Endres, D. R. MacFarlane, H. Ohno and B. Scrosati, *Nat. Mater.*, 2009, **8**, 621-629.
- A. Balducci, S. S. Jeong, G. T. Kim, S. Passerini, M. Winter, M. Schmuck, G. B. Appetecchi, R. Marcilla, D. Mecerreyes, V. Barsukov, V. Khomenko, I. Cantero, M. I. De, M. Holzapfel and N. Tran, J. Power Sources, 2011, 196, 9719-9730.
- 4. J. F. Wishart, *Energy Environ. Sci.*, 2009, **2**, 956-961.
- A. Guerfi, M. Dontigny, P. Charest, M. Petitclerc, M. Lagace, A. Vijh and K. Zaghib, *J. Power Sources*, 2010, **195**, 845-852.
- R.-S. Kühnel, N. Böckenfeld, S. Passerini, M. Winter and A. Balducci, *Electrochim. Acta*, 2011, 56, 4092-4099.
- M. Anouti, M. Caillon-Caravanier, Y. Dridi, H. Galiano and D. Lemordant, J. Phys. Chem. B, 2008, 112, 13335-13343.
- 8. H. Matsuoka, H. Nakamoto, M. A. B. H. Susan and M. Watanabe, *Electrochim. Acta*, 2005, **50**, 4015-4021.
- 30 9. M. Anouti, E. Couadou, L. Timperman and H. Galiano, *Electrochim. Acta*, 2012, **64**, 110-117.
- 10. A. Brandt, J. Pires, M. Anouti and A. Balducci, *Electrochimica Acta*, 2013, **108**, 226-231.
- 11. T. Yasuda and M. Watanabe, MRS Bull., 2013, 38, 560-566.
- N. Böckenfeld, M. Willeke, J. Pires, M. Anouti and A. Balducci, *J. Electrochem. Soc.*, 2013, 160, A559-A563.
- 13. S. Menne, J. Pires, M. Anouti and A. Balducci, *Electrochem. Commun.*, 2013, **31**, 39-41.
- L. Timperman, P. Skowron, A. Boisset, H. Galiano, D. Lemordant, E. Frackowiak, F. Beguin and M. Anouti, *Phys. Chem. Chem. Phys.*, 2012, 14, 8199-8207.
- P. Stilbs, Prog. Nucl. Magn. Reson. Spectrosc., 1987, 19, 1-45.
 N. Böckenfeld and A. Balducci, J. Power Sources, 2013, 235, 265-273.
- 45 17. L. Timperman, H. Galiano, D. Lemordant and M. Anouti, *Electrochem. Commun.*, 2011, **13**, 1112-1115.
- F. Castiglione, E. Ragg, A. Mele, G. B. Appetecchi, M. Montanino and S. Passerini, J. Phys. Chem. Lett., 2011, 2, 153-157.
- S. Duluard, J. Grondin, J.-L. Bruneel, I. Pianet, A. Grélard, G. Campet, M.-H. Delville and J.-C. Lassègues, *Journal of Raman Spectroscopy*, 2008, **39**, 627-632.
- D. Brouillette, D. E. Irish, N. J. Taylor, G. Perron, M. Odziemkowski and J. E. Desnoyers, *Physical Chemistry Chemical Physics*, 2002, 4, 6063-6071.
- M. Herstedt, M. Smirnov, P. Johansson, M. Chami, J. Grondin, L. Servant and J. C. Lassègues, *J. Raman Spectrosc.*, 2005, 36, 762-770.
- A. Martinelli, A. Matic, P. Johansson, P. Jacobsson, L.
 Börjesson, A. Fernicola, S. Panero, B. Scrosati and H. Ohno, *J. Raman Spectrosc.*, 2011, 42, 522-528.

- M. Castriota, T. Caruso, R. G. Agostino, E. Cazzanelli, W. A. Henderson and S. Passerini, *The Journal of Physical Chemistry A*, 2005, **109**, 92-96.
- 65 24. J.-C. Lassegues, J. Grondin and D. Talaga, *Physical Chemistry Chemical Physics*, 2006, 8, 5629-5632.
 - 25. S. Menne, T. Vogl and A. Balducci, *Phys Chem Chem Phys*, 2014.
 - X. H. Rui, N. Ding, J. Liu, C. Li and C. H. Chen, *Electrochim.* Acta, 2010, 55, 2384-2390.
 - L. S. Plashnitsa, E. Kobayashi, Y. Noguchi, S. Okada and J.-i. Yamaki, J. Electrochem. Soc., 2010, 157, A536-A543.
 - J.-M. Atebamba, J. Moskon, S. Pejovnik and M. Gaberscek, J. Electrochem. Soc., 2010, 157, A1218-A1228.