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Formal hydrogenation of arynes was realized by using 

trialkylsilyl groups tethered to the arynes as the hydride 

source. In stark contrast to the effective 1°, 2°, and 3° C–H 

bond insertion of alkyl groups tethered to arynes, the 2° and 10 

3° C–H bonds on the ββββ-carbon of silyl groups show high 

tendency for hydride transfer rather than C–H insertion, 

whereas the corresponding 1° C–H bonds exclusively undergo 

C–H insertion. The exclusive hydride transfer and C–H 

insertion behavior of different C–H bonds in these two 15 

reaction pathways were rationalized by the stability of the 

incipient cabocationic intermediates which could be further 

bolstered by DFT-calculations.   

The recent resurgence of aryne-mediated functional group 
transformations1,2 is based on the availability of reported 20 

protocols to generate the aryne intermediate under relatively mild 
conditions. The fluoride-mediated elimination of arene-1,2-
trialkylsilyl triflate, originally developed by Kobayashi,3 is the 
most popular protocol in this regard. An alternative approach 
relying on the hexadehydro Diels-Alder reaction4 (intramolecular 25 

Berthelot reaction)4a has emerged over time starting from the 
initial investigations by Ueda4c,4f and Johnson4d,4e,4h and 
culminated in the recent report by Hoye 4i,4j (Scheme 1). 

 

Scheme 1 Evolution of hexadehydro Diels-Alder reaction of a 30 

diyne and an alkyne 

Similarly, Lee and coworkers reported an effective aryne 
formation of bis-1,3-diynes5 followed by C–H insertion5a 
catalyzed by silver (I)  complexes (Scheme 2). Although the 
electrophilic nature of arynes caused by the low-lying LUMO6 35 

readily allows the addition of heteroatom- and carbon-based 

nucleophiles, dienes, 1,3-dipoles, and enophiles, the 
corresponding addition of C–H bond promoted by silver catalyst 
is assumed to involve an organosilver intermediate (Scheme 
2).5,7,8 Among many possibilities,9,10 the Ag-carbenoid I mediated 40 

concerted C–H insertion is most plausible due to greater 
evidential support.5a Yet, an alternative mechanism involving 
cationic intermediate II formed from an initial hydride transfer 
cannot be entirely excluded. 

45 

 
Scheme 2 A possible mechanism for the C–H insertion mediated 
by aryne-silver complex  

To further probe these mechanistic issues, we envisaged a 
new class of substrates where the propargylic carbon was 50 

replaced with a trialkylsilyl moiety. This subtle structural change 
would introduce a significant electronic bias (β-effect of 
silicon)11 to the system so that a cationic mode of reaction via 
hydride transfer could be manifested over a direct C–H insertion. 
The replacement of  carbon with silicon preserves  the potential 55 

Thorpe-Ingold effect of the dialkyl substituents on the silicon,12 a 
highly favorable factor for ring-forming reactions analogous to 
the typical gem-dialkyl effect. In addition, the mechanistic change 
induced by the silicon would provide a new handle in developing 
a novel formal hydrogenation of aryne intermediates. This would 60 

further increase the diversity of the product structures generated 
by aryne-based transformations.  

 With these potential merits in mind, we explored various 
silyl-substituted bis-1,3-diynes. Herein we report the general 
reactivity profiles of the silyl-substituted substrates toward either 65 

C–H insertion or hydride transfer pathway depending on the 
degree of the involved C–H bonds. Our investigation commenced 
with catalyst screening with silicon-substituted bis-1,3-diyne 1a 
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(Table 1). Without catalyst, the substrate was recovered (entry 1). 
Among the same set of catalysts used for all of the carbon-tether 
systems, except for AgOTf  and Cu(OTf)2 which produced low 
yields of the C–H insertion product 2a and hydrogenation product 
3a mixture (entries 2 and 7), only AgSbF6 provided a reasonably 5 

good yield of 3a without the formation of 2a (entry 3). All other 
metal triflates were entirely ineffective and the substrate was 
decomposed under those conditions (entries 4–6 and 8–12). This 
behavior is in stark contrast to that of the alkyl-substituted bis-
1,3-diynes where most of these metal triflates provided good 10 

yields of C–H insertion products.5a 

Table 1 Screening of catalyst for optimization of hydride transfer 

 

With the optimized conditions in hand we next examined the 
reaction profile of bis-1,3-diyne substrates 1a–i containing silyl 15 

groups with 2° or 3° C–H bonds at the carbon where hydride 
transfer can occur (Table 2). The reactions of NTs-, or O-
substituted symmetrical substrates 1a–d containing 2° or 3° C–H 
bonds provided the hydrogenated products 3a–d in 80, 80, 66, 
and 91% yields respectively without the formation of C–H 20 

insertion products (entries 1–4). In a similar manner, the 
unsymmetrical substrate 1e with 2° C–H bond on a cyclopentyl 
group produced the expected product 3e in 64% yield (entry 5). 
On the other hand, unsymmetrical substrate 1f–h containing 3° or 
2° C–H bonds in their alkyl substituents of the silyl groups led to 25 

the formation of common product 3f where the silyloxy group 
was lost (entries 6–8). This is most likely the consequence of the 
4-methoxyphenylethynyl substituent (R in 3f) that makes the 
newly formed aromatic ring relatively more electron-rich 
compared to 3c–e such that adventitious proton-catalyzed 30 

protodesilylation occurred readily under the conditions13. 
Interestingly, the reaction of a dimethylcyclohexylsilyl group-
containing bis-1,3-diyne 1i produced the C–H insertion product 
2i rather than the expected formal hydrogenation product (entry 
9). The different reactivity of 1i compared to other substrates 35 

containing 2° C–H bonds (e.g., 1e in entry 5), should be the 
consequence of a relatively unfavorable nature of the developing 
sp2-hybridization on the cyclohexyl moiety during the hydride 
transfer. The contrasting reactivity of 1i compared to the rest of 
2° or 3° C–H bond-containing substrates suggests that the subtle 40 

conformational and electronic factors can change the reaction 
course. 

To confirm this, we employed substrates 1j–q that contained 
silyl groups having only 1° C–H bonds, which invariably 
provided C–H insertion products 2j–q in excellent yields without 45 

any hydride transfer product (Table 3). Under the re-optimized 
conditions (10 mol % AgOTf, toluene, 90 °C, 5 h), a sulfonamide 
(NTs)-tethered symmetrical bis-1,3-diynes containing SiEt3, TIPS, 

and TBS groups produced only C–H insertion products 2j–l in 
excellent yields. 50 

Table 2 Formal hydrogenation of arynes with silyl-substituted alkyl 

groups containing 2° or 3° C–H bonds at β-carbons 

 

Similarly, oxygen-tethered substrate produced product 2m in 
95% yield. Also, an ynamide-tethered14 unsymmetrical bis-1,3-55 

diynes bearing a TBS and 4–methoxyphenyl group participated 
only in the predicted C–H insertion, producing indoline-based 
structures 2n and 2o in 87 and 85% yield, respectively. Both 
SiEt3- containing unsymmetrical bis-1,3-diynes provided C–H 
insertion products 2p and 2q in 81% yield, respectively. 60 

Although the reason for the formation of 2q is not clear at this 
point, it can be easily inferred that this is a secondary product 
formed via an adventitious proton-catalyzed protodesilylation of 
the initially formed C–H insertion product. The functionalization 
flexibility of these C–H insertion products was demonstrated with 65 
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2p, which can be converted to either 5 via bromide intermediate 4 
or primary alcohol 6 via direct Tamao-Fleming oxidation.15,16 

Table 3 C–H insertion of arynes with various silicon-tethered alkyl 

groups containing only 1° C–H bonds at β-carbons
 

5 

      

To gain more insights into this mechanistic dichotomy, bis- 
and mono-deuterated substrates 1g-d2 and 1g-d1 were 
prepared and their products were analyzed (Scheme 3). 
When bis-deuterium-labeled substrate 1g-d2 was treated 10 

under the  typical reaction conditions, nearly complete 
mono deuterium-incorporated product 3g-d1 was isolated 

in 82% yield with 97% deuterium label only at the 
indicated position (eq 1), and the reaction of mono-
deuterium-labeled substrate 1g-d1 showed large deuterium 15 

kinetic isotope effect17 (kH/kD = 2.3) to generate 3g and 3g-

d1 in a 2.3:1 ratio (eq 2).  

 

Scheme 3 Deuterium labeling studies  

To confirm that one of the incorporated hydrogens is not 20 

from the alkyl group but from adventitious water molecules, 
substrate 1a reacted separately with deuterium oxide and then 
with deuterated methanol. As expected, one deuterium in product 
3a-d1  was incorporated at only the indicated position (eq 3). 

On the basis of these observed reactivity profiles, we 25 

propose a plausible reaction mechanism for the current formal 
hydrogenation and C–H insertion (Scheme 4). In this mechanistic 
scenario, we surmise that the concerted thermal hexadehydro-
Diels–Alder reaction followed by silver complexation generates 
the silver-complexed aryne intermediates A and B.One of the 30 

most salient features of this mechanism is the dual reaction path 
that ultimately depends on the nature of the C–H bonds at the β-
carbon of the silyl group in aryne intermediates A and B.  The 
silver-complexed aryne[7,8] represented in form A containing only 
1° C–H bonds at the β-carbon, undergoes a direct C–H insertion 35 

to generate the observed product 2. On the other hand, more 
substituted intermediate represented in B containing 2° or 3° C–H 
bonds at the β-carbon preferentially undergoes hydride transfer to 
form a silicon-stabilized carbocation C, which then evolves to the 
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Scheme 4 Possible mechanisms for C–H insertion and hydride 
transfer with an aryne intermediate  
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final product 3 through the traping of adventious water. The only  
exception to this general trend is the formation of the C–H 
insertion product 1i from substrate 2i containing a cyclohexyl 
group.  

To provide a more detailed mechanistic picture on these proposed 5 

reaction pathways, we carried out DFT calculations18 at the 
M06/6-31G*/LANL2DZ level of theory19 on two model systems 
that represent the formation of C–H insertion product 2, and 
hydrogenation product 3, respectively. As shown in Figure 1, 
when A-IN1 was used as a model intermediate containing 1° C–10 

H bonds at β-carbon, the C2–H bond is activated by C1 of the 
aryne moiety with the C2–H and C1–H distances at 1.107 and 
2.301 Å, respectively (Detailed geometric structures are given in 
the Supporting Information). From this intermediate, the C–H 
cleavage could be readily accessed with an activation barrier of 15 

6.0 kcal/mol via transition state A-TS1, which adopts a fused 
tricyclic ring geometry (C1–H = 1.243, C2–H = 1.280, and C1–
C2 = 2.220 Å) and leads smoothly to the C–H insertion 
intermediate A-IN2. In the next step, a 1,2–H shift via transition 
state A-TS2 requires a barrier of about 3 kcal/mol to form the 20 

Ag-complexed intermediate A-IN3, which then leads to the 
formation of final product 3 after silver decomplexation. 
Although it is possible that A-IN2 can undergo an ethyl group 
elimination to form a hypothetical intermediate A-IN4 via A-TS3, 
the associated high activation barrier (24.3 kcal/mol) compared to 25 

that of its conversion to A-IN3 (3.1 kcal/mol) will make this 
pathway highly unlikely. This is consistent with the observed 
experimental results and probably because the generated 
intermediate A-IN4 is thermodynamically unfavorable. 

 30 

Figure 1 DFT-calculated reaction profile of intermediate A-IN1 

containing 1° C–H bonds at the β-carbon of the silicon
17 

For the formation of the formal hydrogenation product 3, a 
simplified model system B-IN1 was used to represent the 
tripropylsilyl-containing intermediate containing 2° C–H bonds at 35 

the β-carbon to silicon (Figure 2). As compared with that in A-

IN1, the C2–H bond in B-IN1 is more activated with much closer 
C1–H interaction (2.184 Å). As a consequence, the hydride 
transfer is favorably realized via a very low activation barrier (1.1 
kcal/mol) transition state B-TS1, which is more flexible than A-40 

TS1 with longer C1–H (1.674 Å) and C1–C2 (2.652 Å) and 

shorter C2–H (1.144 Å) distances and leads directly to the 
propene-stabilized silylium ion B-IN4, which ultimately traps 
water to form the observed product 3.  

Although the formation of a hypothetical bicyclic 45 

intermediate B-IN2 from the C–H insertion reaction of B-IN1 is 
quite possible, the corresponding transition state could not be 
found. As the formation of B-IN4 is almost a barrierless process, 
the reaction pathway involving B-IN2 and its transition to the C-
H insertion product is discredited, which is also consistent with   50 

 

Figure 2 DFT-calculated reaction profile of intermediate B-IN1 

containing 2° C–H bonds at the β-carbon of the silicon
17 

the experimental results. Only the transition structure B-TS1 55 

evolved from B-IN1 in the calculations, which indicates that the 
C–H insertion and hydride transfer steps become significantly 
more favorable than the competing direct C–H insertion that 
leads to B-IN2. This is the consequence of a subtle change in 
electronic and steric factors in the 2° C–H bonds relative to the 1° 60 

C–H bonds in A-IN1. In addition, the stronger stabilization effect 
of propene (in B-IN4) over ethylene (in A-IN4) on the silylium 
ion is shown by the larger exergonicity for the generation of B-

IN4, indicating that the hydride transfer reaction becomes more 
thermodynamically favorable when 2° C–H bonds are involved. 65 

Calculations indicated that the decomplexation of the olefin from 
B-IN4 should be facile, as the formation of B-IN5a is almost an 
energetically neutral process. In this latter intermediate the 

cationic silicon center could be stabilized by the π-electrons of 
the ortho-alkynyl group. As a comparison, the non-alkyne-70 

complexed variant B-IN5b, in which the silyl cation is in 
conjugation with the phenyl ring, is found to be much higher in 
energy. 

In conclusion, we have developed an efficient formal aryne 
hydrogenation relying on the 1,5-hydride transfer from the β-75 

carbon of the silyl group in the aryne intermediates. Two 
contrasting reactivities of aryne intermediates have been observed 
and are dependent on the nature of the C–H bonds participating in 
the reaction, where 2° and 3° C–H bonds were exclusively 
subject to a hydride transfer to generate formal hydrogenation 80 

products and the corresponding 1° C–H bonds participated in 
only a direct C–H insertion process. This subtle electronic effect 
of the C–H bonds at the β-carbon of silyl groups ultimately 
results in completely different end products. The DFT 
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calculations provide good mechanistic rationales for the 
respective C–H insertion with 1° C–H and hydride transfer of 2° 
and 3° C–H bonds. This novel control of aryne reactivity and the 
utility of the products from the C–H insertion and the formal 
hydrogenation will be further investigated in the future.  5 
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