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Engineered spatial inversion symmetry breaking in 
an oxide heterostructure built from isosymmetric 
room-temperature magnetically ordered components 

J. Alariaa,b, P. Borisova,f, M. S. Dyera, T. D. Manninga, S. Lepadatuc, M. G. Cainc, 
E. D. Mishinad, N. E. Sherstyukd, N.A. Ilyind, J. Hadermanne, D. Ledermanf, J. B. 
Claridgea*, and M. J. Rosseinskya*, 

The oxide heterostructure [(YFeO3)5(LaFeO3)5]40, which is magnetically ordered and 
piezoelectric at room temperature, has been constructed from two weak ferromagnetic AFeO3 
perovskites with different A cations using RHEED-monitored pulsed laser deposition. The 
polarisation arises through the removal of inversion centres present within the individual 
AFeO3 components. This symmetry reduction is a result of combining ordering on the A site, 
imposed by the periodicity of the grown structure, with appropriate orientations of the 
octahedral tilting characteristic of the perovskite units themselves, according to simple 
symmetry-controlled rules. The polarisation is robust against A site interdiffusion between the 
two layers which produces a sinusoidally modulated occupancy that retains the coupling of 
translational and point symmetries required to produce a polar structure. Magnetization and 
magneto-optical Kerr rotation measurements show that the heterostructure’s magnetic structure 
is similar to that of the individual components. Evidence of the polarity was obtained from 
second harmonic generation and piezoelectric force microscopy measurements. Modeling of 
the piezoresponse allows extraction of d33 (approximately 10 pC/N) of the heterostructure, 
which is in agreement with DFT calculations. 
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Introduction 

The breaking of inversion symmetry to generate a 
polarization is a prerequisite for the technologically 
important properties of ferro- and piezoelectricity used in 
capacitors and actuators, while the breaking of time-reversal 
symmetry is required for the magnetically ordered states such 
as antiferro- and ferromagnetism used in information storage. 
It is however chemically challenging to combine both 
properties in a single material, because there is a competition 
in the electronic structure requirements between many of the 
mechanisms responsible for forming each state1 e.g. the 
crystal chemistry of the closed-shell d0 Ti4+ and s2 
Pb2+cations driving ferroelectricity in PbZr1-xTixO3 does not 
afford the unpaired electrons required for magnetic order. It 
is possible to approach this problem by combining the two 
chemistries required, as in BiFeO3 where Fe3+ provides 
antiferromagnetism and Bi3+ ferroelectricity, by making 
composites over a range of length scales between compounds 
which individually display one of the two required ground 
states,2 or by coupling reduced spatial symmetry with the 
onset of magnetic order.3-5 
The ABO3 perovskite structure supports both magnetic and 
polar ground states. The diverse array of physical properties 
can be controlled via tilting of the BO6 octahedra6, 7 through 
the B-O-B overlap, and by ordering of cations on both the A8, 

9 and B sites10. Recent theoretical work11-14 has proposed that 
specific combinations of cation order and tilting, originally 
elucidated for HRTEM defect analysis of bulk materials15, 
can impose polarity on (ABO3:A BO3) 1:1 heterostructures 
where both components adopt the Pnma structure. This 
involves out-of-phase octahedral tilting along two 
pseudocubic ap perovskite subcell directions denoted a- and 
in-phase tilting along the third, denoted b+, which becomes 
the b axis of the aPnma = 2ap, bPnma = 2ap and cPnma = 2ap 
unit cell (Figure 1). These design rules to produce new 
Hybrid Improper Ferroelectric (HIF) compounds 
experimentally are difficult to achieve in bulk materials due 
to the size requirement for the A cation ordering and has 
been observed in the double perovskite NaLaMnWO6.16 
Metal Organic Framework (MOF) also have great potential 
in the discovery of new multiferroic materials17 and the 
concept of HIF can be generalized for MOF with a 
perovskite structure.18 
Oxide heterostructures display emergent phenomena 
controlled by charge, orbital and spin reconstruction at the 
internal interfaces within the thin films.19 Inversion and time-
reversal symmetries have been broken together in tricolor 
heterostructures employing multiple component 
compositions and symmetries20, or by using substrate-
induced strain.21. The mechanism described previously is 
distinct from compositionally-generated polarity in tricolor 
superlattices20, 22 as it operates in two-component 
isosymmetric systems through the coupling of point 
symmetry to translational compositional modulation. This 
mechanism by its nature will promote the coupling between 
polarization and magnetization.23 

By increasing the separation between the polar interfaces 
while retaining the inversion symmetry breaking by coupling 
A site modulation to correctly oriented octahedral rotation, a 
polarity is generated in a heterostructure built from two 
magnetically ordered perovskites, thereby combining both 
broken space inversion and time-reversal symmetries at room 
temperature. 
 

Figure 1: Projection of the Pnma GdFeO3 structure (a) 
projected along the b axis showing the orientation of the tilt 
axes and (b), projected along a highlighting the X5

+ A site 
antiferrodistortive displacement mode symmetry. Atoms are 

colored La (cyan), Y (magenta), Fe (brown) and O (red) 
throughout the manuscript. 

 
Experimental & computational details 

(YFeO3)5/(LaFeO3)5, (YFeO3)4/(LaFeO3)4, YFeO3, and 
LaFeO3 films with a total thickness of 160 nm on atomically 
flat (101) DyScO3 single crystal substrates and a 160 nm 
(YFeO3)5/(LaFeO3)5 film on atomically flat (001) SrTiO3 
were grown using pulsed laser deposition with a KrF(248nm) 
ultraviolet excimer laser. The SrTiO3 and DyScO3 substrates 
were prepared following the procedure described in the 
literature24, 25; the surface morphology of the treated substrate 
showed clear step and terraces structure (Fig. S3).The targets 
were prepared by solid state reaction of the dried oxides, the 
deposition was carried out under 0.7 mTorr of high purity O2 
with a substrate temperature of 700oC and a laser fluence of 
1 J/cm2 and a frequency of 3-5 Hz. The growth was 
monitored using a differentially pumped RHEED system by 
recording the specular reflection intensity variation. 
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X-ray diffraction was carried out using a Panalytical X’Pert 
Pro MRD equipped with a four bounce Ge (220) 
monochromator.  
High angle annular dark field scanning transmission electron 
microscopy (HAADF-STEM) images were acquired on an 
FEI Titan 50–80 microscope equipped with a probe 
aberration corrector and operated at 300 kV. The sample was 
prepared with focused ion beam (FIB) on a Helios NanoLab 
650. 
The magnetization of the films grown on SrTiO3 substrates 
was measured in a MPMS SQUID magnetometer (Quantum 
Design) at room temperature with the applied field parallel 
and perpendicular to the film surface. 
Magnetic hysteresis loops of the films grown on DyScO3 

were recorded using the magneto-optical Kerr effect 
(MOKE) in a setup equipped with an electromagnet capable 
of producing magnetic fields of up to 20 kOe in longitudinal 
geometry at room temperature. A 40 mW 409 nm laser was 
used with an angle of incidence of 14  with respect to the 
substrate plane. The initial beam was linearly polarized 
perpendicular to the plane of incidence (S-polarization) and 
modulated by a photoelastic modulator at f = 50 kHz. The 
second harmonic component, 2f, proportional to the angle of 
the Kerr-rotation, was extracted by a lock-in amplifier from 
the intensity of the reflected light. 
Second harmonic generation was measured at room 
temperature using an 800 nm Ti-sapphire laser at a repetition 
rate of 82 MHz, the pulse average power and duration were 5 
- 30 mW and 100 fs, respectively. The fundamental beam, 
whose polarization was varied with a half-wave plate, was 
focused onto the sample with the minimal cross-section of 
about 20 m at the angle of incidence of 45 . SHG polar 
dependence was measured with the analyzer fixed at a 
polarization parallel (P) to the plane of incidence, and with 
the substrate edges fixed parallel to the analyzer position (=at 
45 degrees to the in-plane axis of the polar domain). The 
input polarization was rotated continuously by 3600 degrees 
starting from polarization  parallel (P) to the plane of 
incidence. A schematic of the geometry used for this 
experiment is presented on Figure S12. 
The piezoelectric properties of the samples were 
characterized using a modified piezoelectric force 
microscopy (PFM) technique26. The samples were patterned 
with interdigitated electrodes using optical lithography, 
forming an alternating sequence of electrical ground and 
potential lines. The electrodes were Ti 20 nm / Au 80 nm 
with a width and spacing of 30 μm each. For the PFM-based 
measurements, the voltage was applied directly to the 
interdigitated electrodes and the lateral and vertical sample 
surface displacements were measured by monitoring the 
cantilever displacements using calibrated lock-in techniques. 
The sensitivities of the vertical and lateral signals were 
calibrated using a piezo stack which was in turn calibrated 
using an accurate laser Doppler vibrometer. For the lateral 
signal, the displacements measured in this work lie in the 
linear region, below the onset of tip-surface sliding, as we 
have verified. The vertical signal also lies in the linear region 
with indentation of the tip into the surface being negligible. 

For displacement profile measurements the excitation voltage 
had 1 V amplitude at 10 kHz. The measurement frequency 
was chosen away from any cantilever resonance. For the 
scanning mode, to increase the signal to noise ratio, the 
imaging was done at a cantilever resonance frequency, 
typically around 320 kHz. In this case, the PFM imaging is 
restricted to measurements of the vertical displacement. 
All the crystal structures presented in this work were drawn 
using the program VESTA27. 
 
Superlattices were constructed in supercells based on the 
GdFeO3 structure ( 2ap× n ap× 2ap, ap  3.9 Å). Spin 
polarized calculations on Fe containing compounds were 
performed with G-type antiferromagnetic ordering consistent 
with the parent materials. The unit cell and atomic positions 
were optimized until the forces acting on each atom were less 
than 0.001 eV/Å. The fully relaxed structures were 
symmetrized using the FINDSYM programme28 and the 
symmetric structures then further optimized to give a final 
structure. The resulting tight level of convergence was 
required to allow for an accurate calculation of the 
polarization for each structure. 
Periodic density functional theory calculations were 
performed using the PBE functional29 with the addition of an 
on-site Hubbard term for Fe with Ueff = 4 eV30. A plane-
wave cutoff energy of 550 eV was used, and a k-point grid of 
6 × 6 × 4 for the 1-1 structures (the number of k-points in the 
c direction was reduced according to the height of the 
supercell). The geometry optimization calculations were 
performed using VASP31 and the projector augmented wave 
method32.  
Following geometry optimization, the static polarization was 
calculated in three ways. In the simplest method, the 
polarization was calculated using nominal static charges on 
each of the ions (Ln3+, Y3+, Fe3+, Ga3+, O2-), and calculating 
their displacement away from a non-polar reference structure 
with Cmmm symmetry for odd and C2/m symmetry for even 
structures. Electronic effects were then included by using 
calculated Born effective charges in place of the static 
nominal charges. These were calculated for the final polar 
structure using density functional perturbation theory as 
implemented in VASP33. Finally, the polarization was also 
calculated for certain structures using the Berry phase 
method using the Quantum Espresso code34 using the VASP 
optimised structure and equivalent DFT settings. These three 
methods are described in more detail in a recent review35. 
The relaxed-ion piezoelectric tensor was calculated using the 
implementation in VASP. 
Classical force-field calculations were using the General 
Utility Lattice Programme (GULP)36. The force-field was 
constructed from a long range electrostatic part, which uses a 
shell model37 to include a level of polarisability, and short-
range Buckingham potentials38 acting between pairs of ions, 
excluding cation-cation pairs. The parameters for the 
potential were chosen from previous literature39, 40, and tested 
on bulk YFeO3 and LaFeO3. Experimental cell parameters 
for these orthoferrites were reproduced with a maximum 
error of 2 %. Partial occupancy of sites was treated using the 
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mean-field approach in which the electrostatic and 
Buckingham potentials of that site are the average of the 
potentials for each species on that site, weighted by their 
occupancies. 
 
Results and discussion 

Symmetry considerations. Tilting cannot produce polar 
symmetries in single A site perovskites41. However, in the 
presence of cation ordering on the A site along the [010]Pnma 
direction which is coupled to in-phase tilting of the octahedra 
along the same direction, a spontaneous electrical 
polarization arises.11-14 This is an improper ferroelectric42 as 
the primary order parameter is the zone boundary octahedral 
tilting. The polarization arises from non-cancellation of 
antiferrodistortive displacements in the X5+ mode (of the 
parent cubic perovskite) at the interfaces between the blocks, 
producing a polarization density wave as seen in the lead-
free ferroelectric Bi0.72La0.28(Fe0.46Ti0.27Mg0.27)O3

43. This 
observation can be further generalized in terms of the 
removal of inversion symmetry within the X5+ mode present 
in tilted perovskites where there are perpendicular in phase 
and out of phase tilts, as highlighted in Figure 1 b. Indeed for 
single layer A site ordering Kishida et al.15 have determined 
the symmetry of all possible tilt systems and cation ordering 
directions.  Of these by far the most common in known 
perovskites is the a-b+a- tilt scheme producing the Pnma 
symmetry discussed above. 
The generation of the sharp-interface A site alternation in 
single perovskite superlattices is challenging experimentally. 
We therefore used symmetry to generalize the crystal 
chemical rules defined previously11-14 by extending the size 
of the distinct ABO3 blocks and found that superlattices in 
which odd numbers of unit cells of both components are 
present retain the uncancelled displacements at the interfaces 
between the two components and are thus still polar in space 
group P21ma (standard setting Pmc21) when the growth 
direction is parallel to the axis about which the in-phase 
tilting takes place. This generalization was achieved by 
describing the A site cation ordering perpendicular to either 
the a- or b+ tilt in terms of modulated structures in 
superspace.44-46

 Cation ordering on the A site will increase 
the periodicity along one of the three pseudocubic perovskite 
subcell axes, according to the relative orientation of the 
ordering direction and the octahedral tilts. The resulting 
symmetries can be economically evaluated in a modulated 
structure description and are summarized on Figure 2. 
Selection of the Pnma b axis as the ordering direction 
produces a generalised supercell described by the (0,ky,0) 
reciprocal space wavevector which spans the 1 irreducible 
representation of Pnma and affords superspace groups 
described as Pnma(0 0).Here the modulation vector  is the 
selected value of ky and is the inverse of the multiplication of 
the 2ap repeat of the original cell along the ordering direction 
in real space. Orderings along the out-of-phase tilt axes are 
described similarly as M1( 0 ) and M1( 0- ) affording 
P21/m( 0 ) and P21/m( 0- ) superspace groups – here 
some symmetry elements of Pnma do not leave the 

wavevector invariant and hence the symmetry is lowered. 
The Brillouin zone and the definition of the k-vector types 
for the Pnma space group can be found on the Bilbao 
Crystallographic Server47. 
To describe the modulation in occupancy we define a fourth 
dimension x4= t- y (Figure 3a) in superspace, to define the 
atomic positions in terms of the fractional coordinates and 
occupancies of the Pnma subcell plus the effect of the 
modulation on these parameters on moving from one real 
space subcell to another (as the modulation has no 
component along x or z, the position on x4 is unchanged as 
we project cells into real space along these directions). If the 
structure is incommensurate the origin t is arbitrary as all 
points on x4 are projected. However when we consider 
commensurate structures, only certain points on x4 are visited 
and the choice of t is important for determining the real space 
structure. Independent of the exact nature of the modulation, 
the symmetry of the resulting structure can be determined 
from the origin t and the modulation vector.48, 49 Each choice 
of origin t along x4 corresponds to a specific real space A site 
occupancy and the full higher dimensional structure 
describes all possible combinations of A site occupancies 
within the periodicity defined by . 
The spatial variation of the A cation occupancy within the 
supercell can then be described by the periodicity of the 
ordering (defined by  and  above) and the nature of the site 
occupancy variation. This is described by any periodic 
function of x4: a crenel function (Figure 3c) of x4 gives 
occupancies of zero or one at each A site,50 and the width of 
the crenel function then defines the superlattice 
stoichiometry, with a width of 0.5 corresponding to a 50:50 
ratio of the two different A site cations and a width of 0.6 
corresponding to a 60:40 ratio. Figure 3 shows two possible 
origin choices for a 50:50 superlattice with  = 1/5 that is 
polar in P21ma symmetry and a mixed superlattice that is 
non-polar in P1121/a. Only these two types of origin choices 
are compatible with the crenel description here. 

Figure 2: Layered A cation order perpendicular to the three 
Pnma axes can be treated as modulations at the M( 0 ) point, 
in the Brillouin zone for Pnma47, for the a- axes (the general 
point corresponds to general planar orders perpendicular to 
the ac plane and the special cases ( 0 ), ( 0- ) to the two 

planes of interest) and (0 0) point for the b+ axis, subscripts 
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refer to particular irreducible representations which describe 
the modulation. 

This can be generalized to describe any A site crenel-like 
superlattice such that for 50:50 lattices all = 1/(2N) ) 
structures with even numbers of unit cells are 
centrosymmetric whilst = 1/(2N+1) are polar. This result, 
i.e. odd-odd superlattices are polar, even-even ones are not 
holds for non 50:50 lattices with odd-odd or even-even 
combinations (see above for the 6:4 case). Odd-even cases 
are described by = 2N/(2N+1) and are all centrosymmetric. 
More complex stacking sequences are of course possible and 
their symmetries can be similarly deduced. A similar 
argument can be made for B site ordered crenels showing 
that for 50:50 lattices all = 1/(2N+1) structures are 
centrosymmetric whilst all = 1/(2N) are polar. Similar 

treatment of P21/m( 0 ) and P21/m ( 0- ) superspace 
structures show that crenel based structures are non-polar 
P21/m supercells.  
The above approach can also be generalized to arbitrary 
modulation functions e.g. for simple trigonometric functions 
when the origin is chosen such that the centre of the layer 
represents the maximum in occupation-  illustrated by the 
sine wave modulation functions in Figure 3 c- the same rules 
are obtained. Note that an arbitrary choice of origin for the 
sinusoidal modulation function will give a polar structure 
(P11a), though this is induced by cation order by analogy 
with multiple color lattices, rather than by removal of 
specific symmetry elements. 

Figure 3: (a) Projection of the x4,x2 plane for  = 1/5 showing how the stacking sequence can be built up, here projections 
parallel to y correspond to structures in real space, where a cyan occupation domain is intersected a La is present on the A site 
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and where a magenta one is intersected a Y is present. (b) and (c) Two example projections corresponding to origins of t = 7/20 
(red functions in c)and 6/10 (blue functions in c) are shown. x2 is the superspace coordinate related to y as defined in 44 such that 

the occupancy is periodic in x2 for unit translations along y.
Materials selection and computational analysis. Materials 
selection began with the choice of Fe3+ as the B site cation, 
as the strong d5-d5 superexchange interactions give high 
antiferromagnetic ordering temperatures and with A = Ln3+ 
the resulting tilting of the octahedra due to tolerance factor 
considerations gives all LnFeO3 perovskites the required 
Pnma symmetry. The resulting non-centric B-O-B 
superexchange pathways permit the formation of a weak 
ferromagnetic moment due to Dzialoshinsky-Moriya (DM) 
canting51. 
A consequence of the previous symmetry arguments is that 
for stacking of the individual ABO3 and A BO3 components 
perpendicular to b+, superlattices in which either component 
is present in even numbered blocks are not polar due to 
displacement cancellation (Figure S1), for stackings 
perpendicular to a- all superlattices are non-polar. The effect 
of the size of the Pnma building blocks on the total 
polarization was investigated computationally. These 
calculations showed that for odd numbered superlattices, 
extending the blocks expands the region between the ABO3-
A BO3 interfaces with almost non-polar bulk-like layers, 
such that the polarization is inversely proportional to the 
block thickness (Figures 4 and 5). These generalized rules 
allow some flexibility in achieving the required A site 
compositional modulation over these longer distances in 
heterostructures experimentally. Suitable Ln3+cations must 
be chosen to give polarity, and calculations show that for all 
odd numbered superlattices the polarization is maximized 
with the largest possible ionic size difference between the 
two A cations, leading to the selection A = La, A’ = Y 
(Figure 5). This maximises the difference between the degree 
of displacement within AO and A’O layers. The final 
requirement is that the in-phase tilt axis, b+, should be 
parallel to the stacking direction of the LaFeO3 and YFeO3 
blocks. Calculations reveal that for (LaFeO3)5(YFeO3) 
superlattices only small energy differences separate the 
possible distinct tilt orientations, the P21ma structure with the 
b+ axis parallel to the stacking axis being less stable by only 
0.06 eV/Formula Unit than the P21/m structure with the b+ 
tilt perpendicular to the stacking direction. 
Growth. Quasi-epitaxial growth at 600 ºC of both selected 
orthoferrites on cubic substrates produces three orthorhombic 
domains corresponding to the different orientations of the b+ 

tilt.52-54 We observed layer-by-layer growth for LaFeO3 on 
SrTiO3 [100] (STO) above 600 C (Supplementary Figure 
S5); below 600 C the surface mobility is insufficient to 
induce crystallinity in the growing layers. We succeeded in 
growing YFeO3/LaFeO3 heterostructures on STO 
(Supplementary Figures S6 and S7). Higher quality 
heterostructures with fewer domains arise from growth on 
DyScO3 [101] (DSO) (Figure S8). This substrate is a Pnma 
perovskite which can be treated to obtain a pristine ScO2-
terminated surface necessary for layer by layer growth24 
(Figure S3). The substrates used here have the b+ tilt in-plane 
with two domains (Supplementary Figure S4) corresponding 

to the two orientations of this axis along the pseudocubic 
subcell directions. The good structural and dimensional 
match ( s  3.5%) allows YFeO3 to grow layer-by-layer on 
DSO above 600 C, producing a smooth two-dimensional 
surface after 5 unit cells are deposited, which permits 
subsequent growth of LaFeO3 in layer-by-layer mode (Figure 
6). Growth was carried out at the lowest temperature which 
afforded the RHEED oscillations characteristic of layer-by-
layer growth to minimize A cation interdiffusion between the 
blocks. 

Figure 4: The calculated structure of the (LaFeO3)5(YFeO3)5 
superlattice is shown alongside the contribution from each 

layer to the overall polarization. The box highlights the 
interface region where the local centre of symmetry is lost, 

leading to different contributions to the polarization from the 
AO layers above and below the interface and a finite overall 

polarization. 
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Figure 5: Polarization (P) versus the number of perovskite 
unit cells (N) in each block for LaFeO3-LnFeO3superlattices 

(Ln = Nd, Gd, Y). Data is plotted for three methods of 
calculating polarization: static charges (squares), Born 

effective charges (circles) and Berry phase (triangles). The 
function P1/N, where P1 is the average calculated 

polarization for the 1-1 superlattices, is plotted as a line for 
each family. 

Structural characterization. The periodicity of the 
superlattice is confirmed by the presence of a low-angle 
reflection in the specular x-ray reflectivity corresponding to a 
unit cell length of 38.8 Å showing that the structure is 
composed of 10 unit cells of the primitive perovskite (Figure 
7 a). The observation of appropriately spaced satellite 
reflections around the fundamental LnFeO3 perovskite out of 
plane reflections at higher angle (Figure 7 b), confirms that 
the structure is composed of 5 unit cells of LaFeO3 and 5 unit 
cells of YFeO3. It is important to note that only first order 
superstructure reflections from the 10ap cell are seen, which 
is consistent with a non square-wave modulation of the 
occupancies of the A sites between successive blocks. 
Interdiffusion during growth produces a sinusoidal 
modulation of the A site occupancy away from the centre of 
the blocks which will not produce harmonic diffraction 
features. 

Figure 6: (a) Specular RHEED intensity as a function of deposition time for the first 3 unit cells showing 5 clear oscillations for 
both YFeO3 and LaFeO3 layers. (b) Specular intensity variation for the full heterostructure showing that the layer by layer 

growth is sustained for the 40 unit cells with generally decreasing intensity for the YFeO3 layers and increasing intensity for the 
LaFeO3 layers. (c) RHEED pattern of (top) ScO2 terminated DSO substrate (middle) 4 unit cells and (bottom) 40 unit cells of the 

heterostructure along the [110] pseudocubic azimuth. The streaky pattern shows that the growth stays two-dimensional 
throughout the deposition. 
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Figure 7: (a) x-ray reflectivity of the [(YFeO3)5(LaFeO3)5]40 
heterostructure showing a Bragg reflection corresponding to 

an interatomic separation of 38.8 Å, the red line is a 
simulation of the heterostructure, the second feature around 
2.3 degrees can be modeled using a surface roughness of 0.8 

nm. (b) Out of plane -2  XRD pattern of the 
heterostructure, the red line corresponds to a simulation of 
the structure using a crenel modulation (perfect interfaces) 

with the expected odd harmonic reflections whereas the 
green line corresponds to a simulation using a sinusoidal 

modulation of the A cation composition. 
 
This is confirmed by HAADF-STEM imaging which shows 
some interdiffusion across the interfaces which nonetheless 
remain clearly present in the images (Figure 8). The 
brightness in the projected columns is directly related to the 
average Z-number of the columns. The intensity profile, 
taken over the full width of the image, only displays maxima 
due to the A-cations, as those from the lighter B-cations 
(Z=26) do not rise above the base of the A-cation peaks. The 
alternation between higher intensity peaks corresponding to 
La-rich areas (Z=57) and lower intensity peaks from Y-rich 
areas (Z=39) follows a sine wave, i.e. the transitions between 
La- and Y-rich areas occurs gradually consistent with the 
superstructure intensity variation in the x-ray diffraction. 

Figure 8: HAADF-STEM image (right) and intensity profile 
(left) over the same region of the [(YFeO3)5(LaFeO3)5]40 

heterostructure. The red and green functions superimposed 
on the intensity profile correspond to the crenel and sine-

wave modulation models used to produce the XRD 
simulations. The gradual overall decrease in peak height 

from top to bottom is due to varying cross-section thickness. 
 
Classical force-field calculations were carried out in order to 
assess the effect of the experimentally observed interlayer 
mixing between A-sites on polarization. To test the reliability 
of the force-field the force-field optimized structure of the 
fully ordered (LaFeO3)5(YFeO3)5 superlattice with 
atomically sharp interfaces was obtained, and its polarization 
calculated using static charges. The structure and resulting 
polarization of 2.5 μC.cm-2 were sufficiently close to those 
calculated with DFT (P = 1.7 μC.cm-2) to consider the force-
field as reliable. A (LaFeO3)5(YFeO3)5 superlattice was then 
constructed in which the A-site occupancy varied 
sinusoidally from a pure YO layer to a pure LaO in a period 
of five layers (Figure S2). Non-integer occupation of the A-
sites was treated using a mean-field approach in which the 
cation potential is the occupancy weighted average of that for 
Y3+ and La3+. The polarization of the modulated structure 
was then calculated using static charges, with an overall 
polarization of 2.4 μC.cm-2, only slightly less than that of the 
fully ordered superlattice. The symmetry arguments above 
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show that the polarity does not depend on the nature (sine 
wave or crenel) of the modulation, only on its periodicity and 
composition. 
Low temperature growth of orthorhombic LnFeO3 films 
affords domains with the b+ tilt both in- and out of plane52-54. 
The relative orientation of the in-phase tilt to the A site 
ordering is critical in determining the presence of polarity – 
when the in-phase tilt is aligned with the A site ordering, the 
symmetry is polar P21ma, whereas alignment of the out-of-
phase tilt along this direction affords non-polar P21/m 
(Figure 3 d). In order to identify the relative orientation of 
the b+ tilt the pole figure of the (111) reflection of the Pnma 
orthoferrite subcell was measured. This reflection of the 
perovskite subcell allows for the differentiation of the b+ tilt 

orientation between polar P21ma and non-polar P21/m 
(Figure 9 d) structures. The comparison between the 
measured pole figures (Figure 9 a) and the expected pole 
figures for untwinned crystals (Figure 9 b and c) show that 
both tilt orientations with respect to the cation ordering 
direction are present (confirmed by measuring reciprocal 
space maps around the (111) reflections, Figure S9), and thus 
both non-polar P21/m and polar P21ma structures are formed 
in an approximate ratio of 5/1 based on diffracted intensities. 
This would be expected to produce both polar and non-polar 
domains in the film, and is consistent with the small 
calculated energy differences between these two structures, 
which both grow although the polar one is not matched with 
the substrate tilt pattern. 

Figure 9: (a) Measured pole figure of the (111) reflection of the Pnma subcell showing two different domains corresponding to 
the non polar phase (peaks highlighted as blue circles) and the polar phase (peaks highlighted as green circles). (b) Simulated 

pole figure for the non-polar P21/m phase considering two variants corresponding to different orientations of the 2ap b+ axis. (c) 
Simulated pole figure for the polar P21ma phase considering two variants corresponding to different orientations of the 2ap a- 

axes. (d) Representation of the two phases obtained from the A cation ordering stacked along the b+ tilt (left structure) and 
perpendicular to the b+ tilt (right structure) together with the substrate. The key on the bottom right explains the relationship 

between the Pnma perovskite subcell orientations in the two domains seen for each of the two phases (the 2ap direction is shown 
in green, the two 2ap directions in blue and red). 

Magnetic properties. All the LnFeO3 phases display weak 
ferromagnetism at all temperatures below TN, except DyFeO3 
which is purely antiferromagnetic below 37K55. LaFeO3 and 
YFeO3 (TN 648K and 740K, respectively) both adopt the 4 
magnetic structure with the weak ferromagnetic moment 
along the 2ap b+tiltPnma axis. The alternative 2 magnetic 
structure, where the canted moment lies along bPnma = 2ap, 

has been observed in YFeO3 above 70 kOe56. The sensitivity 
of the weak ferromagnetism in LaFeO3 to the out-of-phase 
tilts via their control of the antisymmetric exchange and 
single-ion anisotropy57 may produce deviations from the bulk 
magnetic structure in the heterostructure driven by interfacial  
and ferroelastic strains. 
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Absolute magnetization measurements on heterostructure 
grown on DyScO3 substrates using standard magnetometry 
were not possible as the DyScO3 paramagnetism dominates 
the film response.58 Magnetization was measured on a 
superlattice grown on SrTiO3 (Figure S10). The remnant in-
plane magnetization is 0.011±0.001 μB/f.u which is similar to 
the reported value for YFeO3 films.52 The in- and out-of-
plane antiferromagnetic susceptibilities of the heterostructure 
were determined to be (11.3 ± 0.3) x 10-7 and (5.4 ± 0.6) x 
10-7 μB/Oe , respectively. These are of the same order found 
in YFeO3 single crystals at room temperature,55 
demonstrating that the antiferromagnetic anisotropy strength 
in the heterostructure is comparable to the bulk properties of 
its components and thus that the heterostructure is 
magnetically ordered at room temperature. A qualitative 
characterization of the magnetic hysteresis loops has been 
performed using the magneto-optic measurements on a film 
grown on DSO substrates. Figure 10 a shows the MOKE 

loops of a (YFeO3)5/(LaFeO3)5 heterostructure with the 
magnetic field parallel to several high symmetry directions 
(Figure 10 d presents the relative orientation of substrate and 
films). We measured sharp hysteresis loops, similar to those 
observed on LaFeO3 thin films of similar thickness grown 
under the same conditions (Fig. 10c). The analysis of the 
magnetic anisotropy of these films and the absence of weak 
ferromagnetism (WFM) when the magnetic field is applied 
parallel to the [010]pc axis confirms the 4 magnetic 
configuration of the heterostructure films. The observed 
negative slope of the hysteresis loop for the heterostructure 
and LaFeO3 is due to the contribution of domains with the 
bPnma axis out of plane (Equations S1 and S2) confirming the 
twinning (and the presence of polar and non-polar domains) 
described previously The degree of the negative slope is 
likely to be proportional to the number of structural domains 
grown with the bPnma-axis out-of-plane. 

Figure 10: Magnetic hysteresis loops measured by longitudinal MOKE at room temperature on (a) the (YFeO3)5/(LaFeO3)5 
heterostructure and (b) on thin YFeO3 film both grown on DyScO3 (101)Pnma substrates, with magnetic field applied in  different 
directions with respect to DyScO3 [010]Pnma or [100]pc in orthorhombic and pseudo-cubic notations, respectively. (c) Comparison 
of MOKE hysteresis loops measured on blank substrate DyScO3 (101)Pnma and on thin films of (YFeO3)5/(LaFeO3)5, YFeO3 and 
LaFeO3 grown on DyScO3 (101)Pnma substrates, respectively. The magnetic field is applied along the DyScO3 [010]Pnma axis. (d) 
Three-dimensional drawings of orthorhombic unit cells corresponding to the polar and non-polar phases in (YFeO3)5/(LaFeO3)5 

and their orientations with respect to orthorhombic (Pnma) or pseudo-cubic crystal axes of DyScO3 (101)Pnma substrate. 
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Non-linear optical properties. To confirm the broken spatial 
inversion symmetry and to verify the polar point group of the 
5:5 heterostructure we performed measurements of the optical 
second harmonic generation (SHG) polar plots on 
[(YFeO3)5(LaFeO3)5]40 heterostructure and on a blank DyScO3 
substrate, respectively. SHG provides a necessary condition for 
polar dipolar order59. Figure 11 shows the dependence of the 
SHG I2 ( ) intensity vs. polarizer rotational angle. Numerical 
analysis using equation S3 agrees with the point symmetry 
group 2mm, of the P21ma space group of the polar phase. 
Measurements on a blank DyScO3 substrate yielded an 8 times 
smaller absolute SHG response and agreed with the non-polar 
group mmm expected for Pnma, confirming the polar nature of 
the heterostructure, similar to the data reported for strained 
EuTiO3.21 

Figure 11: Optical second harmonic response vs. rotational 
angle of the polarizer. Filled (open) symbols and red (black) 

solid line represent data points and the corresponding fit for the 
film and blank DyScO3 (101)Pnma substrate with point symmetry 

group 2mm and mmm, respectively. 
Piezoelectric force microscopy. The functional nature of the 
structurally generated polarization was demonstrated by 
measuring the piezoresponse between interdigitated electrodes 
with the cantilever parallel to the electrodes (Supplementary 
Figure S13). The lateral and vertical displacement amplitudes 
are plotted in Figure 12 a and b with the negative sign used to 
indicate 180 ° phase difference between the applied voltage and 
measured cantilever displacement. Changing the voltage offset 
used alters both the displacement amplitudes and signs, as 
expected from the electric field dependence of the piezoelectric 
coefficient.60 In order to verify the piezoelectric nature of the 
response and the electric polarization direction, finite element 
simulations were performed for the measured sample geometry 

using the relaxed-ion piezoelectric tensor with a calculated d33 
of 25.88 pC/N for the (LaFeO3)1(YFeO3)1 superlattice. The 
electrical polarization lies in the sample plane, perpendicular to 
the cation ordering direction as expected from the P21ma 
symmetry produced orientation of the b+ tilt. d33 for the 
heterostructures was estimated within an order of magnitude as 
10 pC/N. The agreement between this estimate and simulation 
confirms the piezoelectric origin of the sample surface 
displacements (Figure 12 a).  Measurements with the cantilever 
perpendicular to the electrodes give a lateral signal within the 
noise level, indicating negligible polarization in this direction. 
We performed control experiments on separate 
[(YFeO3)4(LaFeO3)4]50, YFeO3 and LaFeO3 films grown on 
DyScO3 under identical conditions to those used to grow the 
heterostructures and did not measure any detectable 
piezoelectric effect (Figures 12a and S14). Scanning-mode 
PFM imaging of the surface of the [(YFeO3)5(LaFeO3)5]40 
heterostructure reveals both polar (bright area) and non-polar 
(darker areas) regions (Figure 12 c) with the polar region 
covering 25 % of the surface. The sample surface is very 
smooth with a root mean square roughness of 1 nm and no 
correlation was observed between the topography and 
piezoresponse signals. 
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Figure 12: (a) Lateral and (b) vertical piezoresponse profile 
measurements (solid circles) and simulations (lines) for the 

(LaFeO3)5(YFeO3)5 and (LaFeO3)4(YFeO3)4 (square) thin films 
across a series of interdigitated electrodes shown in the top 
optical micrograph. The measurements and simulations are 
shown for three values of voltage offset, 0 V and ±9 V. (c) 
Scanning-mode PFM image of the (LaFeO3)5(YFeO3)5 film 

measured at a cantilever resonance using 1 V amplitude at 320 
kHz. The vertical response amplitude is plotted, bright areas 
indicating polar domains whilst the dark areas are non-polar 

regions. 

Conclusions 
LaFeO3 and YFeO3 are isosymmetric, non-polar and 
magnetically ordered at room temperature – spatial inversion 
symmetry is present, but time reversal symmetry is broken. 
Growth of alternating blocks of odd numbers of perovskite unit 
cells orders the A site La3+ and Y3+cations. The cation order 
along the in-phase octahedral tilt removes the inversion centre 

in the component. The resulting uncompensated cation 
displacements from the centroids of their oxygen coordination 
polyhedra in the plane of the cation order produce a 
polarization perpendicular to the growth direction. The correct 
coupling of the translational (A site order) and point (octahedral 
in-phase rotation) symmetry is essential – if this is not 
achieved, non-polar structures result as shown by the presence 
of polar and non-polar regions in the PFM measurements. 
Rather than relying on a sharp compositional variation at the 
interface to break the symmetry, a more general approach is 
devised where coupled A cation ordering and specific mode 
distortions are the driving mechanism to create a polar system. 
This demonstrates the robustness of this approach to 
imperfection at the interfaces since a non-square-wave 
modulation of the composition will not affect the symmetry as 
long as the periodicity of the heterostructure remains correct. 
The A site occupancy modulation does not need to be square-
wave to produce the polarization; it is the correspondence of the 
periodicity to an odd number of blocks of each component 
which is essential. The magnetic order of the component AFeO3 

blocks is retained in the heterostructure, with the structural 
polarity and functional piezoresponse imposed by the growth. 
The combination of magnetism and polarization at room 
temperature is thus achieved through the growth-controlled loss 
of symmetry. This mechanism does not require restrictive 
chemical criteria in the component ions (d0 or s2 configurations 
are not a pre-requisite, for example) and can be tuned via block 
size and chemical composition while still requiring only two 
distinct isosymmetric starting units, offering considerable 
potential diversity in property combination and control. 
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