This is an Accepted Manuscript, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about Accepted Manuscripts can be found in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard Terms & Conditions and the ethical guidelines that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these Accepted Manuscript manuscripts or any consequences arising from the use of any information contained in them.
Tuning “Thiol-Ene” Reactions toward Controlled Symmetry
Breaking in Polyhedral Oligomeric Silsesquioxanes

Yiwen Li,1, † Kai Guo,1, † Hao Su,1 Xiaopeng Li,2 Xueyan Feng,1 Zhao Wang,1 Wei Zhang,1 Sunsheng Zhu,1 Chrys Wesdemiotis,1,2,* Stephen Z. D. Cheng,1,* and Wen-Bin Zhang1,3*

1. Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, U.S.A.

3. Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing 100871, China

E-mail: wenbin@pku.edu.cn (W. -B. Z.); Fax: + 86 10 6275 1708; Tel: +86 10 6275 2394; scheng@uakron.edu (S. Z. D. C.); Fax: +1 330 972 8626; Tel: +1 330 972 6931; wesdemiotis@uakron.edu (C. W.) Fax: +1 330 972 6085; Tel: +1 330 972 7699.

† These authors contribute equally to this work.

TOC GRAPH
Abstract

Convenient synthesis of nano-building blocks with strategically placed functional groups constitutes a fundamental challenge in nano-science. Here we describe the facile preparation of a library of mono- and di-functional (which contains three isomers) polyhedral oligomeric silsesquioxane (POSS) building blocks with different symmetries \((C_{3v}, C_{2v}, \text{and } D_{3d})\) using thiol-ene chemistry. The method is straightforward and general, possessing many advantages including minimum set-up, simple work-up, and short reaction time (about 0.5 hour). It facilitates the precise introduction of a large variety of functional groups to desired sites of a POSS cage. The yields of monoadducts increase significantly using stoichiometric amounts of bulkier ligands. Regio-selective di-functionalization of the POSS cage was also attempted using bulky thiol ligands, such as a thiol-functionalized POSS. Electrospray ionization (ESI) mass spectrometry coupled with travelling wave ion mobility (TWIM) separation revealed that the majority of diadducts are \(\text{para}\)-compound (~59%), while \(\text{meta}\)-compound (~20%) and \(\text{ortho}\)-compound (~21%) are also present. Therefore, thiol-ene reaction provides a robust approach for the convenient synthesis of mono-functional POSS derivatives and, potentially, of regio-selectively multi-functionalized POSS derivatives as versatile nano-building blocks.
Introduction

The past decades have witnessed the creative use of “bottom-up” strategies for the design and synthesis of a large variety of nano-structured functional materials. Many of them, such as small-molecule surfactants, block copolymers and Janus particles, possess amphiphilic character, which acts as the driving force for their self-assembly. A relatively recent addition is a class of hybrid materials named “shape amphiphiles” that possess amphiphilic features in shape - they consist of molecular segments that have incommensurate shape and competing interactions. Molecular nanoparticles (MNPs), such as fullerene, polyoxometalate (POM) and T₈ polyhedral oligomeric silsesquioxane (POSS), have been widely used as versatile building blocks for constructing various shape amphiphiles with controlled surface chemistry and macromolecular architectures. The most important character of amphiphilic molecules is symmetry breaking. In shape amphiphiles, the symmetry breaking can be simply achieved by coupling precursor MNP building blocks in different geometry. It is thus critical to have a library of readily available MNP building blocks with an exact number of surface functional groups at precise locations, in order to enable the synthesis of diverse shape amphiphiles via both “grafting-from” and “grafting-onto” strategies.

Site-selective functionalization and regio-selective multi-functionalization of MNPs are nontrivial. Fullerene chemistry has been thoroughly studied and documented in this respect. The principles underlying their functionalization strategies shall be equally applicable to other MNPs. For the preparation of monoadducts, controlling reaction stoichiometry is a straightforward solution if the purification of monoadducts is possible by either chromatographic or nonchromatographic methods. For regio-selective multi-addition on C₆₀, strategies like template-mediated multi-addition, topochemically-controlled solid-state reaction, and tether-directed remote functionalization have been well established. The spherical shape and Iₜₙ symmetry of C₆₀ are broken down to generate a variety of multifunctional fullerene building blocks. In contrast, similar strategies have not been fully demonstrated in the
preparation of POSS-based nanobuilding blocks, especially for regio-selective modification of POSS with reactive side groups (such as vinyl side groups) instead of inert side groups (such as alkyls).20, 33, 34

Mono-functionalization of T\textsubscript{8} POSS breaks the O\textsubscript{h} symmetry of POSS to C\textsubscript{3V} symmetry. So far, there are mainly three ways to do so: (1) co-hydrolysis of tri-functional organo- or hydro-silanes;35, 36 (2) corner-capping reactions;37, 38 and (3) selective side group modification of an intact POSS cage.39, 40 However, these methods are largely limited to those POSS compounds with seven inert periphery groups, imposing significant hurdles for further functionalization to form diverse building blocks. Feher and co-workers have demonstrated the mono-hydroxylation of octavinylPOSS to prepare a versatile intermediate, VPOSS-OH.41 The vinyl and hydroxyl groups possess orthogonal reactivities, allowing sequential functionalization of VPOSS-OH into a large variety of shape amphiphiles.23 Yet, the synthesis cannot be easily adapted for the preparation of mono-functional POSS with other reactive groups. Recently, Chiara \textit{et al.} used stoichiometry-controlled copper-catalyzed azide–alkyne cycloaddition (CuAAC) of octakis(3-azidopropyl)octasilsesquioxane as an effective and powerful way to prepare mono-functional POSS.42, 43 The use of this classic “click” reaction greatly improved the functional group tolerance during functionalization and the remaining azido groups could be easily derivatized into other functional groups.42 To further expand the scope of POSS-based building blocks, we aim to apply other “click” chemistry reactions and develop a general and convenient method for the preparation of POSS derivatives with relatively simple linker groups (as compared to the triazole ring).

Thiol-ene chemistry has also been known as a typical “click” reaction. The anti-Markovnikov addition occurs rapidly and efficiently under mild conditions even in the presence of oxygen and water. Simultaneous, multiple functionalization of octavinylPOSS has been shown to be extremely effective in tuning the surface functionalities on POSS cages from hydrophilic groups,8, 12, 24, 25, 27 to fluorophilic functionalities,8, 44 and even to bioactive moieties.12, 45 The thiol-ene addition of 1-thioglycerol to an equimolar amount of octavinylPOSS leads to predominantly monoadduct that can be purified by flash chromatography.27 In this manuscript, we report a systematic study on the use of thiol-ene chemistry46-50
for the controlled functionalization of octavinylPOSS cages. The method is broad in scope and convenient in practice. Both mono-functionalization and multi-functionalization have been explored in detail.

Results and discussion

We first examined the scope of the method by using a library of functional thiols. Scheme 1 shows the synthesis of mono-functional heptavinylPOSS (VPOSS-S-R) \(14-26\) in one step from these thiols. The thiols were designed to diversify the functional properties of the final shape amphiphiles. Thiols \(1\) to \(7\) can be employed to introduce common reactive functionalities onto the POSS cage in a single step, including hydroxyl, carboxylic acid, amine, bromo, and azido groups. Both the length of the linker group and the number of functional groups at one single corner of POSS can be varied, as demonstrated by using different hydroxyl-functionalized thiols [\(2\)-mercaptoethanol (\(1\)), \(6\)-mercapto-1-hexanol (\(2\)), and \(1\)-thioglycerol (\(3\))]. Beyond the common reactive groups, it is worth mentioning that functional thiol \(6\) (Br-SH) contains a 2-bromoisobutyryl moiety that can be used to initiate atom transfer radical polymerization (ATRP) efficiently for “grafting” a polymer chain from the vinyl POSS surface,\(^27\) while thiol \(7\) (N\(_3\)-SH) could be used to introduce a “clickable” group onto POSS for subsequent “grafting” another macromolecular building block onto the vinyl POSS cage through Huisgen [3+2] cycloaddition.\(^51\) Thiol \(8\) (AD-SH) contains an adamantane motif that can complex with a cyclodextrin host via non-covalent interactions,\(^52, 53\) which could enable the preparation of supramolecular shape amphiphiles.\(^54\) The ferrocene moiety in thiol \(9\) (Fe-SH) imparts redox properties to the building block and may facilitate the design and synthesis of smart shape amphiphiles.\(^55, 56\) Other bioactive molecules, such as sugar, can also be introduced by using thiols like Sugar-SH \(10\). Finally, a series of relatively bulky thiol ligands that bear a second nano-building block, such as a small dendron (Dendron-SH \(11\))\(^57\) or isobutyl functionalized POSS with different linkers (BPOSS-SH \(12\) and BPOSS-NHCO-SH \(13\)), have also been designed. Among all the thiols in Scheme 1, the ligands \(1-5, 10\) and \(12\) are commercially available while ligands \(6-9, 11\) and \(13\) were synthesized in our laboratory (see supporting information...
(SI)). Thiols 7-11 and 13 are new compounds and are conveniently prepared from carboxylic acid-functionalized precursors.

To perform the reaction, equimolar amounts of a functional thiol and octavinylPOSS are simply mixed in a common solvent (such as THF, DMF, or CHCl₃) in the presence of 2 mol % 2,2-dimethoxy-2-phenylacetophenone (DMPA, photoinitiator) at a octavinylPOSS concentration of 10 mg/mL and the mixture is irradiated under a UV 365 nm lamp at room temperature for about 30 min. After solvent removal, the monoadduct could be purified by flash chromatography in 20% - 41% yield. Notably, ~ 30% - 50% of octavinylPOSS could often be recovered and thus, the effective yields of monoadducts based on conversion were much higher. The yields could be further improved if experimental conditions were further optimized by varying the octavinylPOSS concentration and/or the stoichiometry. However, for the sake of convenience, we consistently used a stoichiometry of 1:1 and a concentration of 10 mg/mL for octavinylPOSS. The purification of VPOSS-S-R takes advantage of the difference in polarity among the starting materials, monoaducts, and multi-adducts. Generally, VPOSS-S-R samples were easily separated from octavinylPOSS, photoinitiator, and multi-adducts in good yields, giving a set of mono-functional POSS units for further modification.

The products, VPOSS-S-R 14-26, are named and numbered in accordance to the thiol ligand precursor, respectively (see Table 1 and SI). They were thoroughly characterized by NMR spectroscopy and mass spectrometry to confirm their molecular structure. Figure 1 summarizes the exemplary characterizations for VPOSS-S-Br 19. The product is a white powder readily soluble in common organic solvent such as CHCl₃ and THF. The introduction of a 2-bromoisobutyryl group and the formation of a thioether bond are evident from the appearance of a new peak at δ 1.94 ppm and a group of new peaks at δ 2.69-2.82 ppm in the ¹H NMR spectrum (Figure 1a). The residual vinyl groups were confirmed by the resonances at δ 5.86-6.15 ppm in the ¹H NMR spectrum (Figure 1a) and at δ 128.62 and 137.04 ppm in the ¹³C NMR spectrum (Figure 1b). In addition, the ²⁹Si NMR spectrum (Figure 1c) clearly shows two resonances at δ -75.0 ppm (−SiCH₂H₂) and -66.0 ppm (−SiCH₂CH₂S−), indicating a
mono-functionalized product. Moreover, the peak observed at m/z 880.93 in the MALDI–TOF mass spectrum (Figure 1d and Table 1) agrees well with the calculated monoisotopic molecular mass (C_{22}H_{35}BrNaO_{14}SSi_8, 880.90 Da). All evidence confirms the successful synthesis of VPOSS-S-Br 19. The characterizations of the other VPOSS-S-R samples were performed similarly and the results can be found in the SI.

![Figure 1. Molecular characterization of VPOSS-S-Br 19 by its (a) 1H NMR spectrum, (b) 13C NMR spectrum, (c) 29Si NMR spectrum, and (d) MALDI-TOF mass spectrum with a zoom-in view provided in the inset to show the corresponding isotope pattern.](image)

Table 1 summarizes experimental conditions, yields, and the molecular weights obtained from MALDI-TOF mass spectra for each of the VPOSS-S-R derivatives reported in this work. Although some products showed more than one peak in the MALDI–TOF mass spectra (see SI), Table 1 only includes the m/z ratio and the corresponding calculated monoisotopic molecular mass for the peak corresponding to the sodium ion adduct of the whole molecule (M·Na$^+$). The full mass spectra can be seen in SI. Concerning the reaction conditions, it was observed that a slightly longer irradiation time (~1
hour, Table 1, entry 9) was required to prepare VPOSS-S-Fe. This may be explained by the fact that ferrocene motif absorbs lights of similar wavelength as DMPA, which reduces the initiation efficiency. The yield of VPOSS-S-Fe was generally lower for this reason (~15% for 30 min irradiation and ~20% for 60 min irradiation).

Table 1. Summary of the VPOSS-S-R samples synthesized via thiol-ene reactions.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Sample</th>
<th>Functional Thiol</th>
<th>Reaction Time</th>
<th>Yield</th>
<th>Molecular Formula</th>
<th>M (calcd; Da)</th>
<th>m/z (obsd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VPOSS-S-OH (14)</td>
<td>2-mercaptoethanol (1)</td>
<td>30 min</td>
<td>26%</td>
<td>C18H30NaO13SSi8</td>
<td>732.93</td>
<td>733.15</td>
</tr>
<tr>
<td>2</td>
<td>VPOSS-S-C6-OH (15)</td>
<td>6-mercapto-1-hexanol (2)</td>
<td>30 min</td>
<td>23%</td>
<td>C22H38NaO13SSi8</td>
<td>789.01</td>
<td>789.07</td>
</tr>
<tr>
<td>3</td>
<td>VPOSS-S-Di-OH (16)</td>
<td>1-thioglycerol (3)</td>
<td>30 min</td>
<td>29%</td>
<td>C19H32NaO14SSi8</td>
<td>762.96</td>
<td>762.20</td>
</tr>
<tr>
<td>4</td>
<td>VPOSS-S-NH-Boc (17)</td>
<td>2-(Boc-amino)ethanethiol (4)</td>
<td>30 min</td>
<td>20%</td>
<td>C23H39NNaO14SSi8</td>
<td>832.01</td>
<td>832.11</td>
</tr>
<tr>
<td>5</td>
<td>VPOSS-S-COOH (18)</td>
<td>2-mercaptoacetic acid (5)</td>
<td>30 min</td>
<td>25%</td>
<td>C18H28NaO14SSi8</td>
<td>746.94</td>
<td>746.96</td>
</tr>
<tr>
<td>6</td>
<td>VPOSS-S-Br (19)</td>
<td>Br-SH (6)</td>
<td>30 min</td>
<td>28%</td>
<td>C20H32BrNaO14SSi8</td>
<td>880.90</td>
<td>880.93</td>
</tr>
<tr>
<td>7</td>
<td>VPOSS-S-N3 (20)</td>
<td>N3-SH (7)</td>
<td>30 min</td>
<td>32%</td>
<td>C26H35N3NaO14SSi8</td>
<td>891.99</td>
<td>892.05</td>
</tr>
<tr>
<td>8</td>
<td>VPOSS-S-AD (21)</td>
<td>AD-SH (8)</td>
<td>30 min</td>
<td>26%</td>
<td>C23H39NaO16SSi8</td>
<td>981.09</td>
<td>981.18</td>
</tr>
<tr>
<td>9</td>
<td>VPOSS-S-Fe (22)</td>
<td>Fe-SH (9)</td>
<td>60 min</td>
<td>20%</td>
<td>C29H38FeNaO14SSi8</td>
<td>944.94</td>
<td>945.06</td>
</tr>
<tr>
<td>10</td>
<td>VPOSS-S- Sugar (23)</td>
<td>Sugar-SH (10)</td>
<td>30 min</td>
<td>23%</td>
<td>C24H30NaO14SSi8</td>
<td>1019.01</td>
<td>1019.07</td>
</tr>
<tr>
<td>11</td>
<td>VPOSS-S- Dendron (24)</td>
<td>Dendron-SH (11)</td>
<td>30 min</td>
<td>36%</td>
<td>C30H44NaO21SSi8</td>
<td>1095.19</td>
<td>1095.31</td>
</tr>
<tr>
<td>12</td>
<td>VPOSS-S- BPOSS (25)</td>
<td>BPOSS-SH (12)</td>
<td>30 min</td>
<td>--a</td>
<td>C47H94NaO24SSi16</td>
<td>1545.21</td>
<td>1545.32</td>
</tr>
<tr>
<td>13</td>
<td>VPOSS-S-CONH-BPOSS (26)</td>
<td>BPOSS-CONH-SH (13)</td>
<td>30 min</td>
<td>41%</td>
<td>C53H103NNaO27SSi16</td>
<td>1688.26</td>
<td>1688.30</td>
</tr>
</tbody>
</table>

The monoadduct 25 could not be isolated due to the low polarity of the BPOSS-SH moiety.

One intriguing observation is that the yield of VPOSS-S-Dendron (36%) is higher than those of the monoadduct products with smaller thiols (< 30%). The quantities of triadducts and multi-adducts formed with VPOSS-S-Dendron (5%) are also lower than for the smaller thiols (usually > 15%). The small thiols seem to be less selective, forming a statistical mixture of different addition products. This phenomenon suggests that steric effects influence the addition of thiol ligands onto the octavinylPOSS cage. As a result, bulky functional thiols (such as Dendron-SH) prefer to react with octavinylPOSS rather than with the initially formed adducts. Attached bulky ligands seem to present significant steric hindrance by yielding more crowded POSS surfaces.
The reaction of BPOSS-SH 12 and BPOSS-NHCO-SH 13, which are also bulky ligands, with octavinylPOSS appear to be selective as well. For BPOSS-SH 12, it is difficult to isolate the unreacted octavinylPOSS, the monoadduct, diadducts and multi-adducts using flash chromatography due to the low polarity of BPOSS-SH 12. Thus, we designed a thiol-functional POSS, BPOSS-NHCO-SH 13 but with a longer spacer containing a polar amide bond. In this case, the monoadduct was successfully isolated in 41% yield, again confirming the role of steric hindrance in improving the selectivity for monoaddition. The shape consistency and slightly larger size of the POSS motif seems to improve the selectivity as compared to Dendron-SH 11. Notably, the diadducts were also isolated as a mixture of isomers in 22% yield. The MALDI-TOF mass spectrum confirms the diaddition (Figure S11). But we were unable to further separate the diadduct isomers of different symmetries by flash chromatography. We speculate that the steric effects of thiol ligands would be more profound for higher adducts. In other words, bulky ligands would tend to react with the vinyl groups at the para-position of the POSS cage where the steric hindrance is minimal. It is of great interest to investigate the functionalization selectivity in these higher adducts where the C_3V symmetry of mono-functional POSS building blocks is further broken down.

The control of size, symmetry, and function of POSS-based building blocks has received increasing research interests due to their wide-ranging applications from polymer chemistry to materials science. Using isomeric building blocks, it is possible to generate isomeric giant molecules with distinct supramolecular structures and unique physical properties. For example, it is interesting to investigate polymers constructed using solely ortho- or para- di-functional POSS building blocks as the repeated monomer. The physical properties, such as hydrodynamics volume, relaxation behavior and glass transition temperature are likely to be very different. However, regio-selective multi-functionalization of POSS remains an immense challenge. Laine and co-workers have made pioneering work in this direction, as shown in the attempts to prepare Janus silsequioxanes and mixed silsesquioxanes. The mixture of regio-adducts is usually difficult to separate, especially in preparative quantities. We have found that electrospray ionization mass spectrometry (ESI) coupled with travelling wave ion mobility
(TWIM) separation is particularly useful for characterizing such mixtures with identical mass-to-charge ration \((m/z) \).59-62 Previously, we have applied this method to determine the oligomeric states of a POSS-PDI-POSS conjugate where PDI stands for perylene diimide.63 The method is found to be sensitive to the molecular conformation in three-dimensional space.63 The principle of TWIM MS experiments is that ions of a given \(m/z \) travel through the TWIM cell under the influence of a pulsed electric field against the flow of a carrier gas (\(N_2 \)). The ion drift times through the TWIM cell thus depend on the ions’ charge and collision cross-section (CCS) which are reflections of an ion’s size and shape (architecture). Hence, isomers with sufficiently different shapes can be separated even though they possess identical \(m/z \) values. Since mono-functional POSS does not have isomers and di-functional POSS has three isomers (\textit{ortho}-, \textit{meta}-, and \textit{para}-), we challenged this method with the diadducts of thiol ligands to octavinylPOSS, namely VPOSS-(S-R)\textsubscript{2}.

To prepare the diadducts, the reaction condition is basically identical to that of monoaddition, except that two equivalents of thiols were used so as to maximize the diadduct products (e.g., see Scheme 2). To reveal the exact composition of the diadducts, the crude product after reaction was directly subjected to analysis by ESI coupled with TWIM separation. The diadducts are positional isomers with identical compositions in terms of the number and type of functional groups. Thus, they should have the same ionization ability since the doubly-charged status is unlikely to affect their ionization ability as well.71, 72 Hence, there should be no enrichment and the analysis is thus not biased toward any specific components. The ESI-TWIM MS method also allows the quantification of the relative amounts of the different diadducts (\textit{ortho}-, \textit{meta}-, and \textit{para} isomers) if their cross-section areas and drift times are sufficiently different. It was found that the method failed to distinguish the diadduct isomers of different symmetries obtained from small thiol ligands. Interestingly, for bulky ligands, the diadducts from BPOSS-SH 12 can be clearly separated whereas the diadducts from BPOSS-NHCO-SH 13 could not be well resolved. This finding is reasonable since the diadduct isomers from BPOSS-NHCO-SH 13 have relatively long, flexible linkages between the POSS units. The differences among
the CCS areas of these isomers are thus too small to be differentiated. Below, we will focus on the diadducts from BPOSS-SH 12 (Scheme 2) and discuss the region-selectivity during functionalization.

Scheme 2. Synthesis of the diadduct isomers VPOSS-(S-R)₂. DMPA stands for 2,2-dimethoxy-2-phenylacetopheone.

In the ESI-TWIM MS study, the doubly charged molecular ions at \(m/z \) 1247 were selected for ion mobility separation due to their high abundance. These ions have the composition of \([M·2O·2Na]^2+\) and originate from products in which the thioether groups have been oxidized to sulfoxide groups during the ionization process. Three distinct species were successfully isolated from the ions of \([M·2O·2Na]^2+\) due to their different drift times, viz. 4.96, 5.87, and 6.59 ms (Figure 2a). The isotope spacing (Δ\(m/z \)) in their isotopic patterns is 0.5 amu, indicating that all isomers are in their doubly charged states (Figure 2b). The CCS values deduced from the experimentally observed drift times (see SI) are 443, 468, and 486 Å² for the fractions drifting at 4.96, 5.87, and 6.59 ms, respectively (Table 2). Considering that more compact ions usually drift faster while more expanded ions always drift slower in ion mobility experiments, these three different species could probably assigned to the ortho-, meta-, and para-isomer of the diadducts, respectively. Molecular modeling results from Materials Studio (version 4.2) were then employed to confirm the assignments.
Figure 2. Two-dimensional TWIM MS plots (relative intensity vs. drift time) of the ions at m/z 1247. (a) TWIM separation was performed using a traveling wave velocity of 350 m/s; the traveling wave height was 10 V. (b) The corresponding isotopic patterns for the three major peaks at 4.96, 5.87, and 6.59 ms. The ions are doubly charged species with the composition of \([\text{VPOSS-(S-BPOSS)}_2 \cdot 2\text{O} \cdot 2\text{Na}]^{2+}\).

<table>
<thead>
<tr>
<th>Isomer</th>
<th>Drift time (ms)</th>
<th>$\text{CCS}_{\text{calcd}}$ (Å²)</th>
<th>CCS_{exp} (Å²)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ortho-)</td>
<td>4.96</td>
<td>453</td>
<td>443</td>
<td>21%</td>
</tr>
<tr>
<td>(meta-)</td>
<td>5.87</td>
<td>457</td>
<td>468</td>
<td>20%</td>
</tr>
<tr>
<td>(para-)</td>
<td>6.59</td>
<td>462</td>
<td>486</td>
<td>59%</td>
</tr>
</tbody>
</table>

Using the Anneal and Geometry Optimization tasks in the Forcite module, we generated 400 energy-minimized structures for each isomer through an annealing process to calculate the average CCS values by using the trajectory method of the MOBCAL algorithm, which is widely applied in
calculations of large ion systems.\(^6^9\) Plots of the resulting average CCS values against the corresponding relative energies are shown in Figure S12 to identify all possible molecular conformations for each isomer. A representative structure for each isomer is given in Figure 3. \(\text{Na}^+\) was not included in the molecular simulations since cationizing metal ions usually have no significant effects on the average CCS values, especially for POSS-based giant molecules.\(^6^5,\)\(^7^0\) The average CCS values for each isomer is calculated to be 453 Å\(^2\) for the \textit{ortho}-diadduct, 457 Å\(^2\) for the \textit{meta}-diadduct, and 462 Å\(^2\) for the \textit{para}-diadduct (see Table 2). Both the order $\text{CCS}_{\text{orth}} < \text{CCS}_{\text{meta}} < \text{CCS}_{\text{para}}$ and the CCS values are qualitatively and quantitatively in good agreement with the experimental results, confirming that the isomers with drift time of 4.96 ms, 5.87 ms, and 6.59 ms result from an \textit{ortho}-, \textit{meta}- and \textit{para}-isomer, respectively.

Figure 3. Representative energy-minimized structure for the \textit{ortho}-, \textit{meta}-, and \textit{para}- isomers of oxidized diadduct VPOSS-(S-BPOSS)\(_2\) ([M:2O]) obtained by molecular modeling. The carbon atoms are grey, the silicon atoms are yellow, the oxygen atoms are red, and the sulfur atoms are blue.

Based on the areas of three distinct peaks observed after TWIM separation, we can estimate the relative composition of the three isomers in the mixture: \textit{para}-compound (\(~59\%)\), \textit{meta}-compound (\(~20\%)\), and \textit{ortho}-compound (\(~21\%)\). The majority of diadducts has a \textit{para} structure, while the \textit{meta}- and \textit{ortho}-compounds are minor products. The result suggests that there is significant steric hindrance when the large thiol ligand approaches the POSS tethered with one bulky substituent from the \textit{ortho}-...
and meta- positions during the thiol-ene reaction. The para-position is the most favored site with minimal influence from the substituent. In contrast, such selectivity was not observed when small functional thiols are used. Therefore, thiol-ene chemistry is potentially a convenient way to achieve regio-selective multi-functionalization of octavinylPOSS. Although purification of the ortho-, meta-, and para- products at preparative scales has not yet been demonstrated in this study, it is anticipated that by using even bulkier thiols and engineering the property of the ligands, the para-compound may be sufficiently different from the ortho- and meta- isomers in terms of physical properties such as crystallinity and solubility to warrant purification in the future studies.

Conclusions

In summary, we have successfully demonstrated a facile method to prepare POSS-based nanobuilding blocks with controlled symmetry breaking using thiol-ene chemistry. The stoichiometry-controlled reaction provides a straightforward and convenient access to a large variety of monofunctional POSS units. The selectivity for monoaddition has been found to increase using more bulky thiol ligands. The synthesis of regio-selective multifunctional POSS derivatives has also been attempted. Analysis of the composition of the diadducts of VPOSS-(S-BPOSS) 2 by ESI-TWIM mass spectrometry revealed that the para-isomer constitutes 59% and the ortho- and meta-isomers are 21% and 20%, respectively. The study is ongoing in our laboratory to develop a library of mono-functional and multifunctional POSS nanobuilding blocks and use them in the construction of various shape amphiphiles for a systematic study of their self-assembly principles and hierarchical structure formation in the bulk, thin film, and solutions.

Acknowledgment. This work was supported by the National Science Foundation (DMR-0906898 to S.Z.D.C. and CHE-1012636 to C.W.) and the Joint-Hope Education Foundation (to S.Z.D.C. and W.-B. Z.).
Footnote. Electronic Supplementary Information (ESI) available: details of characterization data including the synthesis and characterization of the compounds. See DOI: 10.1039/b000000x/

References

