This is an Accepted Manuscript, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about Accepted Manuscripts can be found in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard Terms & Conditions and the ethical guidelines that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these Accepted Manuscript manuscripts or any consequences arising from the use of any information contained in them.
3D structured rGO/TiO$_2$ composite was firstly synthesized by a simple solvothermal reaction using Poly (L-Lysine) (PLL) and ethylene glycol (EG) as coupling agent. The composite shows markedly enhanced photocatalytic activity compared to synthesized simply mixture of TiO$_2$ and GO, original TiO$_2$, and the commercial P25 for the photocatalytic degradation of MB.
A novel 3D structured reduced graphene oxide/TiO₂ composite: synthesis and photocatalytic performance

Wang Yan, Fei He, Shili Gai, Peng Gao, Yujin Chen and Piaoping Yang

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX

DOI: 10.1039/b000000x

In this study, TiO₂ hollow microspheres with the highest photocatalytic activity were prepared by simply optimizing the ratio of the as-used templates (poly (4-styrenesulfonate) (PSS) and triblock copolymer P123). In particular, a novel three-dimensional (3D) reduced graphene oxide/TiO₂ (rGO/TiO₂) hybrid composite was for the first time prepared by wrapping TiO₂ hollow microspheres with rGO sheets via a facile solvothermal route using poly (L-Lysine) (PLL) and ethylene glycol (EG) as coupling agent. The structural, morphological and photocatalytic properties of as-synthesized products were well examined. It is found that rGO/TiO₂ hybrid composite exhibit markedly enhanced photocatalytic performance in comparison with pure TiO₂ hollow microspheres and the simply mixture of rGO and TiO₂ spheres. The rational design, interesting structure and the ideal photocatalytic performance of this graphene-based composite show highly promising in diverse fields.

1 Introduction

Recently, intense research on effective semiconductor photocatalyst has attracted a lot of interest owing to their fundamental and technological applications to environmental purification. As one of the most popular photocatalysts, titanium dioxide has attracted significant attention due to its photochemical stability, long-term stability against photocorrosion and chemical corrosion, relative non-toxicity, low-cost, and thus can be applied in diverse fields such as paints, dyesensitized solar cells, lithium ion batteries, microbial fuel cells, sensor, photocatalysis, electrocatalysis and drug delivery system. Anatase and rutile are the two main crystalline phases of TiO₂ which are commonly used in photocatalysis. Different structures of the two phases exhibit different physical properties, leading to diverse applications. It is widely accepted that photocatalytic reactions mainly take place on the surfaces of the photocatalysts. The efficiency of titania highly depends on their size, composition, crystal phase, crystallinity, specific surface area and morphology. Thus, controlling the morphology and structure of titania is an important issue in terms of optimizing their properties. Up to now, remarkable progress has been made in the preparation of TiO₂ nanocrystals, tubes, rods, and nanowires. Many methodologies have been developed for the fabrication of titania materials with diverse phases, morphologies and structures. Li et al. prepared TiO₂ annealed at different temperatures, and the surface phases of TiO₂ were studied. Fu et al. synthesized stable porous TiO₂ photocatalysts with high photocatalytic activity via a hydrothermal process, followed by a post treatment in the presence of ethylenediamine. These processes usually concerning an annealing temperature have been regarded as novel method for the fabrication of titania dioxide. However, their disadvantages, including long reaction time, high annealing temperature, tedious synthetic procedures greatly hinder their applications. In particular, high annealing temperature often causes particle agglomeration which will result in surface area decline and undesired phase transformation, leading to the obvious decrease of photocatalytic activity. Therefore, it will be highly promising to establish a mild, facile, and economic strategy for preparing high quality TiO₂ with controlled phase/morphology, which can overcome above mentioned shortcomings. Moreover, solvothermal process has been proved to be one of the most convenient, effective, and facile approaches for the preparation of homogenous metal oxides at relatively lower temperature and shorter reaction time which avoided the annealing process. Furthermore, 3D TiO₂ with tunable structures and phases by simply altering the amounts of the surfactants via a solvothermal process has never been reported.

TiO₂ with different structures have been extensively employed as catalysts for photocatalytic reaction. However, there is still a great challenge to further promote the photocatalytic activity for the growing concerns about air/water pollution. So far, there have been several investigations on improvement of photocatalytic efficiency of TiO₂, such as depositing noble metals and doping metal or nonmetal ions. These composites indeed showed photocatalytic enhancement to certain extent. Among them, the combination of TiO₂ with the graphene-based derivatives such as graphene oxide (GO), reduced graphene oxide (rGO) materials have attracted much attention because of the excellent mechanical property, large surface area, and flexible structures.

As a two-dimensional (2D) sheet with fully delocalized sp²-bonded carbon atoms, graphene sheets has advantages over other
materials including high surface area with electronic conductivity, mechanical robustness, stable in electrochemical environments, thermal conductivity, electrical conductivity and can be chemically functionalized. Due to its attractive chemical structure, there is interest in using single layer graphene and other graphene derivatives for a variety of applications in catalytic activity, supercapacitors, lithium-ion batteries, energy storage and conversion. Zhang et al. reported the fabrication of graphene encapsulated hollow TiO$_2$ nanospheres by a hard template method but it involves preparation of SiO$_2$, calcination process and final etching of the template. However, uniform mixed phase TiO$_2$ hollow microspheres prepared by one spot route and arranged on reduced graphene have never been reported so far. In our 3D rGO/TiO$_2$ composite, the TiO$_2$ spheres are arranged on the reduced graphene sheets which can not only improve the surface area of the composite but prevent agglomeration or the irreversibly restack to form graphite. The crinkled texture and the 3D structure of rGO ensure that sufficient catalytic reaction to take place easily. As mentioned above, the rGO sheets can extend out of the composite without agglomeration which can provide better access for the solution into the entire structure. Therefore, it is reasonable that the rGO/TiO$_2$ composite has a higher photocatalytic activity than other samples in our work. As a result, from the perspective of application, developing a new family of graphene-based materials with diverse well-defined novel morphologies via rapid, simple, and low cost method should be highly promising and attractive.

In our contribution, we proposed a facile and universal approach for producing of different morphologies/phases TiO$_2$ structures with 3D hollow structure firstly. P123 and PSS were used in the solvothermal process, the morphologies and phases of the samples can be controlled by simply adjusting the amount and concentration of the surfactant. Then, graphene-based TiO$_2$ hybrid composite was prepared with the aid of PLL and EG by a solvothermal rout. GO is then reduced to graphene via the thermal treatment and TiO$_2$ particles were arranged on the rGO. Notably, PLL and EG were used as coupling agent during the process and they are the only reagents involving, which reduces energy consumption and prevents the possible contamination of the toxic chemicals. PLL is commonly known as a strong polycation that can neutralize the negative charges on the GO surface. Moreover, the photocatalytic properties of as-prepared hollow TiO$_2$ microspheres, simple mixture of GO and TiO$_2$, rGO/TiO$_2$ composite were investigated in detail.

2 Experimental section

Reagents and materials

All materials including titanium tetraisopropionate, triblock copolymer Pluronic P123 and sodium poly (4-styrenesulfonate) (PSS) with average molecular weights of 70,000, poly (L-Lysine) (PLL), absolute ethanol, HCl, NaOH, ethanolethylene glycol (EG) were purchased from Sinopharm Chemical Reagent Co., Ltd and used as received without further purification.

Synthesis procedure

Graphite oxide (GO) was prepared from natural graphite according to the modified Hummers method. GO solution was prepared by long time sonication of GO in deionized water.

In a typical procedure for the synthesis of TiO$_2$ with W_R of 20.8%, 0.08 g of P123 and 7 mL of ethanol were added to an aqueous solution containing PSS (20 mL, 0.5 g/L) and stirred until P123 was dissolved. Then 0.5 mL titania tetraisopropionate was added to the mixture. After that, 3 mL HCl was added. After additional agitation for 5 min, the resultant solution was transferred to a 50 mL autoclave and maintained at 180 °C for 12 h. Finally, the autoclave was cooled to room temperature naturally. The precipitates were separated by centrifugation, followed by washing with deionized water and ethanol several times. The final product was dried at 60 °C in air overnight. TiO$_2$ architectures with different morphologies and phase were prepared by a similar process only by changing the P123 amount and the PSS concentration in the initial solution.

Characterization

X-ray diffraction (XRD) measurement was conducted on a Rigaku D/max-TTR-III diffractometer using Cu Kα radiation ($\lambda = 0.15405$ nm). The morphologies of the samples were inspected on a scanning electron microscope (SEM, JSM-6480A, Japan Electronics). Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) micrographs were performed on a FEI Tecnai G2 S-Twin transmission electron microscope with a field emission gun operating at 200 kV. Raman spectra were recorded on a Renishaw RM2000 Raman spectrometer with 457.9 nm wavelength incident laser light. The X-ray photoelectron spectra (XPS) were performed on a VG ESCALAB MK II electron energy spectrometer using Mg KR (1253.6 eV) as the X-ray excitation source. The N_2 adsorption/desorption isotherms were...
Table 1: Sample names and corresponding experimental conditions

<table>
<thead>
<tr>
<th>Sample</th>
<th>P123 (g)</th>
<th>PSS (g/L)</th>
<th>(W_R (100%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.08</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0.08</td>
<td>0.05</td>
<td>20.8</td>
</tr>
<tr>
<td>C</td>
<td>0.08</td>
<td>0.075</td>
<td>50.4</td>
</tr>
<tr>
<td>D</td>
<td>0.08</td>
<td>0.1</td>
<td>74.1</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0.125</td>
<td>100</td>
</tr>
</tbody>
</table>

Conducted with a liquid nitrogen temperature (−196 °C) using a Micromeritics ASAP 2010 instrument. The specific surface area was calculated by the Brunauer-Emmett-Teller (BET) method. All of the measurements were performed at room temperature.

Photocatalytic experiments

In a typical process, aqueous solution of the MB dyes (20 mg/L, 200 mL) and the photocatalysts (TiO\(_2\)) with different \(W_R \), rGO/TiO\(_2\) composite, simply mixture of TiO\(_2\) (\(W_R = 20.8\% \)) and GO, and P25) were placed in a cylindrical quartz vessel, A 500 W high-pressure mercury lamp was used as a light source which was placed at about 10 cm from the reactor above. After the mixture was premixed for 60 min, the light was turned on to initiate the reaction. The concentrations of MB solutions before and after UV irradiation were determined by a UV–visible spectrophotometer (UV-2550, Shimadzu) from the absorbance at 664 nm.

3 Results and discussion

Phase, structure and photocatalytic activity of TiO\(_2\)

Fig. 1 shows the XRD patterns of TiO\(_2\) prepared with different additives (PSS/P123), and the corresponding SEM images of the samples are given in Fig. 2. It can be seen that the size and morphology of the samples prepared with different additive ratio are much different. In Fig. 1A for the sample prepared with 0.08 g P123 and absence of PSS (\(W_R = 0 \)), the diffraction peaks can be directly indexed to anatase phase (JCPDS No. 21-1272). The corresponding SEM image (Fig. 2A) and TEM image (inset) shows that the irregular shaped and aggregated particles are produced. When the PSS concentration is increased to 0.05 g/L and P123 is fixed at 0.08 g (\(W_R = 20.8\% \)), the rutile phase begins to appear and the anatase phase is still predominant (Fig. 1B), indicating the sample partially transforms from anatase phase to rutile phase with the help of PSS. It is interesting that as-prepared sample consists of well-defined quasi-flower-like 3D structured spheres and with relatively narrow size range. In particular, hollow structure can be confirmed form the pale center and dark outside edge (inset in Fig. 2B), which should be derived from the used surfactant. As the PSS concentration is changed to 0.075 g/L and P123 is fixed at 0.08 g (\(W_R = 50.4\% \)), the rutile phase grows obviously (Fig. 1C). When the PSS concentration is raised to 0.1 g/L and P123 is fixed at 0.08 g (\(W_R = 74.1\% \)), a considerable amount of anatase phase transforms into rutile phase, which become predominant. Irregular sphere-like aggregates with some nanoparticles are obtained (Fig. 2D). As for the sample prepared with 0.05 g/L PSS and absence of P123, the diffraction peaks can be well indexed to rutile-phased TiO\(_2\) (JCPDS No. 21-1276), indicating the complete transformation to rutile phase. Irregular aggregates composed of hollow spheres are obtained (Fig. 2E and inset). It can be concluded from the above results that higher PSS concentration would inhibit the formation of anatase-phased TiO\(_2\), meanwhile promoting the formation of the rutile-phased TiO\(_2\). These results clearly suggest that PSS plays an important role in the phase and structure of the final products, which has been proved in our previous work and other related reports.

To investigate the photocatalytic performance of the TiO\(_2\) with different architectures, systematic photocatalytic tests were carried out by using MB as a model dye due to its stable photochemical property. The photocatalytic degradation rates of MB on the different TiO\(_2\) samples are displayed in the Fig. 3. It is obvious that the sample prepared with 0.08 g P123 and 0.5 g/L PSS displays the highest activity among the as-prepared five TiO\(_2\) samples. Based on the above XRD, SEM and TEM results, it can...
be concluded that the high activity of the TiO$_2$ ($W_R = 20.8\%$) sample should be attributed to the high dispersity, well defined 3D hollow structure and especially the mixed phased of 79.2% anatase and 20.8% rutile.

To understand the growth mechanism of the hollow TiO$_2$ architecture ($W_R = 20.8\%$), systematic time-dependent experiments were carried out at 180 °C. The TEM images of the product obtained after 20 min, 3 h, 6 h and 12 h in the solvothermal process illustrate the morphology evolution of the hollow TiO$_2$ architectures (Fig. 4). In Fig. 4A, the sample collected after solvothermal treatment for 20 min leads to the formation of amorphous nanoparticles which is unstable and is susceptible to attach to each other with the help of the surfactants. The sulfonic groups in the molecular chain have a strong tendency to attract positively charged ions or to be attached on positively charged surfaces. The interaction between PSS and P123 leads to their aggregation and hydrophilic-hydrophobic interactions associated with the pendent chains of the adsorbed copolymers, cooperative with the anisotropy of TiO$_2$ primary nanoparticles, making those polymer TiO$_2$ primary nanoparticles spontaneously assemble into 3D spherical structures. As the reaction time is increased to 3 h, some sphere aggregation with a solid interior are obtained (Fig. 4B). With further reaction, nanoparticles attach on the surface of the sphere aggregation and the underdeveloped structures grow. Further prolonging the reaction time to 6 h, the microstructures grown in all directions and the hollow morphology is observed (Fig. 4C). Furthermore, as the reaction proceeds to 12 h, the underdeveloped hollow architectures continue to grow by combining the remaining primary nanoparticles and the shell of the hollow spheres becomes denser with more nanoparticles. As a result, fully developed TiO$_2$ hollow spheres formed, the interior structure is clearly shown in Fig. 4D, which is due to dissolution-renucleation process during the reaction and it is proposed on the basis of Ostwald ripening. Large crystals grow at the expense of small ones by the diffusion of ions, atoms or molecules within an ensemble of crystalline materials.

Phase, structure, and photocatalytic activity of rGO/TiO$_2$

As discussed above, we found that the rational control of the weight ratios of rutile phase in the mixed phase is important to the photocatalytic performance of the materials. TiO$_2$ hollow spheres prepared with 0.08 g P123 and 0.05 g/L PSS ($W_R = 20.8\%$) shows the superior photocatalytic property to others. However, there is still a great challenge to further improve the photocatalytic activity. Thus, we proposed a facile and universal route to prepare 3D TiO$_2$ arranged on reduced graphene oxide hybrid composite (rGO/TiO$_2$) with the aid of PLL and EG at 180 °C for 12 h by the solvothermal process. GO was reduced to rGO after the thermal treatment and hollow TiO$_2$ microspheres were arranged on the rGO sheets. This approach is schematically illustrated in Scheme 1. To identify the phase and the structure of TiO$_2$ and rGO/TiO$_2$ composite, XRD patterns of pure GO, TiO$_2$, and rGO/TiO$_2$ were examined, which are shown in Fig. 5. According to the result of the XRD analysis, a characteristic peak of GO appeared at 2θ = 9.9° which matched earlier results and the results confirmed that GO was successfully synthesized from graphite by the modified Hummers’ method. And it shows the characteristic peaks of the mixed anatase and rutile phases of TiO$_2$. Compared with pure TiO$_2$, the major diffractions of rGO/TiO$_2$ composite are almost unchanged, indicating that mixed phase can be well maintained in the composite. The wide angle XRD data of as-made composite showed a broad peak at 2θ = 25° which attributed to rGO indicating the thermal reduced graphene (002) plane after the solvothermal process. Moreover, for the rGO/TiO$_2$ composite, the disappearance of the GO peak at 2θ = 9.9° also confirms the reduction of GO to rGO in the composite.

Fig. 4 TEM images of TiO$_2$ ($W_R = 20.8\%$) prepared at 180 °C for reaction time of (A) 20 min, (B) 3 h, (C) 6 h and (D) 12 h.

Scheme 1 Schematic illustration for the formation process of rGO/TiO$_2$ composite.

Fig. 3 Photodegradation of MB aqueous solution for TiO$_2$ ($W_R = 0\%$), TiO$_2$ ($W_R = 20.8\%$), TiO$_2$ ($W_R = 50.4\%$), TiO$_2$ ($W_R = 74.1\%$), TiO$_2$ ($W_R = 100\%$).
Fig. 5 XRD patterns of GO, TiO$_2$, and rGO/TiO$_2$ composite.

Fig. 6 shows the Raman spectra of pristine graphene sheets and the rGO/TiO$_2$ composite. It is shown that both of the curves show two bands at 1590 cm$^{-1}$ (G band) and 1350 cm$^{-1}$ (D band) which confirm the presence of carbon materials. The G bands are responsible for E_{2g} photon corresponding to sp2 atoms, while the D band is associated with the defects, curved sheets and dangling bonds in the carbon structures. Peak intensity ratio of the D and G band (I_D/I_G) is inversely proportional to the extent of sp2 domain and can be used to estimate the disorder degree and average size of the sp2 domains of the graphite materials. Compared to that of GO, the decreased I_D/I_G ratio (0.857 for rGO/TiO$_2$ and 0.997 for GO) of rGO/TiO$_2$ indicates a typical graphene structure obtained by the thermal reduction.

The surface chemical information of the products was examined by XPS analysis. Fig. 7 gives the survey and elements XPS spectra of GO and rGO/TiO$_2$, respectively. As shown in Fig. 7A, pure GO nanosheet exhibits individual peak at 284.5 eV in the XPS spectra. The survey spectrum of the rGO/TiO$_2$ composite mainly shows carbon, oxygen and titanium species. In Fig. 7B for C1s spectrum of GO, the deconvolution of C1s spectrum of GO indicates the presence of four types of carbon bonds: C–C (284.5 eV), C–O (286.2 eV), C=O (287.2 eV), and O–C=O (288.3 eV). Compared to pure GO, the peaks of rGO/TiO$_2$ related to the oxidized carbon, especially the peak of C–O decrease greatly, indicating that GO has been well deoxygenated to form graphene. Additionally, two major peaks of Ti 2p centered at 459.2 associated with the Ti 2p$_{3/2}$ and Ti 2p$_{1/2}$ confirm the presence of TiO$_2$ (Fig. 7D). The XPS results are well consistent with above XRD and Raman analysis.

The morphologies and structure of the as-synthesized TiO$_2$ and rGO/TiO$_2$ were further investigated. The low-magnification SEM image (Fig. 8A) reveals that the hollow spheres are quite uniform with high morphological yield and have a relatively narrow size distribution. The size of the hollow spheres ranges from 200 to 400 nm with an average diameter of about 300 nm. Themagnified SEM image of TiO$_2$ (Fig. 8B) indicates that the hierarchical architecture has hollow structured interiors which is obvious in Fig. 8B labeled by the red circle. TEM image of TiO$_2$ (Fig. 8C) proves that the as-synthesized TiO$_2$ has a hierarchical 3D structure and the size and shape are similar to those in the SEM images. The magnified TEM image in Fig. 8D reveals that the 3D structures have hollow interiors manifested by the obvious contrast between the darker edge and lighter pale center. Moreover, close observation reveals that these hollow spheres are composed of numerous nanorods/nanosheets standing along the radial direction of the spheres and seemed to be quite flexible. The interesting structure should be beneficial to the photocatalytic activity of the product. Fig. 8E displays the TEM image of GO. The characteristics of 2D rGO with a little curved and crinkled texture are observed, which is common at the edge of the typical GO. In Fig. 8F for rGO/TiO$_2$ obtained via the solvothermal process, graphene sheets with crinkled textures are clearly found on the composite, and most of TiO$_2$ spheres are arranged on the reduced graphite oxide due to the flexible and rough properties of rGO sheets. Moreover, as shown in the TEM images (Fig. 8G and H), it is apparent that TiO$_2$ hollow spheres with good dispersibility are well encapsulated by the rGO sheets. Notably, the encapsulation the TiO$_2$ hollow spheres by the rGO sheets should be able to increase the surface area and avoid the...
between the rGO/TiO\(_2\) (110) plane spacing of rutile TiO\(_2\) and the interplanar distance of 0.325 nm matches well with the separated structure of rGO and TiO\(_2\) contact between the TiO\(_2\) (Fig. 8J).

Fig. 10 Photodegradation of MB aqueous solution for TiO\(_2\) (\(W_R = 20.8\%\)), rGO/TiO\(_2\) composite, simply mixture of TiO\(_2\) (\(W_R = 20.8\%\)) and GO, and P25.

Fig. 9 gives the N\(_2\) adsorption/desorption isotherms of TiO\(_2\) (\(W_R = 20.8\%\)), simply mixture of GO and TiO\(_2\) spheres, and rGO/TiO\(_2\) composite. As shown, all the samples exhibit typical IV-type isotherms, indicating the mesoporous nature of all the samples. The BET surface area and total pore volume are calculated to be 124.1, 153.1, 180.8 m\(^2\)/g and 0.445, 0.609, 0.735 cm\(^3\)/g for TiO\(_2\) (\(W_R = 20.8\%\)), simply mixture of GO and TiO\(_2\) spheres and rGO/TiO\(_2\) composite, respectively.

To study the photocatalytic activity, systematic photocatalytic tests were carried out on TiO\(_2\) (\(W_R = 20.8\%\)), rGO/TiO\(_2\) composites using MB as the model dye. For comparison, simple mixture of GO and TiO\(_2\) spheres and the commercial Degussa P25 were also tested. Fig. 10 presents the photocatalytic activity of four catalysts. As expected, all the products exhibit degradation property to MB. TiO\(_2\) (\(W_R = 20.8\%\)) displays higher degradation ratio of MB than that of Degussa P25. Notably, the rGO/TiO\(_2\) composite shows obvious enhanced photocatalytic activity compared with TiO\(_2\) (\(W_R = 20.8\%\)), indicating a significant synergetic effect of graphene for composite. It is found that the photocatalytic activity of the simply mixture of GO and TiO\(_2\) sphere is also higher than that of TiO\(_2\) hollow spheres and the commercial P25, while lower than the rGO/TiO\(_2\) composite. The enhancement of photocatalytic activity for rGO/TiO\(_2\) composite can be explained by the following factors. The TiO\(_2\) with 20.8\% rutile phase has synergistic effect between anatase and rutile, which favors the spatial separation of photo generated charge carriers, and offering a greater surface area for dye adsorption for dye binding. The as-obtained mixed phase TiO\(_2\) plays a key role in preparing the rGO/TiO\(_2\) composite suggesting the importance of tuning the phase structure of TiO\(_2\). As we know, in 3D composite, the hollow spheres will be reasonable for the improvement of the photocatalytic activity.\(^{62,63}\) In the 3D rGO/TiO\(_2\) composite, the TiO\(_2\) microspheres are wrapped in the reduced graphene sheets which can not only improve the electron conductivity of the material but prevent agglomeration or the irreversibly restack to form graphite. The crinkled texture of rGO and the close contact between catalyst particles and rGO sheets supply sufficient access for the catalytic reaction, thus ensuring that catalytic reaction can take place easily at the surface of the material, which is well consistent with the BET surface area. Moreover, the 3D structure buffers the
associated volume changes during the catalytic reaction as well. Therefore, it is reasonable that rGO/TiO$_2$ composite has a higher photocatalytic activity.

4 Conclusions

In summary, TiO$_2$ with controllable phase were successfully synthesized using solvothermal treatment by simply adjusting the amount/concentration of the surfactant. It is clearly demonstrated that the mixed phase TiO$_2$ with W_p is 20.8% show the highest photocatalytic activity. In order to further promote the photocatalytic performance, graphene-based TiO$_2$ composite was prepared with the aid of PLL and EG by a solvothermal route. TiO$_2$ particles were arranged on the rGO which via the solvothermal treatment. The photocatalytic property of as-prepared rGO/TiO$_2$ composite was also investigated in detail and it shows the enhanced photocatalytic activity compared to the simply mixture of TiO$_2$ and GO, original TiO$_2$ and the commercial P25 for the photocatalytic degradation of MB, because of the synergetic effects of mixed phase of TiO$_2$ between anatase and rutile, large surface area, novel structure, the utilization of rGO. This work provides a simple and effective strategy for the synthesis of high-performance TiO$_2$-based functional composite and it is of highly potential for photocatalytic use.

Acknowledgements

Financial supports from the National Natural Science Foundation of China (NSFC 21271053, 21001035, 51272050 and 51072038), Research Fund for the Doctoral Program of Higher Education of China (20112304110021), National Science Foundation of Heilongjiang Province (LC2012C10), Program for New Century Excellent Talents in University, Harbin Sci.-Tech. Innovation Foundation (RC2012XK017012), and the Fundamental Research Funds for the Central Universities of China are greatly acknowledged.

Notes and references