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The synthesis of continuous cobalt adeninate MOF (bio-
MOF-13 (I) and bio-MOF-14 (II)) membranes supported on 
porous alumina tubes is demonstrated. The membranes 
showed high CO2 permeabilities and low to moderate CO2 
separation selectivities for CO2/CH4 gas mixtures. The 10 

observed CO2/CH4 selectivities are attributed to preferential 
CO2 adsorption within the framework.  

The state-of-the-art technology for the purification of CO2 uses 
amine adsorption, which is a complex, labor-intensive and costly 
approach. Membrane separation technology is far less expensive 15 

and requires less energy consumption. The separation of CO2 
from natural gas (NG) is of particular relevance. CO2 needs to be 
removed from NG wells because it is acidic, corrosive in the 
presence of water, and because it significantly reduces the 
energetic content of NG. In principle, the use of membranes that 20 

could preferentially permeate CO2 at high separation selectivities, 
can considerably reduce the cost of NG purification.1 Polymeric 
membranes,2 zeolite membranes3 and metal-organic framework 
(MOF) membranes4 can separate CO2 from CH4.  

Recently, some of us reported a novel family of membranes 25 

composed of bio-MOF-1,5 an adeninate-based MOF, and 
demonstrated their ability to separate CO2 from CH4. 

5 Bio-MOFs 
11-14,6 which have highly desirable properties such as permanent 
microporosity with pore sizes close to the kinetic diameter of 
relevant gas molecules, high surface areas, chemical stability, and 30 

high CO2 uptakes, are potentially ideal candidates for gas 
separation applications.  

In this communication, we expand the scope of our earlier 
investigations on bio-MOF-1 membranes, to bio-MOF-13 (I) and 
bio-MOF-14 (II) membranes. These MOFs are stable in water 35 

(for example, II crystallites remain intact and retain their 
crystallinity and gas adsorption properties after soaking in water 
for 1 month), display high CO2 adsorption capacities, and their 
pore sizes are close to the size of CO2 and CH4 molecules, 
making them highly appealing for CO2/CH4 molecular gas 40 

separation.   I, Co2(ad)2(C3H7CO2)2, and II, Co2(ad)2(C4H9CO2)2, 
crystallize in the tetragonal space group (I41/a). I (a = b = 15.79 
Å, c = 22.33 Å; α = β = γ = 90⁰) consists of cobalt-adeninate-
butyrate building blocks, while II (a = b = 15.85 Å, c = 22.35 Å; 
α = β = γ = 90⁰) consists of cobalt-adeninate-valerate building 45 

blocks. 6c The pore size of these BioMOFs depends on the 
conformation of the butyrate (I) or valerate (II) alkyl chains.  We 
estimated a range of potential pore sizes for these materials by 

fixing the chains in one conformation or another and then 
performing a Connolly analysis to determine the diameter of the 50 

largest possible sphere that can travel through the pores.  For I, 
the range of pore sizes determined from this analysis is 3.2-6.4 Å 
while that for II is 1.6-4 Å. It is important to mention that these 
are not fixed/static pore sizes. More specifically, we present the 
synthesis, characterization and CO2/CH4 gas separation 55 

performance of I and II membranes supported on porous alumina 
tubes.  

I and II membranes were prepared by secondary seeded 
growth inside tubular porous alumina supports (0.5-μm pores, 
Sentro Tech Corporation). The synthesis gel preparation and 60 

composition was similar to that employed for the synthesis of the 
seeds.7 The membranes were prepared by first passing a 
suspension of seeds in DMF through the tube to coat the interior 
tube walls. Some crystals (seeds) were attached at the surface of 
the porous support 7, serving as nucleation sites for membrane 65 

growth.  These supports, with their outside wrapped with Teflon 
tape, were soaked in a mixed solution of cobalt salt (0.05M, 9ml) 
and adenine (0.05M, 27ml) in a Schlenk tube. For I, cobalt 
butyrate was used and for II, cobalt valerate was used as the 
cobalt salt. It was then vacuum sealed and heated in a oven at  70 

130 ⁰C for 24 h. The resulting membranes were gently washed 
with dry dimethylformamide. Multiple layers were applied 
following the same procedure. The membranes were dried and 
stored at 373K prior to the separation tests. The PXRD patterns of 
the synthesized I and II seed crystals used for the synthesis of 75 

membranes are shown in Figure 1a, and 1c respectively. The 
PXRD patterns reveal that the seeds are isostructural and in 
agreement with our previous report. 6c Typical scanning electron 
microscopy (SEM) images of I and II, showing the seed 
crystallites, are presented in Figures 1b and 1d respectively.  80 

Secondary seeded approach was employed to promote 
heterogeneous nucleation at the support surface over 
homogeneous nucleation in solution. The seeds provided 
nucleation sites for membrane growth. In principle, the addition 
of multiple layers helps to eliminate or at least reduce gaps 85 

between the crystals leading to the formation of a well-
intergrown membrane. Table 1 shows the separation performance 
of alumina-supported I and II membranes. In each case, at least 5 
layers were required to form a continuous membrane.   

 90 
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