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Long-range chemical communication takes place over
micrometer distance within different biological organisms
and biomimetic chemical micro-compartments). A proper
model for studying this phenomenon could rely on three
features, namely i) the compartmentalization of chemical
information (using microfluidics), ii) a stable emitter of
periodic chemical signals inside compartments (Belousov-
Zhabotinsky oscillating reaction) and iii) a suitable spatio-
temporal monitoring of the emitted chemical signal. In this
paper we study chemical transmission across the interface
between two immiscible liquids, eventually in the presence of
lipid, by local electrochemical probing. We show that
chemical information is transmitted either by direct transfer
of redox active species and or by interfacial electron transfer.
Insights obtained by electrochemical measurements, together
with numerical simulations, are then used to transpose the
communication across a phospholipid bilayer among
oscillators compartmentalized in liposomes and dispersed in a
water medium. The procedure for the successful generation
of these cell-like compartments through microfluidics is
reported here for the first time. 

 

 
The generation, propagation and reception of (bio-)chemical 
information between individual organisms are the keystones 
of many intelligent systems. At the level of unicellular 10 

organisms, chemical communication is based on a chemical 
messenger diffusion/reaction and it spans over a wide range of 
time and length-scales. Inside a cell, within trans-membrane 
protein machines chemical communication is restricted to the 
nanometer scale. However, in many other examples, chemical 15 

reagents are able to freely cross biological membranes and be 
transported to a target by diffusion over larger distances in an 
aqueous environment. For instance, the nervous system 
involves micron-scale chemical communication during 
synaptic communication from neurons to axons. Diffusion of 20 

chemical reagents over even longer distances (hundreds of 
micrometers and more) in the extra-cellular solution is 
believed to be responsible of the large-scale collective 
behaviours of colonies of unicellular organisms.1 
Apprehending such long-range chemical communication is 25 

also important for the development of biomimetic networks,2 

new forms of chemical computing1c, 3 or attempts toward 
artificial human nervous system.4 In this field of research, the 
biomimetic approach often concerns artificial compartments 
emitting chemical signals. 30 

Droplet-based microfluidics is a powerful tool for 
encapsulating biological entities and chemical reagents in 
artificial micro-compartments with monodisperse size, mostly 
made of water in oil microdroplets.5 They are generally used 
for the high throughput screening of reactions for their ability 35 

to compartmentalize materials in libraries of isolated chemical 
micro-reactors. As in nature, chemical communication plays 
an essential role in these artificial micro-reactors and is 
manifested in various ways, either within the encapsulated 
entities (such as cell colonies),1a or between the interior and 40 

outside of the compartment (partition) or between 
neighbouring compartments.3a The leakage (or partitioning) of 
chemical information from the micro-reactor to its external 
environment has been detected,5-6 and modeled.7 It may be a 
drawback6a in screening tests, but can be exploited in 45 

extraction or delivery processes,6b-6d, 6f, 7 or for inducing 
collective chemical behaviours between micro-reactors.1b, 1c, 

6e, 6g 
A biomimetic model of chemical and electrical activity in 
neurons can be found in non-equilibrium chemical systems 50 

such as the Belousov-Zhabotinsky (BZ) oscillating reaction.8 
Due to the chromogenic and redox nature of its ferroin 
catalyst (Fe(phen)3

2+, named here FeII), the ferroin-catalyst 
BZ reaction is a pertinent model to illustrate the complexity of 
communication in chemical systems. The 55 

compartmentalization of the BZ reaction in individual 
reactors,2b microparticles,2a or aqueous microdroplets6e, 9 
eventually stabilized by a lipid surfactant,3c, 10 dispersed in an 
organic phase, described short and long-range chemical 
communication between neighbouring BZ-encapsulated 60 

micro-reactors. The communication between compartments 
can be explained by the generation of intermediates that allow 
for the spatio-temporal propagation of chemical 
information.3a-3c This phenomenon eventually leads to the 
production of collective behaviours such as coupling and 65 

synchronization2 which is promising for the development of 
complex communication droplet-networks. However, as in 
many other droplet-based systems a fully aqueous 
environment of the water cell-like compartments is preferred.  
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simulations with the oregonator model (see ESI) to obtain the 
minimal concentration of the activator that should cross the 
membrane to excite the system ([HBrO2]ex = 1.1 × 10-6 M) 
and the concentration of the residual HBrO2 in the 
transmitting liposome after oxidation of the catalyst 5 

([HBrO2]tr = 7.4 × 10-5 M). Considering that small polar 
molecules, such as HBrO2, can cross phospholipids bilayers 
through passive diffusion, we calculated the time needed to 
reach [HBrO2]ex in the excitable droplet as 2 – 9 s, which is in 
excellent agreement with the delay time of our experiments. 10 

Simulations with two communicating homogeneous 
liposomes, coupled through the autocatalytic species, were 
also performed, as detailed in SI. The impulse transmission 
was clearly reproduced on a timescale comparable with the 
experiments (~ 4 s).  15 

Conclusions 

In summary, this work reports the first experimental and 
theoretical study on the propagation of BZ reaction as a 
source of chemical information encapsulated in giant 
phospholipid vesicles, chosen as a model of cell like micro-20 

compartments and separated by a water medium. Regardless 
of the harsh chemical conditions of the BZ mixture, successful 
encapsulation was possible using a microfluidic strategy. 
Chemical waves propagating and travelling inside or among 
different liposomes were observed, which may reflect 25 

communication between liposomes.  
Various sources of chemical signals transmitted across the 
interface can be proposed. In principle, direct transmission 
(permeation) of redox active species is possible but indirect 
chemical signal transmission, such as interfacial ET, can also 30 

play a significant role. Several sources of chemical signals 
were identified from preliminary insights on mass and ET 
processes across interfaces local electrochemical probing 
(SECM) on a bulk liquid/liquid interface model.  
At this stage we cannot exclude the migration of other 35 

chemical intermediates across the phospholipid bilayers (e.g. 
un-dissociated MA, Br2, etc.); however, simulations of the 
process with the oregonator model were in agreement with 
the experiments and supported the hypothesis of HBrO2 as a 
messenger for transmitting chemical information. Respect to 40 

previous works, where coupling among oscillators occurs 
either via all chemical species2c, 30 or through inhibitory 
coupling,6e, 9 we can tune our system to have liposomes 
separated by an aqueous phase so that the activator species 
can be selectively exchanged among droplets and new 45 

dynamical scenarios can be explored. 
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