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Sodium alanate, NaAlH4, is a well-known hydrogen storage material that decomposes into Na3AlH6 and Al while releasing H2 as
a gas. While the thermodynamics of this reaction are ideal for applications in fuel cell vehicles, the reaction rates are prohibitively
slow unless the material is doped with transition metals (such as titanium) or rare earths (such as cerium). It has been widely
theorized that the flux of point defects through the bulk phases provides the mechanism for long-range metal transport which
accompanies the hydrogen release and absorption reactions. In this paper, a quantitative model is introduced to describe mass
transport using point defect energies obtained from first-principles density-functional theory (DFT) calculations. It is found
that negatively charged sodium vacancies in Na3AlH6 have the largest flux of all metal-site defects in any of the phases, at all
temperatures examined. Positively charged hydrogen vacancies are predicted to balance the charge of sodium vacancies and have
a higher diffusivity than this metal defect. The activation energy for the formation and diffusion of sodium vacancies in Na3AlH6
is found to be equal to 50 kJ/mol for rehydrogenation and 70 kJ/mol for dehydrogenation, in good agreement with experimental
values. It is argued that diffusion of sodium vacancies in Na3AlH6 represents the rate-limiting process in the dehydrogenation of
Ti-doped NaAlH4 and that Ti must catalyze some other process (or processes) than bulk mass transport.

1 Introduction

In the search for a hydrogen storage material that meets all
of the requirements for applications in fuel cell vehicles,1,2

sodium alanate, NaAlH4, has been the focus of a considerable
amount of research (a selected list of publications includes
Refs.3–11). This prototypical complex metal hydride under-
goes a multi-step dehydrogenation reaction for which the first
steps follow12,13

NaAlH4 !
1
3

Na3AlH6 +
2
3

Al+H2, (1)

Na3AlH6 ! 3NaH+Al+
3
2

H2. (2)

The equilibrium temperatures for Reactions (1) and (2) at an
H2 pressure of 1 bar are 33 and 110 �C, respectively, although
they are limited by prohibitively slow kinetics at temperatures
even well above these.6 In a landmark discovery, Bogdanovic
and Schwickardi 3 found that doping with small concentra-
tions of Ti significantly increased the reaction rates. The un-
catalyzed activation energy for Reaction (1) was found to be
equal to 118 kJ/mol and, upon Ti doping, this is reduced to
between 73 and 80 kJ/mol in the catalyzed reaction, with the
rate constant increasing with Ti content.7,14 Similarly, the ac-
tivation energy for Reaction (2) is reduced from 120 kJ/mol to
97 kJ/mol upon doping with Ti.7,14 Additionally, the reactions
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are made reversible under conditions that could be achieved in
fuel cell vehicles3,6,14 with catalyzed activation energies for
rehydrogenation equal to 62 and 56 kJ/mol for Reactions (1)
and (2), respectively.14

A primary focus of the experimental and theoretical work
on NaAlH4 has been on identifying the atomic level processes
involved in the de- and rehydrogenation reactions and how
these processes are catalyzed by Ti. Although Reactions (1)
and (2) do not meet the gravimetric storage requirements for
vehicular applications, an understanding of this catalytic ef-
fect will aid in the improvement of other reactions involving
complex metal hydrides that have desirable thermodynamic
properties15–28 but which are limited by slow kinetics. Both
metal and hydrogen diffusion have received significant atten-
tion as they are obvious candidates in the search for rate-
limiting kinetic mechanisms. For instance, experimental stud-
ies have suggested that long-range bulk diffusion likely rep-
resents the rate-limiting process of Reaction (1) when doped
with Ti.29 Additionally, hydrogen-deuterium exchange exper-
iments show that it is likely a metal-site defect (i.e. not a pure
hydrogen defect) that is the rate-limiting diffusive species.9,10

First-principles calculations are well-suited to the task of
exploring atomic level processes in Reactions (1) and (2) and
have been applied in past work.30–39 However, a full quantita-
tive treatment of mass transport during a solid-state reaction is
difficult due to the many possible pathways along which a re-
action may proceed. As a result, a general agreement between
experimental and computational work on rate-limiting pro-
cesses in Reaction (1) (in either pure or doped systems) does
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not exist. In this paper we develop a framework to study mass
transport by connecting first-principles density-functional the-
ory (DFT) calculations of point defect properties in crystals to
the macroscopic evolution of a reaction. This allows us to
identify the fastest modes of mass transport during Reactions
(1) and (2) and to calculate the corresponding activation en-
ergies. The methods described in this paper are applicable
to general solid-state decomposition reactions and diffusion-
driven phase transformations.

This work is the final paper is a series by these same authors
in which the equilibrium concentrations of native defects,40

their diffusivities,41 and the effects of Ti substitutions on the
native defect concentrations42 have all been examined. The
results of these papers are combined in a model to describe
the flux of defects through the phases of Reaction (1). In the
past, studies of point defect energetics and diffusivities have
focused only on defects in NaAlH4. We expand this by con-
sidering defects in all of the phases involved in the reaction
in order to identify which is truly the dominant mechanism
of mass transport. This paper discusses the connection be-
tween the morphology and temperature dependence of the re-
action rates, as well as their relation to microscopic atomic-
level quantities such as point defect formation and migration
energies. We find that the fastest mass transport mechanism
occurs via Na vacancies in Na3AlH6 (the charge of which is
balanced by hydrogen vacancies), consistent with experimen-
tal work in which it was found that the largest concentrations
of defects were in a product phase of Reaction (1).43 We go
on to argue that this is the rate-limiting process in the dehydro-
genation of Ti-doped systems where the calculated activation
energy (70 kJ/mol) and experimental activation energy for the
overall reaction (73-80 kJ/mol6) are in good agreement.

2 Model and Methods

2.1 Reaction Morphologies

The spatial arrangement and physical contact between the re-
actant and product phases directly influence the diffusional
fluxes that are involved in Reaction (1). Schematic one-
dimensional (1D) model morphologies are shown in Figure
1(a)-(b) and have been discussed previously in Ref. 40. In
addition to this discussion, we note the possibility of Mullins-
Sekerka type44 instabilities of the advancing planar reaction
fronts. For instance, the Na3AlH6/Al interface in Figure 1(a)
may become unstable with respect to a sinusoidal modula-
tion, which is shown by a dashed line. This modulation in-
creases the concentration gradients and fluxes at the protru-
sions to the left of the interface, leading to increased growth
of the Al phase and amplification of the initial perturbation.
The existence and critical wavelength for these instabilities are
determined by multiple factors such as slow interfacial reac-

AlNaAlH4Na3AlH6

[AlHx]

AlNaAlH4 Na3AlH6

[Na] NaAlH4

N
a 3
Al
H

6

Al
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Al
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(c)

(d) (e)

Fig. 1 Model morphologies used to study defect fluxes in Reaction
(1).

tions and fast diffusion along the advancing interface, which
both tend to stabilize the planar interface. If present, instabili-
ties will lead to more complex reaction morphologies, such as
those shown in Figure 1(c) and discussed below.

Here, we go beyond the simple 1D case and examine pro-
totypical morphologies that are commonly encountered in eu-
tectoid solid-state reactions. In all morphologies, we consider
diffusion through NaAlH4 and Na3AlH6, but not through Al.
In Ref. 40 we showed that the concentrations of metal de-
fects in Al are much lower than in either NaAlH4 or Na3AlH6
and therefore cannot measurably contribute to metal segrega-
tion. It was also found that diffusion of negatively charged
Na vacancies in Na3AlH6 and neutral AlH3 and charged AlH4
vacancies in NaAlH4 are the prevalent metal mass transport
mechanisms for Reaction (1).40–42

We first consider a lamellar morphology in which mass
transport can occur simultaneously through both hydrides
[Figure 1(c)]. Here, the relative thickness of the Al lamella
increases with the distance from the reaction front until reach-
ing the limiting ratio determined by the volume fractions of
the products of Reaction (1). Na vacancy diffusion through
the Na3AlH6 phase leads to an outward growth of Na3AlH6
and gradual widening of the Al lamella behind the reaction
front. The second diffusion mechanism, Al-site vacancy dif-
fusion through NaAlH4, enables phase separation into Al-
rich and Na-rich reaction products (Al and Na3AlH6, respec-
tively) ahead of the forward-moving reaction front. For both
mechanisms, the average diffusion length is determined by the
inter-lamellar spacing which, once established, stays constant
throughout the reaction. The relative diffusion rates of Al-site
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vacancies in NaAlH4 (D[AlHx]) and Na vacancies in Na3AlH6
(D[Na]) determine the degree of tapering of the Al lamella. For
instance, in the limiting case of rapid diffusion through the
reactant, D[AlHx] � D[Na], the lamella become straight (unta-
pered), while for D[AlHx] ⌧ D[Na], the tips of the Al lamella in
contact with NaAlH4 become very sharp and all mass trans-
port occurs via Na vacancies through the Na3AlH6 phase. The
reverse rehydrogenation reaction can occur by reversing the
mass fluxes shown in Figure 1(c).

The second morphology describes the so-called expanding
(or contracting) envelope morphology where all mass trans-
port occurs through Na3AlH6 [Figure 1(d)]. Here, the ini-
tial nucleation of the reaction product phases is followed by a
growth stage, which proceeds via Na vacancy diffusion from
the NaAlH4/Na3AlH6 interface towards the Na3AlH6/Al in-
terface. The thickness of the expanding Na3AlH6 shell in-
creases over time, with the diffusion distances and reaction
rates being faster at the early stages of the reaction. Rehy-
drogenation may proceed either by reversing the diffusional
fluxes in [Figure 1(d)] or by nucleating the NaAlH4 phase be-
tween Al and Na3AlH6, establishing the morphology shown
in Figure 1(e). In the latter case, diffusion of Al-site vacancies
through NaAlH4 provides the necessary mass transport mech-
anism. Figure 1(e) also represents a possible dehydrogenation
morphology where the inner NaAlH4 shell shrinks by growing
the Al core and the outer Na3AlH6 shell.

2.2 Diffusional Fluxes

The drift-diffusion-reaction equation for the concentration of
a point defect i, Ci, can be written as45

∂Ci

∂t
=—(Di—Ci)+

qiDi

kBT
—(Ci—j)�Â

j,k
Kdis (i ! j,k)Ci+

Â
j,k

Krec ( j,k ! i)CjCk,

(3)

where the term on the left side is its partial derivative with re-
spect to time. In the first term on the right side (due to the
Fickian flux), Di is the diffusivity of defect i. In the second
term (due to the drift flux under an electric field), qi is the
charge of the defect, kB is the Boltzmann constant, T is the
temperature, and j is the electric potential, which can be de-
termined by solving Poisson’s equation

—2j =�r
e
, (4)

where r is the charge density and e is the dielectric permit-
tivity. In the last two terms on the right side of Eq. (3),
Kdis (i ! j,k) and Krec ( j,k ! i) represent, respectively, the
rates of dissociation/recombination of defect i into/from de-
fects j and k. Equations (3) and (4) need to be complemented

by appropriate morphology- and (implicitly) time-dependent
boundary conditions for the potentials and concentrations.
General treatment of these equations would lead to a highly
complex system of nonlinear partial differential equations.

To simplify the problem, we assume local equilibrium be-
tween all defect concentrations so that the last two terms of
Eq. (3) cancel. The electric field in these equations results
from a separation of charged defects due to different diffusion
rates, but requires an increase in the total free energy of the
system due to the build-up of long-range polarization fields.
Therefore, it is unlikely that a significant long-range separa-
tion of charge occurs, but instead local charge equilibria are
established at all interphase boundaries, minimizing the elec-
trostatic energy of the system. As a consequence, the charge
density r and the potential j are negligible so that the drift flux
can be ignored. Finally, we find that the defect concentrations
are very low and one can neglect any composition-dependence
of the diffusivities Di. With these simplifications, Eq. (3) re-
duces to

∂Ci

∂t
= Di—2Ci. (5)

In what follows, we discuss how morphology affects dif-
fusional fluxes, reaction rates, and their apparent temperature
dependence. In particular, we find solutions to Eq. (5) subject
to conditions imposed by one-, two-, and three-dimensional
morphologies shown in Figure 1. We do not treat charge
transport explicitly since it was shown in Ref. 41 that for all
charged metal defects (e.g., AlH4 vacancies in NaAlH4 or Na
vacancies in Na3AlH6) compensating charge transport via hy-
drogen vacancies and/or hydrogen interstitials is much faster
than metal diffusion. We also adopt the assumption used in
Ref. 40 that the defect concentration profile Ci(r, t) equili-
brates at a rate that is much faster than the movement of the
boundaries. Hence, we can neglect the ∂Ci/∂t term in the dif-
fusion equation and solve the stationary problem:

Di—2Ci = 0, (6)

subject to local equilibrium boundary conditions at the het-
erophase interfaces. The atomic-scale structure of the het-
erophase interfaces in Figure 1 and the interfacial kinetics of
bond breaking and phase transformations may in reality be
quite complex, but here we are only concerned that a local
equilibrium exists between the phases present at a particular
interface and that this equilibrium determines the chemical po-
tentials of the atomic species involved in the reaction.40 These
assumptions naturally lead to the existence of defect concen-
tration gradients whenever the temperature deviates from the
critical temperature of Reaction (1) due to the fact that chem-
ical potentials of Na and Al, and hence the metal-site defect
concentrations at the heterophase interfaces in Figure 1, are
different (see below).
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2.3 Defect thermodynamics

The equilibrium concentration of a defect i (per site) in the
dilute limit is

Ci = Nie�DGi/kBT (7)

where kB is the Boltzmann constant, T is the temperature, and
Ni is the symmetry factor accounting for the entropy due to the
number of equivalent ways that a defect can be introduced at
a single site. The free energy of formation, DGi, is equal to

DGi = DGi(def)�
Nspecies

Â
s=1

ni
sµs +qi(EVBM + eF). (8)

Here, DGi(def) is the change in the total free energy of a crys-
tal due to the introduction of a defect i. The sum in Eq. (8)
runs over all elements where µs is the chemical potential of
element s and ni

s is the number of atoms of type s that were
added (ni

s > 0) or removed (ni
s < 0) to create defect i. Finally,

qi is the charge of defect i and eF is the Fermi level referenced
to the valence band maximum (VBM), EVBM. The chemical
potentials of the elements and electrons are discussed in the
remainder of this section.

In all of the morphologies, charged defect concentrations
must be compensating to preserve the overall charge neutrality
of the system. In order to prevent the formation of long-range
electric fields, a local charge neutrality was enforced in all
calculations. Formally, this corresponds to the condition that

Ndefects

Â
i=1

Ciqi = 0 (9)

at each local environment where qi is the charge of defect i
and Ci is its concentration determined by Eq. (7). Solution of
Eq. (9) determines the Fermi level that appears in Eq. (8); the
latter is a function of the temperature, partial pressure of hy-
drogen gas, defect energies and the set of chemical potentials
of the coexisting phases.

The concentration gradients that appear in the fluxes exist
because the elemental chemical potentials and the Fermi ener-
gies for charged defects can differ between interfaces in Fig-
ure 1, which are manifested as different formation energies in
Eq. (8). Although a local equilibrium exists at each interface,
this describes a system that as a whole is out of equilibrium.
The interfaces shown in Figure 1 determine the chemical po-
tentials of the elements (the corresponding equations can be
found in Ref. 40). Examining the 1D morphology in Figure
1(a) (although this exact discussion applies to the 2D and 3D
morphologies as well), we label the chemical potential of ele-
ment X at the interface between NaAlH4 and Na3AlH6 as µL

X
and at the interface between Na3AlH6 and Al as µR

X . It can
be shown40 that the differences in the chemical potentials be-

tween these interfaces are

µR
Al �µL

Al =
3
2

DGrxn,

µR
Na �µL

Na =�1
2

DGrxn,
(10)

where DGrxn is the change in free energy of Reaction (1)
(products - reactants). Under dehydrogenation conditions,
DGrxn < 0 so that µL

Al > µR
Al. This will result in a thermody-

namic driving force for Al to the interface with solid Al (or Al
vacancies in the opposite direction) so that this product phase
is grown. Similarly, under these conditions µL

Na < µR
Na so that

the flux of Na is to the NaAlH4 interface (or in the opposite
direction for Na vacancies) so that the Na3AlH6 phase can
grow to the left and NaAlH4 is consumed. This same argu-
ment applies under rehydrogenation conditions during which
DGrxn > 0. In this case, the directions of the chemical potential
gradients are reversed so that Na3AlH6 and Al are consumed
while NaAlH4 is grown.

The morphology in Figure 1(b) corresponds to that in which
the flux of defects is through NaAlH4 and the chemical poten-
tials at the left (L) and right (R) interfaces are respectively
determined by equilibria with NaAlH4 and Al. The chemical
potential differences are here equal to

µL
Al �µR

Al =
3
2

DGrxn,

µL
Na �µR

Na =�3
2

DGrxn.
(11)

Again, the gradients are such that NaAlH4 is grown at low
temperatures and consumed at high temperatures.

For a detailed discussion on the methods used to calculate
all values discussed to this point, see Ref. 40. To summa-
rize, we used density-functional theory (DFT) as implemented
in the Vienna Ab-initio Simulation Package (VASP).46 We
used the generalized gradient approximation (GGA) to the
exchange-correlation functional according to Perdew and
Wang47 and ultrasoft pseudopotentials48 with a cutoff en-
ergy of 250 eV. Total-energy calculations were performed
on periodic supercells of NaAlH4 {Na3AlH6} that contained
768 {960} atoms in the defect-free phases. Temperature-
dependent vibrational contributions to the free energy49 were
calculated for all pure and defected structures and included
where relevant in determining DGi(def) and the chemical po-
tentials. In addition, the temperature- and pressure-dependent
contributions to the gas-phase free energy of H2 were in-
cluded in determining the chemical potential of hydrogen. The
diffusivities of defects were calculated using kinetic Monte
Carlo simulations that were parameterized by DFT calcula-
tions. These simulations were performed at a finite number
of temperatures over a range relevant to Reaction (1); for a
detailed discussion of these methods, see Ref. 41.
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Table 1 Temperature dependence of reaction rates in the
morphologies shown in Figure 1, given as powers of (DDC)n.
Ranges indicate values of n that change over time due to changing
diffusion distances, with the left (right) values corresponding to
early (late) reaction times.

Morphology Dehydrogenation Rehydrogenation
Linear (d = 1)
Figure 1(a) n = 1/2 1 � n � 1/2
Figure 1(b) 1 � n � 1/2 n = 1/2
Lamellar (d = 2)
Figure 1(c) n = 1 n = 1
Core-shell (d = 3)
Figure 1(d) n = 3/2 1  n  3/2
Figure 1(e) 1/2  n  3/2 3/2 � n � 1/2

2.4 Summary of reaction rates and connection to experi-
ment

Our analytic results for the exponent of (DDC)n in the tem-
perature dependence of the reaction rate are summarized in
Table 1 (derivations can be found in the appendix). The key
finding is that n depends on the reaction morphology and sev-
eral morphologies exhibit values of n that vary with time due
to changing diffusion distances as the reactants and products
shrink or grow. It is, however, unclear at this point which mor-
phology should be used to describe the mass transport rate in
Reaction (1).

Sandrock et. al. have measured the rates of hydrogen
release and absorption from Ti-catalyzed NaAlH4 as func-
tions of time, which are shown in Figs. 1 and 2 of Ref. 7.
Their measurements indicate that the hydrogen release and
absorption rate remains constant during most of the total reac-
tion time, which is consistent only with the two-dimensional
lamellar morphology in Figure 1(c), for which the reaction
rate is given by Eq. (21) [the reaction rates for one- and three-
dimensional morphologies are expected to change over time
by Eqs. (17), (20), (26), and (28)]. We therefore calculate all
following defect fluxes assuming that J µ DDC as given by
Eq. (21) and take this value to be independent of time.

Using the calculated fluxes, the activation energy, Eact can
be extracted by fitting the Arrhenius equation to this data:

J = J0e�Eact/RT , (12)

where J0 is the Arrhenius pre-factor, R is the gas constant and
T is the temperature. When evaluating the flux given in Eq.
(21), we define the concentration gradient as —Ci = DCi/Dl
where DCi is the difference in concentrations of defects be-
tween two interfaces that are separated by a distance Dl. The
choice of Dl is inconsequential when comparing to experimen-
tal activation energies since in the 2D lamellar morphology

Table 2 Native defects considered in NaAlH4 and Na3AlH6

defect NaAlH4 Na3AlH6
[Al]3� • •
[AlH]2� • •
[AlH2]� • •
[AlH3] • •
[AlH4]+ • •
[AlH5]2+ •
[AlH6]3+ •
[Na]� • •
[NaH] • •
[H]+ • •
[H]� • •
iH+ • •
iH� • •

it is a constant and can be incorporated in the temperature-
independent pre-factor of the Arrhenius equation. Fluxes of
various defects are compared with the arbitrary choice of Dl
= 1 µm since this is consistent with the particle size of ball-
milled samples of NaAlH4.50

3 Results

The defects that have been studied in NaAlH4 and Na3AlH6
(see Figure 2) are listed in Table 2. These defects are identi-
cal to those discussed in Ref. 40. The naming convention of
native vacancies is such that bracketed [X]q represents a va-
cancy of X in charge state q. Interstitial defects are labeled
with a superscript ”i” so that iXq is an interstitial defect of
type X in charge state q. The following subsections cover the
concentration gradients and fluxes of defects in NaAlH4 and
in Na3AlH6. We also include a brief discussion on Reaction
(2) and the rate of mass transport through Na3AlH6 for this
case.

3.1 Concentration Gradients and Fluxes in NaAlH4

We begin by examining concentration gradients across
NaAlH4, shown on Arrhenius plots in Figures 3(a) and (b).
Since these plots show absolute values of the gradients (DC/Dl
with Dl = 1 µm), the inset morphology (and in all other fig-
ures showing a concentration gradient or flux) gives the net
direction of diffusion of the defects. For example, in the plot
shown in Figure 3(a), these defects migrate to the Al interface
at low temperatures and to the Na3AlH6 interface at high tem-
peratures, in accord with the metal mass flux required for the
rehydrogenation and dehydrogenation reactions, respectively.
In the plot shown in Figure 3(b), these directions are reversed
since Na-site defects move oppositely to Al-site defects at any
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(a) (b)

(d)(c)

AlNa3AlH6 NaAlH4 AlNa3AlH6 NaAlH4 AlNa3AlH6 NaAlH4 AlNa3AlH6 NaAlH4

AlNa3AlH6 NaAlH4 AlNa3AlH6 NaAlH4
AlNa3AlH6 NaAlH4 AlNa3AlH6 NaAlH4

D
∇
C

D
∇
C

Fig. 3 Concentration gradients and fluxes of defects across a 1 µm region of NaAlH4.
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(a) (b)

Fig. 2 Conventional cells of NaAlH4 (a) and Na3AlH6 (b) with Al
ions in blue, Na ions in yellow, and H ions in pink.

given temperature.
We find that the NaAlH4 defects with the largest concentra-

tion gradients are positively charged AlH4 vacancies, neutral
AlH3 vacancies, and three negatively charged defects: Na va-
cancies, H vacancies, and H interstitials. Since the chemical
potential of hydrogen is the same at all interfaces under the
assumed equilibrium conditions with H2 gas, the concentra-
tion gradients of charged H vacancies and H interstitials are
entirely due to the Fermi level gradient that is formed by local
charge neutrality conditions at each interface. At low tem-
peratures, the concentration gradients of negatively charged H
interstitials, negatively charged Na vacancies, and positively
charged AlH4 vacancies are the largest. At higher temper-
atures (approximately 350 K and above), the concentration
gradient of Na vacancies becomes less significant and that of
negatively charged H vacancies is larger.

Multiplying the concentration gradients of defects in Fig-
ures 3(a) and (b) by their spatially-averaged diffusivities,41

the resulting fluxes through NaAlH4 are shown in Figures
3(c) and (d). The largest flux of metal-site defects is identi-
fied as neutral AlH3 vacancies followed by positively charged
AlH4 vacancies and negatively charged Na vacancies. This is
in agreement with previous theoretical studies38 and experi-
mental work in which mobile AlxHy species have been identi-
fied in NaAlH4.51 Fitting the Arrhenius equation to the high-
temperature (dehydrogenation) region, the activation energies
for J µ D—C are 146 kJ/mol for AlH3 vacancies, 143 kJ/mol
for AlH4 vacancies, and 135 kJ/mol for Na vacancies. All of
these are significantly above the experimental activation ener-
gies for the reaction (118 kJ/mol in pure samples and 73-80
kJ/mol in Ti-doped samples6), ruling out the possibility that
dehydrogenation occurs in the 2D or 3D morphologies shown
in Figures 1(c)-(e) (see also Table 1). The calculated activation
energy values are compatible with the morphology shown in

Figure 1(b) which predicts a (D—C)n temperature dependence
with n= 1

2 , but such a scenario is difficult to reconcile with the
nearly constant dehydrogenation rate observed by Sandrock
et al.7 in Ti-catalyzed samples. Therefore, we conclude that
the fastest mode of mass transport in these samples occurs via
some other process than bulk diffusion through NaAlH4.

The activation energy for rehydrogenation was obtained by
increasing the pressure of H2 gas to 100 bar. A fit of the
Arrhenius equation to these results shows that the activation
energy for the defect flux under rehydrogenation conditions
is approximately 110 kJ/mol for AlH3, AlH4, and Na vacan-
cies. Again, these are well-above the experimental activation
energy for the rehydrogenation reaction in Ti-doped samples
(62 kJ/mol14) so that these defects cannot be involved in the
rate-limiting process in any of the 2D or 3D morphologies in
Figures 1(c)-(e), but they cannot be ruled out if one assumes
the 1D morphology shown in Figure 1(b), for which under re-
hydrogenation conditions one obtains n > 1/2 (see Table 1).
However, it will be shown in the following section that rates of
mass transport are higher for defects in Na3AlH6 under both
de- and rehydrogenation conditions so that transport through
NaAlH4 should not be rate-limiting.

3.2 Concentration Gradients and Fluxes in Na3AlH6

Concentration gradients across Na3AlH6 are shown in Figure
4(a). The only metal defect that has an appreciable concen-
tration gradient is an Na vacancy, the charge of which is bal-
anced by H vacancies. All other calculated metal defect con-
centration gradients are at least two orders of magnitude lower
with neutral NaH vacancies forming in the largest concentra-
tion gradients after Na vacancies.

Using the spatially-averaged diffusivity of Na vacancies in
Na3AlH6

41 and the concentration gradient given in Figure
4(a), the flux of this defect is shown in Figure 4(b). The
charge of the Na vacancies is balanced by that of hydrogen
vacancies; the hydrogen vacancy flux has been shown to be
larger than the Na vacancy flux so the latter type is the rate-
limiting of the two.41 Comparing the flux of Na vacancies
through Na3AlH6 [Figure 4(b)] to the flux of metal defects
through NaAlH4 [Figures 3(a) and (b)], it is clear that mass
transport is dominated by defects in Na3AlH6 since the flux
in this phase is higher by orders of magnitude at a given tem-
perature and distance between interfaces. We conclude that a
product phase of Reaction (1) is the medium through which
the fastest mode of long-range mass transport occurs.

Fitting of the Arrhenius equation to J µ D—C for Na vacan-
cies in Na3AlH6 yields an activation energy of 70 kJ/mol in
the high-temperature (dehydrogenation) region, which agrees
well with the experimental activation energy for Reaction (1)
when doped with Ti (73-80 kJ/mol) if one assumes a 2D re-
action morphology shown in Figure 1(c) for which n = 1 (see
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(a)

AlNa3AlH6NaAlH4 AlNa3AlH6NaAlH4

(b)

AlNa3AlH6NaAlH4 AlNa3AlH6NaAlH4

D
¢
C

Fig. 4 Concentration gradients and fluxes of defects across a 1 µm region of Na3AlH6.

Table 1). Since the 2D morphology is also consistent with the
constant hydrogen release rates observed experimentally,7 we
therefore identify the flux of charged Na vacancies through
Na3AlH6 as the rate-limiting process in the dehydrogenation
of Ti-doped NaAlH4.

The proposed model also predicts the existence of kinetic
isotope effect (KIE) in deuterated samples. Experimental re-
sults have shown that the ratio of activation energies in hy-
drogenated and deuterated NaAlH4 (NaAlD4) is 0.93 under
hydrogen (deuterium) release conditions when the system is
doped with Ti.9 Deuterium mass affects the calculated fre-
quencies of the vibrational modes and hence the vibrational
energies (including zero-point effects) and entropies of all de-
fects and coexisting phases. The calculations involving Na va-
cancies in Na3AlH6 were repeated with the mass of deuterium
exchanged for the mass of hydrogen. The vibrational proper-
ties of all pure and defected structures were recalculated and
the concentration gradients of defects were obtained following
Eqs. (7)-(9). In addition, the vibrational modes of the deuter-
ated ground and transition state structures of an Na vacancy in
Na3AlH6 were used as input for a separate KMC simulation
following the same procedure as in Ref. 41. The activation en-
ergies were obtained for hydrogenated and deuterated systems
from fits of the Arrhenius equation to the flux of Na vacancies
in Na3AlH6 and Na3AlD6. The ratio of these activation ener-
gies was found to be 0.97, in reasonable agreement with the
experimental result of 0.93, and significantly different from
the value of approximately 0.71 expected for hydrogen bond-
breaking or diffusion.9

With the H2 pressure increased to 100 bar, the calculated ac-

tivation energy for the flux of Na vacancies through Na3AlH6
under rehydrogenation conditions is 50 kJ/mol. This is lower
than the experimentally-measured activation for rehydrogena-
tion of Ti-doped NaAlH4 (62 kJ/mol was obtained in Ref. 14)
but in line with the approximately 10 kJ/(mol H2) underesti-
mation of formation enthalpies that is typical of DFT results
relative to experimental reaction enthalpies for NaAlH4

40 (en-
thalpy errors will manifest in the calculated chemical poten-
tials and hence in the formation energies of defects and their
concentration gradients). Hence, we propose that Na vacancy
diffusion through Na3AlH6 is also the rate-limiting step in de-
hydrogenation of Ti-catalyzed samples. We are not aware of
any experimentally-measured activation energies for the re-
hydrogenation of NaAlH4 in uncatalyzed reactions, but this
must be at least equal to the activation energy of Ti-catalyzed
rehydrogenation. It is likely that some other process, such as
nucleation or H2 dissociation, represents the rate-limiting step
during rehydrogenation of pure NaAlH4. Indeed, recent com-
putational study of H2 dissociation on pure and Ti-doped Al
surface by Wang et al. 52 comes to such a conclusion.

3.3 Defect Flux Through Na3AlH6 During Reaction (2)

It is straightforward at this point to examine defect fluxes in
Na3AlH6 under the conditions of Reaction (2). For reasons
already discussed in Ref. 40, the flux of Na through Al can
be ignored. Similarly, the flux of Al through NaH will be
insignificant due to the immiscibility of Al and NaH. Hav-
ing already calculated DGi(def) in Eq. (8) for each defect in
Na3AlH6, only the chemical potentials of elemental species
and electrons must be determined. In this case, the chemical
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potentials are fixed by interfaces of Na3AlH6 with either Al or
NaH. Again we find that the fluxes of negatively charged Na
vacancies and positively charged hydrogen vacancies domi-
nate all other defect fluxes in this phase. We find that the acti-
vation energies for the flux D—C under de- and rehydrogena-
tion conditions are 73 and 52 kJ/mol, respectively. Since the
calculated activation energy for dehydrogenation (73 kJ/mol)
is so far below measured values in pure (121 kJ/mol6) or Ti-
doped (97 kJ/mol6) systems, it is unlikely that mass transport
represents the rate-limiting process in either. However, the
calculated and measured activation energies for rehydrogena-
tion agree well (52 and 5614 kJ/mol, respectively) and with
this we conclude that mass transport could be a kinetic bottle-
neck during rehydrogenation of Na3AlH6 from NaH and Al.

4 Discussion and Conclusions

In this paper, we have formulated a mass transport model for
solid-state decomposition reactions involving multiple prod-
uct phases and gaseous species. This model uses local equi-
librium assumptions at the solid-solid interphase boundaries to
determine local defect concentrations and concentration gradi-
ents driving metal fluxes during decomposition. Charge com-
pensation conditions are also imposed locally at each inter-
face, coupling the concentrations of positively and negatively
charged defects via the local Fermi level. As a result, large
fluxes are found also for charged hydrogen vacancies and in-
terstitials, which are being driven by Fermi level gradients. A
crucial advantage of the model is that all the required quanti-
ties - defect formation energies, total energies of phases, and
diffusivities of defects - can be obtained from first-principles
DFT calculations, allowing for a quantitative comparison with
the experimental data on activation energies.

The results of this work show that the mass transport of
metal species during Reaction (1) is dominated by the flux
of Na vacancies in Na3AlH6, a product phase of this reac-
tion. We have shown strong evidence that this represents the
rate-limiting process in Ti-catalyzed reactions where the cal-
culated activation energy for this process (70 kJ/mol) agrees
well with the experimentally determined activation energy for
the overall reaction (73-80 kJ/mol6). Under rehydrogenation
conditions, mass transport is also dominated by the flux of Na
vacancies in Na3AlH6. The calculated activation energy for
this process is 50 kJ/mol, which is again comparable to the ex-
perimental activation energy for rehydrogenation of Ti-doped
NaAlH4 (62 kJ/mol14).

It was shown in Ref. 42 that equilibrium concentrations of
charged and neutral Ti defects in bulk NaAlH4 and Na3AlH6
are many orders of magnitude lower than native defect concen-
trations and cannot have an effect on the native defect fluxes.
Even in highly non-equilibrium concentrations approaching
10�4 defects/f.u., the effects of bulk Ti are negligible at nor-

mal reaction conditions. Therefore, the defect fluxes and acti-
vation energies shown in this paper hold true for either pure or
Ti-doped samples. In other words, Ti does not catalyze bulk
defect diffusion. Instead, the rate-limiting step of Reaction
(1) in undoped samples is some other process such as nucle-
ation or H2 combination/dissociation. It is this other process
(which we are not able to identify from the present calcula-
tions) that must be catalyzed by Ti. However, we have shown
that bulk defect diffusion becomes the rate-limiting process
once Ti has been added. Therefore, further catalysis of Re-
action (1) would necessarily involve lowering the activation
energies for the formation and migration of bulk defects.

As with NaAlH4, other complex metal hydrides generally
suffer from slow (de)hydrogenation rates. Since mass trans-
port has been suggested as a possible rate-limiting process
during these reactions, hydrogen storage materials can be de-
signed to maximize the reaction rates by choosing compounds
that are known to be fast ionic conductors and can also form
hydrogenated phases. Of course, other processes may limit the
rate of reaction, but if metal segregation occurs, this serves as
at least one general guideline for the design of hydrogen stor-
age materials with fast reaction rates.

The theory of mass transport proposed here is only the first
step towards constructing a comprehensive atomistic frame-
work of the kinetics of solid state decomposition reactions.
For future work, detailed experimental studies and large-scale
computer simulations of nucleation and growth are needed to
understand the morphology selection mechanisms and their
dependence on the material parameters and reaction condi-
tions. A complete theory of reaction kinetics should also con-
sider the effects of particle size distribution on the measured
hydrogen release rates. Models of interfacial reaction kinet-
ics describing the cleavage of interatomic bonds and inter-
conversion of complex hydride phases are needed to quantita-
tively describe the kinetics of defect generation and equilibra-
tion and evaluate the range of validity of the local equilibrium
assumption adopted here. For instance, in very small particles
diffusion times may drop below the interfacial reaction rates
due to decreasing particle size and increasing importance of
fast surface diffusion pathways, leading to decrease in the ap-
parent activation energies and faster reaction kinetics.11

5 Appendix

In this appendix are solutions to Eq. 5 under the three mor-
phologies (1, 2, and 3-dimensional) discussed in the section
titled Reaction Morphologies. These solutions give the de-
pendence of the flux on D—C that is summarized in Table 1.
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5.1 One-dimensional linear morphology

Consider dehydrogenation in one-dimensional morphologies,
such as shown in Figures 1(a) and (b). Let W (t) denote the
thickness of the middle region through which the mass trans-
port occurs at time t. We solve Eq. (6) subject to the following
moving boundary conditions: C|x=0 =CL and C|x=W (t) =CR.
Introducing the concentration difference DC = CL �CR, the
solution to the boundary value problem can be written as:

C(x, t) =CL � DC
W (t)

x. (13)

The flux is given by

J(t) =�D
∂C
∂x

=
DDC
W (t)

, (14)

and the rate of movement of the boundaries is directly propor-
tional to the flux:

dW
dt

= JSda = JdV =
DDCdV

W
, (15)

where S is the cross-sectional area and da is the ”thickness”
added (or subtracted) by absorbing one unit of defect at the
right interface; the product of these gives the ”volume” of the
defect, dV , which can be positive or negative, depending on
the direction of interface movement. We need to distinguish
between two cases when solving Eq. (15): case 1 being dif-
fusion through a product phase of the reaction (Na3AlH6) and
case 2 through a reactant (NaAlH4).

Case 1: Assume that the middle phase is a reaction product
[Na3AlH6, see Figure 1(a)], which was nucleated at the start
of the dehydrogenation reaction, so that the initial width is
W (0) = 0. Integrating Eq. (15), the phase grows with a width
at time t, W (t), equal to

W (t) =
p

2DDC|dV |t. (16)

Correspondingly, for the flux in Eq. (14) we obtain

J(t) =

s
DDC

2|dV |t . (17)

The reaction rate is proportional to the flux multiplied by the
total interfacial area; the latter does not change with time,
while the former has an inverse square-root dependence due
to the lengthening of the diffusion path with increasing width
of the product phase. In this case, the temperature dependence
of the reaction rate enters through

p
DDC, not DDC as would

be expected assuming a constant W .
The time to complete the reaction is equal to

tc =
W 2

0
2DDC|dV | . (18)

Assuming W0 = 1 µm and T = 400 K, we can use the cal-
culated values of D = 10�4 cm2/s41 and DC = 10�4 de-
fects/f.u.40, along with |dV |⇡ 1 f.u./defect, to estimate a com-
pletion time on the order of seconds, which is faster than the
observed dehydrogenation times of minutes and hours, but
quite reasonable given the approximations that are involved
in this estimate.

Case 2: If the middle phase is the reactant [NaAlH4, see
Figure 1(b)], it shrinks from the initial width W (0) = W0 to
zero at the end of the dehydrogenation reaction. The defect
volume dV in Eq. (15) is negative, and after integrating Eq.
(15), the width is equal to

W (t) =
q

W 2
0 �2DDC|dV |t, (19)

while the flux is given by

J(t) =
DDCq

W 2
0 �2DDC|dV |t

. (20)

The flux and the reaction rate increase with time due to the
shortening of the diffusion path. The temperature dependence
of the reaction rate is given by DDC at early times when the
time factor in the denominator can be neglected in comparison
with the initial width W0. However, at late times (near the
completion time tc) the apparent temperature dependence of
the reaction again approaches

p
DDC, while the reaction rate

diverges as (tc � t)�
1
2 .

5.2 Two-dimensional lamellar morphology

For the lamellar morphology shown in Figure 1(c), one needs
to solve the stationary diffusion equation in two dimensions
with moving boundary conditions that preserve the similarity
of the interface shapes, which can only be accomplished nu-
merically. Here, we limit ourselves to a qualitative discussion
of the expected results. As discussed previously, the shape of
the Al lamellae depends on the relative magnitude of the dif-
fusion rates in the two hydrides, D[AlHx] and D[Na]. In the lim-
iting case when one of the diffusion mechanisms dominates
over the other, the total reaction rate F is proportional to the
flux,

F µ J µ DDC
Dl

= const., (21)

where Dl is the lamellar spacing, which may depend on the re-
action conditions, such as hydrogen partial pressure and tem-
perature, but otherwise stays constant during the reaction. The
temperature dependence of the reaction rate is expected to
vary as DDC, even though additional corrections due to the T -
dependence of the lamellar spacing cannot be excluded. The
velocity of the reaction front stays constant, and time to com-
pletion will be inversely proportional to the flux:

tc µ R0Dl
DDC

, (22)
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where R0 is the initial radius of the hydride particle.

5.3 Three-dimensional core-shell morphologies

The morphologies shown in Figures 1(d) and (e) permit an-
alytic solutions if one assumes spherical symmetry. We con-
sider the case of dehydrogenation according to Figure 1(d) and
denote by R(t) the radius of the Al (core) particle and by W (t)
the width of the envelope shell around it. The volume ratio
of the Al particle and the enclosing shell of Na3AlH6 stays
constant during the reaction: Vshell(t) = a0Vcore(t) where a0 is
determined by the densities and mole fractions of the product
phases in Reaction (1). Expanding the previous equation and
dropping the common prefactors of 4p/3, [R(t) +W (t)]3 �
R(t)3 = a0R(t)3, which, when solved for W (t), has only one
real solution: W (t) = aR(t) where a = �1+ (1+a0)1/3 is
again a constant.

The stationary diffusion equation [Eq. (6)] in spherical co-
ordinates reduces to ∂2C

∂r2 + 2
r

∂C
∂r = 0, and the boundary condi-

tions are C|r=R(t) =C1 and C|r=(1+a)R(t) =C2, where C1 and
C2 are the equilibrium defect concentrations at the two inter-
faces surrounding the Na3AlH6 shell. Introducing the concen-
tration difference DC =C1 �C2, this boundary value problem
can be easily solved:

C(r, t) =C1 �DC
(1+a)[r�R(t)]

ar
. (23)

The corresponding flux is given by

J(r, t) =�D
∂C
∂r

=
DDC(1+a)R

ar2 , (24)

and the time evolution of the growing Al particle radius can be
found by solving dR/dt = J(R, t)dV subject to R(0) = 0. This
gives

R(t) =

r
2DDCdV (1+a)t

a
, (25)

and the reaction rate is proportional to the total flux of defects
reaching the Al core:

F = 4pr2J(r, t)
��
r=R(t) = 4p

r
2(DDC)3(1+a)3t

a3 . (26)

At the completion of the reaction, the sum of the Al core radius
and the thickness of the Na3AlH6 shell equals the total particle
size R0, hence R(tc) = R0/(1 + a). Time to completion is
analogous to the expression for the 1D case:

tc =
aR2

0
2DDC|dV |(1+a)3 . (27)

Similar expressions can be derived for the rehydrogenation
reaction which proceeds by reversing the vacancy flux in Fig-
ure 1(d). Following the steps above and modifying the initial

condition for R(t) to R(0) = R0/(1+a), we find that the re-
action rate can be written as

F = 4pDDCR0

r
tc � t
atc

, (28)

where the completion time tc is given by Eq. (27). At short
times, the reaction rate is approximately constant and given
by F= 4pDDCR0/

p
a, while near completion it becomes pro-

portional to (DDC)
3
2
p

tc � t.
Solutions for the morphology shown in Figure 1(e) cannot

be found analytically because in general the relation between
the radius of the Al core and the surrounding NaAlH4 shell is
nonlinear. However, asymptotic solutions can be found in the
limit of both early and late stages of the reaction. Here we omit
these rather cumbersome derivations and only state the main
results. For dehydrogenation, the reaction rate behaves as F µp

DDC/t when t ! 0 and F µ (DDC)
3
2
p

tc � t as t ! tc (note,
however, that an explicit formula for tc could not be found).
For rehydrogenation, the flux of AlHx vacancies and the initial
conditions are reversed, i.e. R(0) = 0 and R(tc) = R0/(1+a).
The corresponding reaction rates are given by F µ (DDC)

3
2
p

t
and F µ

p
DDC/(tc � t) for t ! 0 and t ! tc, respectively.

Acknowledgements

The authors gratefully acknowledge financial support from the
U.S. Department of Energy, Office of Science, Basic Energy
Sciences under Grant No. DE-FG02-07ER46433. This re-
search used resources of the National Energy Research Scien-
tific Computing Center, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.

References
1 S. Satyapal, J. Petrovic, C. Read, G. Thomas and G. Ordaz, Catal. Today,

2007, 120, 246–256.
2 S. McWhorter, C. Read, G. Ordaz and N. Stetson, Curr. Opin. Solid State

and Mater. Sci., 2011, 15, 29 – 38.
3 B. Bogdanovic and M. Schwickardi, J. Alloy. Compd., 1997, 253-254, 1

– 9.
4 K. Gross, S. Guthrie, S. Takara and G. Thomas, J. Alloy. Compd., 2000,

297, 270–281.
5 C. Jensen and K. Gross, Appl. Phys. A-Mater., 2001, 72, 213–219.
6 K. Gross, G. Thomas and C. Jensen, J. Alloy. Compd., 2002, 330, 683–

690.
7 G. Sandrock, K. Gross and G. Thomas, J. Alloy. Compd., 2002, 339, 299–

308.
8 O. Kircher and M. Fichtner, J. Alloy. Compd., 2005, 404, 339–342.
9 W. Lohstroh and M. Fichtner, Phys. Rev. B, 2007, 75, 184106.

10 A. Borgschulte, A. Zuettel, P. Hug, G. Barkhordarian, N. Eigen, M. Dorn-
heim, R. Bormann and A. J. Ramirez-Cuesta, Phys. Chem. Chem. Phys.,
2008, 10, 4045–4055.

11 C. P. Balde, B. P. C. Hereijgers, J. H. Bitter and K. P. D. Jong, J. Am.
Chem. Soc., 2008, 130, 6761–6765.

1–12 | 11

Page 11 of 12 Journal of Materials Chemistry A

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
A

A
cc

ep
te

d
M

an
us

cr
ip

t



12 E. C. Ashby and P. Kobetz, Inorg. Chem., 1966, 5, 1615–1617.
13 T. Dymova and S. Bakum, Russ. J. Inorg. Chem., 1969, 14, 1683.
14 W. Luo and K. J. Gross, J. Alloy. Compd., 2004, 385, 224 – 231.
15 S. Alapati, J. Johnson and D. Sholl, J. Phys. Chem. B, 2006, 110, 8769–

8776.
16 A. R. Akbarzadeh, V. Ozolins and C. Wolverton, Adv. Mater., 2007, 19,

3233–3239.
17 C. Wolverton and V. Ozolins, Phys. Rev. B, 2007, 75, 064101.
18 D. J. Siegel, C. Wolverton and V. Ozolins, Phys. Rev. B, 2007, 75, 014101.
19 D. J. Siegel, C. Wolverton and V. Ozolins, Phys. Rev. B, 2007, 76, 134102.
20 S. V. Alapati, J. K. Johnson and D. S. Sholl, J. Phys. Chem. C, 2007, 111,

1584–1591.
21 S. V. Alapati, J. K. Johnson and D. S. Sholl, Phys. Chem. Chem. Phys.,

2007, 9, 1438–1452.
22 C. Wolverton, D. J. Siegel, A. R. Akbarzadeh and V. Ozolins, J. Phys.-

Condens. Mat., 2008, 20, 064228.
23 V. Ozolins, E. H. Majzoub and C. Wolverton, Phys. Rev. Lett., 2008, 100,

135501.
24 Z. Xiong, C. K. Yong, G. Wu, P. Chen, W. Shaw, A. Karkamkar, T. Autrey,

M. O. Jones, S. R. Johnson, P. P. Edwards and W. I. F. David, Nat. Mater.,
2008, 7, 138–141.

25 A. Sudik, J. Yang, D. Halliday and C. Wolverton, J. Phys. Chem. C, 2008,
112, 4384–4390.

26 V. Ozolins, E. H. Majzoub and C. Wolverton, J. Am. Chem. Soc., 2009,
131, 230–237.

27 K. J. Michel, A. R. Akbarzadeh and V. Ozolins, J. Phys. Chem. C, 2009,
113, 14551–14558.

28 K. C. Kim and D. S. Sholl, J. Phys. Chem. C, 2010, 114, 678–686.
29 O. Kircher and M. Fichtner, J. Appl. Phys., 2004, 95, 7748–7753.
30 C. Araujo, R. Ahuja, J. Guillen and P. Jena, Appl. Phys. Lett., 2005, 86,

251913.
31 S. Chaudhuri and J. Muckerman, J. Phys. Chem. B, 2005, 109, 6952–

6957.
32 J. Iniguez and T. Yildirim, Appl. Phys. Lett., 2005, 86, 103109.
33 O. Lovvik and S. Opalka, Phys. Rev. B, 2005, 71, 054103.
34 O. Lovvik and S. Opalka, Appl. Phys. Lett., 2006, 88, 161917.
35 A. Blomqvist, C. M. Araujo, P. Jena and R. Ahuja, Appl. Phys. Lett., 2007,

90, 141904.
36 A. Peles and C. G. V. D. Walle, Phys. Rev. B, 2007, 76, 214101.
37 Z. Lodziana, A. Zuettel and P. Zielinski, J. Phys.-Condens. Mat., 2008,

20, 465210.
38 H. Gunaydin, K. N. Houk and V. Ozoliņš, PNAS, 2008, 105, 3673–3677.
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