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Self-explaining effect in general chemistry 
instruction: Eliciting overt categorical behaviours by 
design 

Adrian Villalta-Cerdasa and Santiago Sandi-Urena*a  

Self-explaining refers to the generation of inferences about causal connections between 
objects and events. In science, this may be summarised as making sense of how and why 
actual or hypothetical phenomena take place. Research findings in educational psychology 
show that implementing activities that elicit self-explaining improves learning in general 
and specifically enhances authentic learning in the sciences. Research also suggests that 
self-explaining influences many aspects of cognition, including acquisition of problem-
solving skills and conceptual understanding. Although the evidence that links self-
explaining and learning is substantial, most of the research has been conducted in 
experimental settings. There remains a need for research conducted in the context of real 
college science learning environments. Working to address that need, the larger project in 
which this work is embedded studied the following: (a) the effect of different self-explaining 
tasks on self-explaining behaviour and (b) the effect of engaging in different levels of self-
explaining on learning chemistry concepts. The present study used a multi-condition, mixed-
method approach to categorise student self-explaining behaviours in response to learning 
tasks. Students were randomly assigned to conditions that included the following: explaining 
correct and incorrect answers, explaining agreement with another’s answer, and explaining 
one’s own answer for others to use. Textual, individual data was gathered in the classroom 
ecology of a university, large-enrolment general chemistry course. Findings support an 
association between the self-explaining tasks and students’ self-explaining behaviours. 
Thoughtful design of learning tasks can effectively elicit engagement in sophisticated self-
explaining in natural, large-enrolment college chemistry classroom environments. 
	  

Introduction 

Regardless of correctness, generation of authentic explanations 
is a core characteristic of scientific behaviour and central to 
scientific and technological development (Deutsch, 2011). This 
centrality is reflected by the US Next Generation Science 
Standards (National Research Council, 2013) that posit the 
construction of explanations as one of eight practices of science 
essential for all students to learn. Furthermore, A Science 
Framework for K-12 Science Education (National Research 
Council, 2012) asserts that when students demonstrate their 
understanding of the implications of a scientific idea by 
developing their own explanations of phenomena, they take 
part in an essential activity by which conceptual change can 
occur. That is, in addition to being a desirable learning outcome 
in itself, the ability to generate one’s own explanations supports 
conceptual learning. The process of generating scientific 
explanations requires analysis and reflection of current models 
and theories, thereby influencing conceptual understanding. In 
the process of formulating explanations, the generation of 
inferences relies on the application of skills associated with 

scientific behaviour (e.g., analytical reasoning and critical 
thinking). In this study we explore student engagement in the 
process of generating authentic explanations, by and for 
themselves, through a General Chemistry in-class activity that 
prompts them to self-explain. 
 Self-explaining is a domain-independent learning strategy 
whose effect has been widely replicated, and it refers to 
student’s generation of inferences of causality (Siegler and Lin, 
2009). Its effectiveness compared to other learning activities is 
explained by the passive-active-constructive-interactive, ICAP, 
theoretical framework first introduced by Chi (2009) and to 
which we ascribe in our work. In the ICAP framework, a 
learning activity is characterized by observable, overt actions 
undertaken by the learner. These overt actions are assumed to 
be an adequate proxy for the covert cognitive processes that 
support the manifested behaviours. Although, understandably 
specific overt behaviours are not a requisite for the learners to 
resort to specific cognitive processes, Chi (2009) argues that 
learners are more likely to engage in certain cognitive processes 
when they display certain overt actions. These actions (and 
their products) are in turn manipulable by the instructor or 
researcher and allow their use as evidence of learning, that is, 

Page 1 of 35 Chemistry Education Research and Practice

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

C
he

m
is

tr
y

E
du

ca
tio

n
R

es
ea

rc
h

an
d

P
ra

ct
ic

e
A

cc
ep

te
d

M
an

us
cr

ip
t



	   	  

2	  |	  J.	  Name.,	  2012,	  00,	  1-‐3	   This	  journal	  is	  ©	  The	  Royal	  Society	  of	  Chemistry	  2012	  

they can be assessed, coded, and analysed (Fonseca and Chi, 
2010). It is this quality what renders possible the classification 
of learning activities from the learner’s perspective. Passive, 
active, constructive, and interactive refer to and are defined by 
what the learner does when in contact with the learning 
materials, the overt behaviours. A passive learning activity is 
characterised by lack of actions on the learner’s part. For 
example, listening to a lecture or reading a text without 
engaging in any additional activity such as note taking or 
underlining. In an active learning activity, the learner does 
something physical in support of learning. Highlighting while 
reading falls under the active category as does repeating rules 
that describe periodic trends to increase retention. The 
production of “some additional output that contains 
information beyond that provided in the original material” 
(Fonseca and Chi, 2010, p. 301) is the hallmark of constructive 
learning activities. Constructing a concept map and comparing 
and contrasting chemical reactivity are two examples. An 
interactive learning activity is one in which the learner 
establishes a dialogue with a peer, expert, or intelligent system 
that includes substantive contributions from all parts and where 
no part’s contribution is ignored. Therefore, if one interlocutor 
dominates the interaction or participants simply take turns 
speaking and ignore each other’s contributions, the activity is 
not considered interactive. Thorough analysis of published 
research has contributed evidence supporting the hypothesis 
that learning activities produce greater learning outcomes when 
they are interactive compared to constructive (Chi, 2009). 
Likewise, constructive activities are more efficient than active 
and active than passive. 
 Self-explaining is a constructive learning activity. It 
requires the learner to elaborate upon the presented information 
by relating it to prior knowledge and integrating with other 
pieces of information to generate inferences beyond the 
learning materials. Therefore, individuals build new knowledge 
as they uniquely appraise their own mental model during the 
process of solving a given task and elaborate their self-
explanations—the outcomes of self-explaining (Chi, 2000). 
 Despite the prolific research literature on self-explaining in 
specialised journals, very little research has appeared in 
publications that are typically within the scope of chemistry 
educators (Villalta-Cerdas and Sandi-Urena, 2013). This single 
fact may account for the widespread absence of self-explaining 
in chemistry instruction in contrast with the prevalence of 
approaches that teach chemistry as a collection of facts, which 
Schwab (1962) referred to as rhetoric of conclusions. Evidently, 
this disconnect is not exclusive to self-explaining or chemistry 
education. It is part of a bigger picture where “the research 
communities that study and enact change are largely isolated 
from one another” (Henderson et al., 2011).  
 We identified such a void in domain-specific research 
pertaining to chemical education (Villalta-Cerdas and Sandi-
Urena, 2013): Only two articles have explored self-explaining 
in chemistry and both addressed computer-assisted learning 
(Crippen and Earl, 2004; Crippen and Earl, 2007). In addition, 
even when focused on STEM knowledge domains, research has 
rarely focused on STEM majors (Villalta-Cerdas and Sandi-
Urena, 2013). To date, the research has been largely theoretical 
in nature and not applied, and it has been conducted in 
educational research laboratory settings (e.g., Chi et al., 1989; 
Bielaczyc et al., 1995; Schworm and Renkl, 2006; Gadgil et al., 
2012; Villalta-Cerdas and Sandi-Urena, 2013). In this sense, a 
laboratory is a space where individuals are abstracted from their 
natural learning environment and function as study participants, 

not necessarily as students. Although this trend is changing 
(Villalta-Cerdas and Sandi-Urena, 2013), the need for applied 
research in naturalistic classroom environments persists in 
order to gather ecological evidence to support novel 
pedagogical strategies. 
 The 2013 National Survey of Student Engagement (NSSE) 
report showed that half of the respondents who majored in 
physical sciences, math, and computer science, never or only 
sometimes “prepared for exams discussing or working through 
course material with other students” (NSSE, 2013). Likewise, 
preliminary results of study habits at our own institution 
suggest that only a small segment of General Chemistry 1 
students engage in group study outside the classroom. In the 
fall of 2013 only 13% reported to study in a group for up to one 
quarter of their study time. For the remaining students nearly all 
of their unsupervised learning occurred individually. Although 
we strongly support interactive learning in its multiple 
expressions, it seems reasonable to think that students do not 
have the opportunities to maximise use of collaborative skills 
they may learn in the classroom. On the other hand, in-class 
constructive learning activities can reinforce learning strategies 
students can eventually use spontaneously while studying 
individually. Added to the robust research evidence that 
supports the self-explaining effect (Chi et al., 1989; Villalta-
Cerdas and Sandi-Urena, 2013), our interest in this particular 
constructive learning activity stems from its being an essential 
and desirable scientific competence (National Research 
Council, 2013). 
 In our research group, we endeavour to develop studies that 
address the void in domain-specific, self-explaining research 
pertaining to chemical education. As an initial approach, we are 
investigating whether framing of learning tasks may modify 
student self-explaining behaviour in large-enrolment General 
Chemistry courses. Ultimately, we are interested in assessing 
the impact that modifying self-explaining practices may have 
on conceptual learning in chemistry. 

Research Goals 
This study is embedded in a larger research program that 
focuses on the following: (a) ways to promote self-explaining 
during chemistry instruction and (b) the assessment of how 
different levels of self-explaining influence learning of specific 
chemistry content. This investigation of the self-explaining 
effect is different from other work in the field in the following 
regards: (a) Participants take part in this study in their normal 
student function; therefore we refer to them exclusively as 
students to differentiate from laboratory approaches; (b) We use 
a real problem situation that resembles the process of doing 
science to evoke self-explaining; (c) Prompting to self-explain 
occurs at various demand levels instead of relying on 
spontaneous production of self-explanations; (d) We focus on 
conceptual understanding of chemistry (as assessed by a 
transfer task) rather than learning declarative or procedural 
knowledge (e.g., using worked-out examples, reviewing an 
expert explanation); (e) Data collection happens within the 
undisturbed ecology of a college level large-enrolment 
chemistry classroom. 
 Herein we report the findings from a study within this 
research program that specifically addressed the following 
research question: 

Do tasks that require different levels of self-explaining 
effectively induce observable, categorical differences in 
self-explaining behaviour in the context of a General 
Chemistry classroom? 
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 Our stance is that an association between self-explaining 
tasks and overt self-explaining behaviour strongly suggests that 
appropriate instruction in the naturalistic classroom setting can 
effectively modify self-explaining practices. 

Methodology 

Study design 
The study followed a multi-condition comparison design that 
gathered student generated textual data during a learning event. 
We designed and implemented a pilot study to test logistics and 
gain insight about the efficacy of materials and procedures and 
the data analysis (Ross, 2005; van Teijlingen and Hundley, 
2001). 
 We developed the materials specifically for use in this study 
(Appendix 1). The domain includes entropy and the Second 
Law of Thermodynamics, which we treat as individual 
knowledge components (VanLehn, 2006) for the purpose of this 
work.  
 The naturalistic classroom setting we chose to use carried 
the intricate complexities of a live learning environment that, in 
chemical terms, we liken to a complex matrix. We argue this 
complexity translates into enhanced ecological validity 
(Brewer, 2000). The complex matrix presents a series of 
challenges in the design, data collection and analysis, and 
condition comparisons. For instance, a simple comparison 
between self-explaining and non-self-explaining conditions was 
not warranted in this setting. Much like use of standard 
additions in the chemical analysis lab counteracts the effects of 
a complex matrix, we believe our approach isolates the effect of 
self-explaining in the complexity of the study setting. We 
created four conditions (Table 1), each calibrated to promote 
different levels of self-explaining engagement. We adhere to 
Chi’s (2011) conceptualization of engagement as that what 
learners do with learning materials. We understand self-
explaining engagement as the level of purposeful allocation of 
cognitive resources and strategies, time, and effort to generate 
explanations by and for oneself to address a particular 
phenomenon. We gradually increased the self-explaining 
demand for the conditions by modifying the prompts describing 
the task. We based the calibration of the conditions on literature 
reports (Fonseca and Chi, 2010), especially multi-condition 
comparison studies (Siegler and Lin, 2009) and tested them 
through cognitive interviews as described below. The 
fundamental assumption was that since the matrix was the same 
for all conditions, variations in the outcome or dependent 
variable—self-explaining behaviour—would be associated with 
condition membership. 
 The learning event consisted of a textbook passage with a 
general description of the Second Law of Thermodynamics and 
common to all the participants. A self-explaining task, SE-
Task, followed this passage. There were four different SE-
Tasks, each defining one of the study conditions described in 
Table 1. Students completed the learning event within fifteen 
minutes. 
 
Table 1 Description of self-explaining tasks (SE-Task) 

SE-Task Description 
SEA Explaining own answer. 

EADA Considering others’ answers and explaining one’s 
agreement/disagreement. 

SEO Explaining answer for others to use in their studying. 
SEIA Explaining others’ incorrect answer. 

 

 Unlike most of the research in the field, this learning task 
does not focus on advancing procedural knowledge through 
self-explanation of examples (complete or incomplete worked-
out problems1) (e.g. Atkinson et al., 2003; Schworm and Renkl, 
2006) or conceptual understanding through self-explanation of 
expository text, such as explaining the logic underlying 
statements in textbooks (e.g., Chi et al., 1994; Ainsworth and 
Loizou, 2003; Butcher, 2006; Ainsworth and Burcham, 2007). 
Neither did we utilise a conventional training study design to 
show or demonstrate a skill or strategy that students would 
perform at a later stage (e.g., Bielaczyc et al., 1995; Schworm 
and Renkl, 2007). Our purpose was to create an experience that 
was closer to doing science than to the procedural aspects of 
solving exercises or learning about science (Chamizo, 2012; 
Talanquer and Pollard, 2010). 
 We presented an otherwise familiar phenomenon to the 
students (water freezes spontaneously below 0 ºC) and a fact 
that would potentially induce cognitive imbalance (the change 
in entropy for the system in this process is negative) to prompt 
them to self-explain. Although not instructed to do so, we 
anticipated that students would be prone to use the concept 
introduced in the same document—Second Law of 
Thermodynamics—in their self-explanations. We intended to 
affect the engagement in self-explaining by creating different 
levels of encouragement to explain (Table 1) (Siegler, 2002). 
For this purpose, we combined two mechanisms: the effect of 
social engagement (e.g. explaining for others) and the depth of 
explaining (i.e. to explain answers that are described as correct 
or incorrect; Siegler, 2002). 
 It is reasonable to consider that the cognitive processes 
associated with self-explaining may take place covertly. 
However, our premise is that students are more likely to engage 
in self-explaining when an overt behaviour is required (Fonseca 
and Chi, 2010). Therefore, we collected written responses from 
students as indicators of their self-explaining behaviour. 
Although informative, think-aloud protocols were not an option 
given our desire to use large cohorts and to gather data in the 
most naturalistic environment possible. 
 We reviewed the materials after the pilot study (Table 2) 
and no major changes resulted from this process. We also 
conducted cognitive interview checks to assess interpretability 
of the materials. The protocol for the cognitive interviews is 
included in Appendix 2. Our interviewees were two second-
year chemistry students who had taken General Chemistry 2 
within the past year. They were recruited from a pool of 
chemistry undergraduate researchers, and they received no 
compensation for their interviews. Interviews lasted around 35 
minutes, in which students completed the tasks and then 
discussed them in depth with the interviewer. This procedure 
provided evidence that supported interpretability and face 
validity in general. In addition, we consulted and held separate 
meetings with three doctoral candidates in chemical education 
and two experienced general chemistry instructors at the 
authors’ home institution, who offered general advice and 
completed assessment rubrics to evaluate content validity of the 
materials. Finally, two chemical education researchers, who 
were external to the authors’ institution and not associated with 
the research study, assessed the content and construct validity 
of the materials independently and provided feedback. No 
modifications were necessary upon the assessment by experts. 

Context and participants  
This research used a naturalistic setting and gathered data from 
students enrolled in General Chemistry 2 at a large, urban, 
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public, research university in the US serving over 31 000 
undergraduate students. Diverse ethnic minority students make 
up 39% of the undergraduate student body. Typically majors in 
General Chemistry 2 are distributed as follows: Pre-
professional (pre-Medicine, pre-Pharmacy and Health 
Sciences), 61%; Chemistry, 6%; other sciences (Physics, 
Biology, Geology, etc.) or Math, 23%; Engineering, 8%. The 
remaining students are non-science/non-engineering majors. 
The tasks in this study were embedded within the normal 
requirements of the course; therefore they were simply part of 
normal assignments from the students’ perspectives. The 
activity was conducted before students were formally 
introduced to the chemistry concepts (i.e., entropy and the 
Second Law of Thermodynamics). Grading guidelines for this 
activity were the same as those for similar assignments 
throughout the semester. Credit was received for the 
satisfactory completion of the activity and not based on 
performance. This study only used data from students who had 
previously granted informed consent. The gender distribution in 
the main study was representative of the university 
demographics (42% males, 58% females). 

Data collection.  
Data gathering occurred during the tenth week of the course 
and came from two independent cohorts of students enrolled in 
different semesters (Table 2). In the pilot study, we distributed 
alternate forms of the four SE-Tasks (Table 1) to participants. 
In this pseudo-randomised procedure the probability of 
assignment to a given SE-Task was not independent for each 
individual. To meet conditions for true randomisation for the 
main study (i.e. same probability of being assigned to any of 
the four conditions), we used random number generation 
(Microsoft Excel, 2010) to assign students to the SE-Tasks 
(Shadish et al., 2002; Ravid, 2010). The number of students in 
each condition was: SEA, 29; EADA, 31; SEO, 35; SEIA, 33. 
 Materials were printed, used individually without student 
interactions, administered during regular class schedule, and 
timed. Written explanations were collected, photocopied, 
assigned an alphanumeric code (student identifiers were 
removed from the photocopied materials), and later transcribed 
to electronic support. File names used the alphanumeric code. 
Drawings, diagrams, and equations were scanned and 
integrated to the corresponding electronic files. 
 The Hawthorne Effect describes how in behavioural studies 
participants may behave in ways different from the normality if 
they realise they are being observed (Franke and Kaul, 1978; 
Jones, 1992). Therefore, we took measures to minimise any 
potential risk of evoking such behaviours. This included 
following procedures such as distribution of materials and 
delivery of instructions that were not different from procedures 
typically used for other in-class assignments. We assumed 
familiarity with these procedures prevented predisposition of 
any kind. 
 
Table 2 Data Collection by Study Phase 

Study Phase Sample size 
(n) Dataset 

Pilot Study 103 Fall 2011 
Main Study 134 Fall 2012 

 

Data analysis 
The analytical methods we describe here are the final product 
of several iterations of the analysis of the pilot and main study 

datasets. For sake of simplicity and space, we omit the lengthy 
process of refinement of methods. 
Textual analysis of learning event data. The learning event 
produced written explanations, which we refer to as responses. 
In preparation for textual analysis, the prompts were removed 
so that coders had access to the responses only. Unavoidably, in 
many cases the structure of the response could be associated 
with a specific prompt.  
 We used the sentences as constructed by the students as unit 
of response segmentation. For this purpose, independently of 
their syntactic accuracy, the use of a period indicated the 
closing of a sentence. Although the systematic analysis required 
segmentation, it is important to underscore that we did not 
intend to de-contextualise the analysis: We considered each unit 
of response segmentation in the light of the entire response, i.e., 
explanation. For the pilot study, a single researcher coded the 
textual data (103 responses) using a sequence of coding 
schemes reported in the literature (Durst, 1987; McNamara, 
2004; Best, et al., 2005; McNamara and Magliano, 2009; Ford 
and Wargo, 2012). This preliminary analysis allowed us to 
ascertain the feasibility of the study; however, as an analytical 
tool, it was too involved and impractical. For the main study, 
we streamlined coding to a single scheme that was more robust 
and easier to apply to large cohorts. This scheme preserved 
fundamental codes from the literature (McNamara, 2004; 
McNamara and Magliano, 2009) that we modified slightly in 
consideration of emergent categories and subcategories and 
refined it through consensus coding of a subset of 50 responses 
by three coders. Table 3 shows the final coding scheme and a 
brief description of each code type. Codes BI, DI, E, and P in 
Table 3 derived from research reports (McNamara, 2004; 
McNamara and Magliano, 2009). During coding we identified 
two types of paraphrasing: repetition of information from the 
learning materials and repetition of information already in the 
response itself. From the total database, only three sentences 
were unclassifiable, U, and given the small count we dropped 
them from further analysis as we did with the statements 
deemed non-relevant, NR, since they did not provide 
information regarding the sophistication of the explanations 
(e.g., “They are on the right track but just need to pushed [sic] 
in the right direction”).  
 
Table 3 Final coding scheme for written responses 

Code Type Description Example from 
responses 

BI-Bridging 
Inference 

Relational inference 
linking the problem 
(i.e., water freezing 
below 0 ºC) with 
entropy change, 
and/or Second Law of 
Thermodynamics. 

Even though ∆S_sys<0, 
the ∆S_univ is still 
positive because when 
the water freezes the 
surroundings have a 
sharp increase in entropy 
(∆S_surr>0).  

DI-Deductive 
Inference  

Inference that uses 
specific content 
knowledge (i.e., water 
freezing below 0 ºC, 
entropy, or Second 
Law of 
Thermodynamics), but 
does not link to other 
information. 

Just because the 
∆S_system is negative 
doesn’t mean that the 
process must all be 
negative. 

E-Elaboration  
Use of information not 
provided in the 
materials 

When water begins to 
freeze at 0˚C, water 
(unlike other liquid) 
expands which make this 
less dense than when 
water is above 0˚C.  
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P-
Paraphrasing 

(Pa) Recount of 
entropy concept, or 
Second Law of 
Thermodynamics. 
(Pb) Repetition of 
previously used 
information within 
response. 

If the process is indeed 
spontaneous, that means 
the ∆S_univ must be 
positive.  

U-
Unclassifiable  

Statement of concepts 
without drawing 
relational inference. 

Plus, although the 
change in entropy of the 
surrounding may change 
some in a resulting 
reaction that leaves 
∆S_univ negative, there 
is still H2O(g) in the air 
(Earth’s atmosphere). 
(R48, F12) 

NR-Non-
relevant 

Comments and 
observations unrelated 
to the task. 

He did not look at the 
big picture.  

 
 Once we had established the coding scheme, the same 
coders analysed 50 responses separately. Subsequently, these 
coded responses were team reviewed and disagreements were 
discussed and resolved. One researcher coded the remaining 
responses; the other two coders verified a different subset (42 
responses each) and solved any discrepancies with the main 
coder. We assigned an individual code to each sentence and 
then tallied the codes by response. The ratio of frequency of a 
given code type count (n) to the total sentences in the response 
(N)—hereafter the code-ratio (n/N)—became the observed 
variable for the subsequent Latent Profile Analysis (described 
below). From the main study dataset we eliminated six 
responses that where unintelligible and 128 remained. Once the 
main study data was coded, we re-coded the dataset from the 
pilot study to investigate other potential changes to the coding 
scheme. Two coders worked independently on a subset of the 
dataset and later discussed the coding. All discrepancies were 
resolved, and no changes were made to the coding system. 
Figure 1 shows the coding of an example response. 
 

Fig. 1 Coding example. 
 
Latent profile analysis, LPA. LPA is a model-based statistical 
technique to find profile classes in continuous data (Pastor et 
al., 2007). It is a latent variable model, where non-observable 
latent constructs are inferred through mathematical modelling 
using observed variables (Collins and Lanza, 2010). LPA 
assumes that different profiles can be explained by the 
existence of frequency patterns in the observed variables 
(Marsh et al., 2009; Pastor et al., 2007). During the analysis, 
several profile-model solutions are generated and compared. 
The comparison is evaluated to select the best fitting model for 
the data. A number of techniques have been devised to guide 

selection of the best model fit (e.g., Model based hypothesis 
tests, Log likelihood, Akaike Information Criterion, Bayesian 
Information Criterion, Sample-size adjusted Bayesian 
Information Criterion, Entropy value; Collins and Lanza, 2010; 
Marsh et al., 2009; Pastor et al., 2007)2. 
 Although manual inspection of data could result in the 
identification of patterns of response, the process would be 
limited to small datasets and be tedious, time-consuming and 
seemingly prone to researcher bias. Moreover, traits could be 
overlooked easily, and the process would be inherently 
unreliable. In our study, we used LPA to elicit otherwise 
undetectable trends and to minimise bias in the categorisation 
of student responses in explanatory behaviours. We performed 
LPA using the code-ratios from the textual analysis as the 
observed variables (i.e., four observed variables). The output of 
LPA was the categorisation of students into distinct profiles 
based on the nature of their explanations, the self-explaining 
profiles (SE-Profiles). LPA was performed using MPlus 
Version 6 (Muthén and Muthén, 2010). Figure 1 shows a coded 
response along with the corresponding code ratios used as 
observed variables in the latent profile analysis. 
Analysis of the association between self-explaining tasks 
and self-explaining profiles. We used Chi-square tests to 
determine the association between self-explaining profile 
membership, SE-Profile, and self-explaining task, SE-Task. For 
the interpretation of the Chi-square test results we selected a 
95% confidence level. We used IBM SPSS Statistics (Version 
21.0.0.0) for the Chi-square tests. 

Results and Discussion 

Pilot study 
The purpose of the pilot study in the initial stage of this project 
was to test the study design and instruments and to identify 
potential methodological gaps. In summary, the pilot test results 
suggested that tasks of different self-explaining demand elicited 
different self-explaining behaviours (Villalta-Cerdas, 2014). 
Although this evidence supports the association between the 
SE-Profiles and SE-Tasks, the statistical analysis was not 
conclusive. The pilot test supported the appropriateness of the 
study design, materials, and analysis procedures; it did not 
reveal deficiencies that required modifications prior to the 
implementation of the main study. Nonetheless, to enhance the 
design we decided to utilise true randomisation for the main 
study instead of pseudo-randomisation. 

Main study 
Code type distribution. The total count of codes showed that 
the deductive inference code, DI, had the highest frequency of 
all (Table 4). The combined count of bridging inference code, 
BI, and DI was 169 (44% of the total count); thereby suggesting 
that the generation of inferences was a considerable component 
of the responses. Research findings have shown that “in the 
absence of specific instructions or supports, most students 
either do not generate self-explanations or generate superficial 
ones only” (Woloshyn and Gallagher, 2009). Thus, this 
observation, in and of itself, suggests the tasks effectively 
elicited self-explaining behaviour.  
 In the case of the codes for elaboration, E, and 
paraphrasing, P, their abundance in the students’ responses may 
reflect what Taber (2000) described as a social imperative to 
produce an answer in acknowledgement to a question, in this 
case, the SE-Task prompt. These two codes, E and P, are 
associated with less sophisticated explanatory behaviours as 
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they reflect recounting of information rather than generation of 
causal inferences. Moreover, when students are continually 
exposed to instruction as rhetoric of conclusions (Schwab, 
1962), one could imagine that paraphrasing may become a 
habitual substitute for explaining. Therefore, in the case of 
paraphrasing, it might be that students intended to explain but 
lacked the ability to construct responses beyond re-statement of 
information. Undeniably, some students may default to 
paraphrasing even when prompted otherwise. 
 For our research purposes, the codes unclassifiable, U, and 
non-relevant, NR, did not contribute valuable insight to 
elucidate the explanatory behaviour of the students. Therefore, 
we did not consider them in subsequent analyses. 
 
Table 4 Main study learning event code type distribution by SE-Task 

SE-Task Code 
Type 

Total 
count %SEA %SEIA %EADA %SEO 

BI 47 43 21 9 28 

DI 122 19 33 23 25 

E 88 22 27 32 19 

P 100 23 19 28 30 

U 3 33 33 0 33 

NR 28 7 21 64 7 

χ2 (9, N = 357) = 22.50, p < .05, codes U and NR excluded. 
 
 In a first analysis, we studied the association between the 
code type (e.g. bridging inference, BI, deductive inference, DI, 
etc.) and the self-explaining task, SE-Task (Table 4). The Chi-
square test showed a statistically significant association 
between the code type and the SE-Task at a 95% confidence 
level, χ2 (9, N = 357) = 22.50, p < .05. Cells shaded dark grey in 
Table 4 indicate the highest occurrence for each code type and 
the overall trend in the association. In the case of the bridging 
inference code, BI, the highest percentage of occurrences 
originated from the self-explaining-own-answer task, SEA, 
which effectively prompted students to connect chemistry 
concepts (i.e., entropy and the Second Law of 
Thermodynamics) in their effort to make sense of the 
phenomenon. For deductive inference, DI, the predominant 
source was the self-explaining-incorrect-answer task, SEIA. 
Encouraging students to explain the possible reasoning that led 
their peers to incorrect solutions generated more deductive 
inferences. The EADA (self-explain-agreement/disagreement) 
and SEO (self-explain-for-others) tasks had moderately high 
percentages for the DI code, thus students in these conditions 
engaged in the generation of deductive inferences as well. In 
the case of the elaboration code, E, the results showed the 
highest percentage in the self-explain-agreement/disagreement 
task, EADA. This SE-Task seemed to favour a more summative 
approach to self-explaining where participants brought in 
external information that was not provided in the materials. 
Despite their elaborative effort, students did not use the external 
information to draw deductions or bridge with other concepts; 
instead, they essentially recounted it in their responses. Lastly, 
the paraphrasing code, P, showed similar high percentages for 
two of the SE-Tasks: EADA and SEO. Again, we maintain this 
behaviour reflected the social imperative to answer a question 
as described by Taber (2000) even when students operated 
under the illusion of producing an explanation. 
 The code type distribution addressed the research question 
guiding this work: Do tasks of different self-explaining demand 

induce observable, categorical differences in self-explaining 
behaviour? Evidence supports an association between the code 
types in the student responses and the SE-task prompts assigned 
to them. This association suggests that the prompts, which we 
designed with differential self-explaining demand, effectively 
produced an observable effect on the students’ behaviour as 
they composed their written responses. The variance of code 
types across SE-Tasks is indicative of the effect of individuals’ 
characteristics. That is, students within a SE-Task still produced 
explanations of different sophistication. This variability is 
congruent with reports that have associated quantity and quality 
of explanations with intrinsic properties of students (Roy and 
Chi, 2005). This occurrence underscores the significance of 
randomisation of students in the conditions since otherwise the 
effect of task membership may be obscured by this natural 
variability.  
Latent profile analysis: Self-explaining profiles. The results 
in Table 4 show quantifiable evidence for the differences in the 
total number of code types per SE-Task. This analysis focused 
at the variable-oriented level (i.e., using the code types as 
observed variables) and not at the person-oriented level (i.e., 
using the student’s behaviour as observed variable). In our 
attempt to identify categorical explanatory behaviours at the 
student level, we advanced our interpretation by performing a 
person-oriented approach. To this end, we used latent profile 
analysis (LPA), a mixture model that seeks to find qualitative 
differences among participants based on observed variables of 
continuous nature (Ruscio and Ruscio, 2008). In our analysis, 
the code-ratios in each student’s response functioned as 
observed variables. 
 To better contrast these approaches it is noteworthy to 
mention that the simpler association described above assumes 
the occurrence of all codes as independent when single students 
might have contributed more than one code (actually, 79% did). 
In addition, those who contributed more than one code did not 
necessarily contribute the same codes; in other words, multiple 
patterns of response were possible. The analysis at the person-
oriented level takes these considerations into account and 
focuses on each individual’s behaviour by integrating the 
number and type of codes into the categorisation of patterns. 
This transformative analysis allowed us to investigate whether 
the behaviours, and not only the codes, were linked to the SE-
tasks. 
 Using Latent Profile Analysis (LPA) we identified patterns 
in code-ratios (i.e., number of code type divided by total codes 
in response) in student responses. These analyses required the 
selection of the best model for the data. We include the 
selection procedure and other pertinent data handling in 
Appendix 3. The analysis and interpretation of the models led 
us to select the seven-profile model solution for the main study 
data. 
 Table 5 shows the profiles in the seven-profile model 
solution along the number of students in each profile and the 
respective mean values for the four code-ratios. In the case of 
Profiles 1-3 and 5-7, the mean code-ratios within profiles 
showed a single predominant value (dark grey). Therefore, self-
explaining within each of these six profiles was strongly 
characterised by the single class predominant code; that is, the 
pattern of behaviour of members within each of these profiles 
was homogeneous. Profile separation refers to the uniqueness 
of each profile; in our case that implies comparison of 
predominant mean code-ratio between profiles. Ideally, all 
profiles would have a maximum mean code-ratio for different 
codes; however, in the case at hand, there were more profiles 
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than mean code-ratios (or code-types), which unavoidably led 
to profiles sharing a maximum code-ratio. In turn, this led to 
the merging of profiles. 
 Although profiles 1-3 have each a single most prevalent 
code-ratio (Table 5), it is not unique to each profile but the 
same for all three of them; the separation is not strong. Hence 
we combined these profiles into a single self-explaining profile 
(SE-Profile). Members of this merged profile (n=25) are 
characterised by responses composed mainly of bridging 
inference codes, BI, (>50% of response); consequently, we 
described this SE-profile as bridging inferential. 
Profile 4 is non-homogenous: There is no single code type that 
characterises membership in this profile. Quite the contrary, it 
is the multiplicity in the nature of their behaviour that identifies 
members in this group; we described this SE-profile as mixed 
behaviour. Although not homogenous, this group is clearly 
separated from the others. Emergence of this profile is an 
example of the power of statistical tools such as LPA. An 
analysis based solely on the number of codes would have 
masked the behaviour of students in this SE-Profile who used 
all four explanatory codes in similar proportions. 
 Profiles 5, 6, and 7 have a single and unique predominant 
code-ratio and are homogenous and well separated from all 
other profiles. We assigned labels to these profiles in 
accordance with the code that predominates in each case. 
Therefore, Profile 5 became deductive inferential, Profile 6 
became elaborative, and Profile 7 became summative (Table 5). 
 
Table 5 Code-ratios and SE-profile descriptors for seven-profile model 
solution 

Mean code-ratio 
Profiles n 

BI DI E P 

SE-Profile 
descriptor 

Profile 1 6 1.00* 0.00* 0.00* 0.00* 

Profile 2 4 0.70* 0.17* 0.05 0.08 

Profile 3 15 0.50* 0.22* 0.13* 0.15* 

Bridging 
Inferential 

Profile 4 12 0.29* 0.27* 0.19* 0.25* Mixed-
behaviour 

Profile 5 20 0.00* 0.95* 0.03 0.02 Deductive 
Inferential 

Profile 6 24 0.00* 0.23* 0.73* 0.05* Elaborative 

Profile 7 47 0.00* 0.35* 0.12* 0.53* Summative 

* p < .05. 
 
SE-Profile and SE-Task association analysis. Once we 
established the student behaviours in terms of the SE-Profiles, 
we analysed the association between SE-Profiles and SE-Tasks. 
Table 6 shows the resulting cross-tabulation. The Chi-square 
test showed a significant association between the SE-Profile 
and SE-Task at a 95% confidence level, χ2 (12, N = 128) = 
22.75, p < .05. Inspection of Table 6 shows a trend in the 
percentage distribution of SE-Profiles across the SE-Tasks 
(dark and light grey shaded cells) that could explain this 
relationship. 
 
 

Table 6 Percentage Distribution of SE-Profile across SE-Task  

SE-Task 
SE-Profile n 

%SEA %SEO %SEIA %EADA 

Bridging 
Inferential 25 36 32 20 12 

Mixed-
behaviour 12 50 25 25 - 

Deductive 
Inferential 20 10 35 40 15 

Elaborative 24 17 12 29 42 

Summative  47 17 30 21 32 

χ2 (12, N = 128) = 22.75, p < .05. 
 
 In the trend in Table 6, the SEA task—self-explain-own-
answer—has the highest percentage of students in the SE-
Profiles associated with the more analytic self-explaining 
behaviours (i.e., bridging inferential and mixed-behaviour). 
Thus, more students in this SE-Task engaged in generating 
inferences and connecting ideas via more complex explanatory 
behaviours. Conversely, SEIA and EADA (explain-incorrect-
answer and explain-agreement/disagreement with others, 
respectively) showed a higher percentage of students in the less 
analytical self-explaining behaviours (i.e., elaborative and 
summative).  
 We hypothesise that in the case of SEIA and EADA the 
constraint set for the students might have acted as an inhibitor 
of self-explaining. When presented with the solution, those 
participants in agreement may default to restating the solution 
while those in disagreement may simply rephrase it in opposite 
sense. We propose that by constraining students to 
agreeing/disagreeing we induced knowledge-telling episodes 
(i.e., unelaborated summaries and paraphrases) over 
knowledge-building episodes (integration of concepts and 
generation of inferences; Chi, 2009). Our original assumption 
was that considering solutions different from the student’s own 
answer could engage students in a deeper reflection and a 
stronger commitment to self-explain. The nature of the task and 
the dichotomous nature of the answer (one thing or the other) 
might have obscured the original intended effect for this 
particular General Chemistry 2 sample.  
 In the case of SEA (self-explain-own-answer) and SEO 
(self-explain-for-others) tasks, we kept the task unconstrained 
for students. The fact that self-explaining directed to others was 
not more conducive to sophisticated behaviours is not entirely 
surprising. Roscoe and Chi (2008) compared self-explaining 
and other-directed explaining with students interacting with a 
tutor and found that the former was better, even when the tutor 
was virtual (i.e., computer generated). One possible explanation 
is that explaining to oneself focuses on repairing what one does 
not understand, without the distraction of focusing on others 
(Chi, 2009). However, it must be stressed that one cannot rely 
on a general description of an activity to judge its quality and 
outcomes as a learning experience (Chi, 2009). Otherwise 
neglected aspects may prove to be fundamental warrants for 
caution when generalising findings. For instance, Siegler 
(2002) observed that creating a social dimension by telling 
students to explain for others acted as an incentive to explain. 
This may seem sufficiently similar to our conditions as to try to 
extend their findings to ours, however, in that study, researchers 
utilised a think-aloud protocol in a laboratory setting where 
children interacted with an adult researcher. In our case, an 
ecologically natural learning environment at college level, the 
other was an anonymous peer. 
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 Regardless of the SE-Task a number of students defaulted 
to paraphrasing which is evidenced by the distribution of 
students in the summative SE-Profile across all SE-Tasks 
(Table 6). We contend that this behaviour may be more 
attributable to long periods of conditioning supported by prior 
class norms (e.g. the classroom game; Lemke, 1990) than 
indicative of task effectiveness or lack thereof. Kohn (2004) has 
pointed out that students may become accustomed to and 
comfortable with learning environments in which they are not 
expected to actively engage with intellectual challenges. It may 
take some effort to persuade students to act differently. Far 
from discouraging, we deem understanding of this occurrence 
informative and constructive. Students are not blank slates; they 
bring their personal history, prior knowledge, attitudes, skills 
and strategies, etc. to the classroom, and naturalistic approaches 
to research intend to explore behaviour in the complex ecology 
of classroom learning. This finding highlights that students, in 
addition to not spontaneously engaging in explaining, may 
resist explaining when prompted. That is, student behaviour is 
not determined by the prompt provided—a stance that would 
evoke a behavioural approach to learning. It is not surprising 
that the same instructional activity may trigger varying self-
explaining responses in different individuals. This individual-
task interaction is consistent with the “subtle interaction 
between a task and the individual struggling to find an 
appropriate answer or solution” that Bodner and collaborators 
identified in problem solving research (2003). Acknowledging 
the effect of these individual differences and their interactions 
with the nature of the prompts is an important step in advancing 
instructional design.  
 There are no quick fixes in education, and the resistance or 
activation barrier associated with self-explaining will not be 
resolved with a single instantiation. Our emphasis is on the fact 
that a considerable proportion of students did engage in self-
explaining upon prompting and that the sophistication of this 
engagement was, to some extent, tuneable by the design of the 
task. 

Limitations 
Some limitations of this study are worth mentioning and 
findings must be interpreted within these limitations. First and 
foremost, although we randomised condition assignment within 
our sample, this was a convenience sample. Students in this 
study were enrolled in the General Chemistry 2 section taught 
by one of the authors. Although basic demographic indicators 
are not significantly different from the rest of the General 
Chemistry cohort, we have no way to elucidate whether latent 
factors might have influenced students’ choice of this particular 
section (e.g. instructor reputation, schedule convenience). 
 We removed prompts from the responses for the textual 
analysis; however, coders could infer the corresponding self-
explaining condition from the structure of the responses. This 
limitation creates the potential for coder bias where coders may 
be prone to make code assignments based on the condition and 
not strictly on the analysis of the responses. Although not very 
practical, one may choose to assign the coding process to 
individuals who are not involved with the research study.  
 Despite the clear value of research in naturalistic 
environments, there are concomitant limitations. 
Understandably, unlike the case of tightly controlled 
experimental studies, in a natural setting control of exogenous 
variables is not possible and their effects unpredictable. Our 
randomisation within the sample contributed to minimize this 
limitation. Another possible concern related to the study design 

may be participants’ impulse to behave as socially desirable or 
to adjust their behaviour some other way when they are under 
the impression of being observed. To minimize this effect, for 
this study we used procedures consistent with in-class 
assignment norms. Our assumption is that the sense of 
familiarity with the procedures prevented predisposition of any 
kind. From the students’ perspective, this learning event was 
not different from other learning experiences in class, that is, 
there were no cues to interpret it as research. There were no 
unfamiliar individuals in the lecture hall while data gathering. 
Use of a convenience sample actually allowed us to frame the 
learning event in such a natural way. 

Conclusions and implications 
The ability to generate explanations of scientific phenomena is 
an essential learning outcome for all students (National 
Research Council, 2013). This study intended to gather 
evidence to establish whether tasks of different self-explaining 
demand induce observable, categorical differences in self-
explaining behaviour. Students’ self-explaining behaviours 
were categorised via analysis of textual data of their responses, 
followed by data transformation and modelling using Latent 
Profile Analysis. Data was reduced to five self-explanatory 
behaviours that proved to be associated with the tasks we 
created as study conditions. 
 Independently of the rationale one may generate to explain 
the behaviour of this particular cohort of students, results in this 
study reveal an association between the way the tasks are 
framed for students and their engagement in producing self-
explanations of different sophistication levels. Caution is 
warranted in that we do not intend to be prescriptive and 
describe the type of prompts that should be used in chemistry 
classrooms to engage students in effective self-explaining. Such 
a goal would imply an over-simplistic, reductive view of the 
complexity of learning environments. Those involved in 
instructional design should understand this complexity and the 
effect of contextual and other situational factors. As cited by 
O’Donnell (2008), Berman and McLaughlin observed: “The 
bridge between a promising idea and the impact on students is 
implementation, but innovations are seldom implemented as 
intended.” 
 We hypothesised that an association between self-
explaining tasks and overt self-explaining behaviour would 
strongly suggest that instruction in the naturalistic classroom 
setting can effectively modify self-explaining practices. In other 
words the qualities of student responses could be modulated 
through the design of learning experiences in tune with the 
instructor’s goals (Chi, 2009). Considering the different 
responses from students, a varied array of prompts may be 
more effective than searching for a single, one-size-fits-all type 
of prompt. Chemistry educators may use this and other 
supporting evidence to decide whether to integrate self-
explaining activities to the repertoire of their instructional 
design. Identifying the evidence-based active ingredients that 
promote learning in natural learning environments may lower 
the activation barrier associated with undertaking innovations. 
This is especially true for novice instructors, who may find 
integrating such strategies into their instructional design less 
intimidating and invasive than relinquishing control to a pre-
packaged pedagogical model. 
 Our work did not use strategy training or direct-instruction, 
that is, we did not teach students to self-explain to later test 
their adherence to a particular behaviour that may vanish once 
the stimulus is removed. Self-explaining behaviour was 
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effectively elicited by the learning event. Thus, we put forth 
cultivating constructive learning strategies such as self-
explaining as components of well-designed instruction. Deeper 
engagement in self-explaining may become habitual upon 
practice and hopefully develop into the new norm in students’ 
relationship with chemistry knowledge. This stance is 
consistent with related research in the field that suggests 
“meaningful learning may help students progress from a stage 
in which re-description and functional explanations are 
dominant, to a phase in which connections between parts are 
emphasised, to a point in which cause-effect relationships are 
frequently used as the basis for explanations” (Talanquer, 
2010). 
 Several future lines of work arise from findings in this 
study. Whereas in this study we focused on learning strategies 
as the learning outcome of interest, currently we are engaged in 
the assessment of how different levels of self-explaining 
influence learning of specific chemistry content. In this work 
we observed variability in the sophistication of student 
responses to the same self-explaining task. Investigating what 
individual characteristics may be associated with this 
differential behaviour is another potential line of work. 
Likewise, we are interested in the investigation of change in 
self-explaining behaviour by using latent variable models on 
longitudinal data collected across multiple learning activities. 
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Appendix 1: Research Instruments 
  

The learning event consisted of a textbook passage with a general description of the Second Law of 

Thermodynamics and common to all the participants. A self-explaining task, SE-Task, followed this 

passage. There were four different SE-Tasks, each defining one of the study conditions: (1) Self-

explaining own answer, SEA; (2) Self-explaining agreement/disagreement, EADA; (3) Self-explaining 

for others, SEO; and (4) Self-explaining incorrect answer, SEIA. Following information provided to 

students during the learning event.  

 
Second Law of Thermodynamics (General description) 

We have seen that both the system and surroundings may undergo changes in entropy during a process. 
The sum of the entropy changes for the system and the surroundings is the entropy change for the 
universe: 

ΔSuniv   =   ΔSsys   +   ΔSsurr 

The Second Law of Thermodynamics says that for a process to be spontaneous as written (in the forward 
direction), ΔSuniv must be positive (ΔSuniv > 0). Therefore, the system may undergo a decrease in entropy 
as long as the surroundings undergo a larger increase in entropy making the resulting ΔSuniv positive, and 
vice versa. A process for which ΔSuniv is negative is not spontaneous as written. 

Self-explaining tasks 

1. Self-explaining own answer (SEA): Working on a problem and explaining one’s own answer. 

When water freezes below 0ºC, its change in entropy is negative (ΔSsys < 0). However, this process is 
spontaneous. How do you explain this? Please be as thorough in your response as possible. 

 

2. Self-explaining agreement/disagreement (EADA): Considering others’ answers to a problem 
and explaining one’s agreement/disagreement. 

When water freezes below 0ºC, its change in entropy is negative (ΔSsys < 0). Despite this observation, 
your group members maintain that this process is spontaneous. Therefore, they say, no energy input from 
the outside is necessary to make this change happen. Do you agree with your classmates? Please explain 
and be as thorough in your response as possible. 
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3. Self-explaining for others (SEO): Explaining answer to a problem for others to use in their 
studying. 

When water freezes below 0ºC, its change in entropy is negative (ΔSsys < 0). However, this process is 
spontaneous. Explain this in writing so that a classmate of yours can use your explanation as reference 
when answering a similar problem. Your answer will be used by your classmate. Please be as thorough in 
your response as possible. 

 

4. Self-explaining incorrect answer (SEIA): Explaining others’ incorrect answers to a problem. 

When water freezes below 0ºC, its change in entropy is negative (ΔSsys < 0). Your group members 
maintain that this process will not occur spontaneously. Therefore, they say, there must be an energy 
input from the outside to make this change happen; otherwise, water will not freeze. This stance is 
incorrect. What do you think led your classmates to this incorrect conclusion? Please be as thorough in 
your response as possible. 
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Appendix 2: Interview protocol 
 

Think-aloud Interview protocol 

Students’ assessment of research materials 

 

1. Introductory aspects [read to interviewee] 

 

We are testing an instrument that has questions that may be difficult to understand, hard to answer, or 

that make little sense. We would like you to answer the questions as carefully as possible. We are 

primarily interested in the ways that they arrived at those answers, and the problems they encountered. 

Therefore, any detailed help you can give us is of interest, even if it seems irrelevant or trivial.  

We are not looking for correct answers; we just want to listen to your comments. I didn't write these 

questions, so don't worry about hurting my feelings if you criticize them -my job is to find out what's 

wrong with them. 

The conversations will be audio taped just as a means for us to go back and review what was said and 

not who said what. This interview is confidential; you will not be identified by name and only the 

transcriber will listen to this tape. The transcriber is bound to confidentiality, as well. During the 

conversation, I may take notes, which most probably will be reminders to myself of something I want to 

inquire about later, or something especially interesting you said. I will not jot down things about you, you 

are not under observation. 

Please feel free to spend as much time as you need or want on any given topic. You do not have to 

reply to a question if for any reason you do not feel comfortable. We may stop the conversation at any 

time you wish or need to. Do not feel like I am being too insistent if I ask some follow up questions to 

your comments. It is our interest to clearly understand what you mean; we are trying to get to a deeper 

level of understanding. 

Once again, this interview is absolutely confidential. We very much appreciate your taking the time 

for this conversation. We will start with some general background information and then we will move on 

to aspects related to the instrument. 

 

2. Background [use these to strengthen rapport with interviewee and set a comfortable 

environment] 
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a) What is your undergraduate major in? 

b) What chemistry courses have you taken in the past? 

c) Are you taking any chemistry classes this semester? 

 

3. Think-aloud training exercise: 

"Try to visualize the place where you live, and think about how many windows there are in that place. 

As you count up the windows, tell me what you are seeing and thinking about." 

 

4. Instrument assessment. One self-explaining task condition. [Use prompts and follow-ups as 

necessary] 

1. The following instrument is intended for students taking general chemistry 2. Please read the 

following information. 

2. Give student information sheet “Entropy definition”. Give time to read. Then remove information. 

3. Give student information sheet “Second law of thermodynamics. Give time to read. Let student 

keep this information for the rest of the interview. 

4. I will read a question to you and I would like you to think out loud when you answer the following 

questions.  

5. Read prompt “Self-explaining own answer, SEA” to student to think-aloud while solving it.  

Verbal Probes during resolution: 

a. Please repeat the question I just asked in your own words?  

b. How did you arrive at that answer? 

c. I noticed that you hesitated - tell me what you were thinking. 

6. Verbal Probes after resolution: 

a. How difficult was this question to answer? 

b. How sure are you of your answer? 
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5. Instrument assessment. Comparison with two other intervention conditions. [Use prompts and 

follow-ups as necessary] 

1. Now I am going to give you another question.  

2. Provide prompt “Self-explaining agreement/disagreement, EADA” to student. Give time to read. 

Let student keep this information for the rest of the interview. Verbal probe technique is used. 

Verbal Probes: 

a. What does the term "energy input from the outside" mean to you?  

b. How hard is it to think of reasons for your classmates to get the incorrect conclusion? 

c. What other reasons can you think of? 

d. Overall, how difficult was this question to answer? 

3. Provide another prompt to student. Give time to read. Let student keep this information for the rest 

of the interview. 

Verbal Probes: 

a. How difficult is this question to answer? 

b. How is this question related to the previous two questions? 

c. Please arrange the three questions in order of difficulty. (Give student time to arrange 

questions). 

d. What do you understand as “difficult” when arranging these questions?  

 

6. Wrap up 

Thank you again for your valuable collaboration. Once more, this interview is confidential, you will 

not be identified by name and only the transcriber will listen to this tape. The transcriber is bound to 

confidentiality, as well. 
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Information sheets given to students during the interview: 

 

Sheet 1: Entropy definition 

Entropy (S) is a thermodynamic function that increases with the number of energetically 

equivalent ways to arrange the components of a system to achieve a particular state. It 

may be thought of as a measure of the dispersion of the energy in a system and it is 

associated with disorder or randomness at the molecular level. 

 

Sheet 2: Second Law of Thermodynamics 

We have seen that both the system and surroundings may undergo changes in entropy 

during a process. The sum of the entropy changes for the system and the surroundings is 

the entropy change for the universe: 

ΔSuniv   =   ΔSsys   +   ΔSsurr 

The Second Law of Thermodynamics says that for a process to be spontaneous as written 

(in the forward direction), ΔSuniv must be positive (ΔSuniv > 0). Therefore, the system may 

undergo a decrease in entropy as long as the surroundings undergo a larger increase in 

entropy making the resulting ΔSuniv positive, and vice versa. A process for which ΔSuniv is 

negative is not spontaneous as written. 
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Prompts evaluated during the interview: 

 

Self-explaining own answer, SEA 

When water freezes below 0ºC, its change in entropy is negative (ΔSsys < 0). However, this 

process is spontaneous. How do you explain this? Please be as thorough in your response as 

possible. 

  

Self-explaining agreement/disagreement, EADA  

When water freezes below 0 ºC, its change in entropy is negative (ΔSsys < 0). Despite this 

observation, your group members maintain that this process is spontaneous. Therefore, they 

say, no energy input from the outside is necessary to make this change happen. Do you 

agree with your classmates? Please explain and be as thorough in your response as possible. 

 

Self-explaining for others, SEO  

When water freezes below 0ºC, its change in entropy is negative (ΔSsys < 0). However, this 

process is spontaneous. Explain this in writing so that a classmate of yours can use your 

explanation as reference when answering a similar problem. Your answer will be used by 

your classmate. Please be as thorough in your response as possible. 

 

Self-explaining incorrect answer, SEIA  

When water freezes below 0ºC, its change in entropy is negative (ΔSsys < 0). Your group 

members maintain that this process will not occur spontaneously. Therefore, they say, there 

must be an energy input from the outside to make this change happen; otherwise, water will 

not freeze. This stance is incorrect. What do you think led your classmates to this incorrect 

conclusion? Please be as thorough in your response as possible. 
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Appendix 3: Supplemental Data Analysis and Results 
 

Data analysis 

In addition to the textual analysis of the responses, we conducted a structural analysis. Linguistic studies 

have reported the structure of essays (i.e. use of types of conjunctions and length of text) vary with their 

summative-analytical nature (Durst, 1987). Although the responses in our case were relatively short to be 

considered short essays, we decided to investigate whether structural difference would be noticeable as a 

function of level of self-explaining.  

 

Structural analysis of Learning Event data. For each response, we counted the total number of 

words and cohesive conjunctions (i.e. words used in text construction to connect sentences). For the total 

number of words, we considered symbols representing individual concepts such as change in entropy of 

the system, ΔSsys, as a single unit. Other examples are: –∆S_sys, +, →, H2O. We tallied mathematical 

sentences using the same principle; therefore, the word count for an equation corresponded to the number 

of elements used in the mathematical sentence. The word count for the following two examples is three: 

ΔSsys < 0; ∆S_universe = 0. We tallied contractions as two words. In the case of cohesive conjunctions we 

used the categories shown in Table A1. Linguistic studies have shown the prevalence of causal and 

adversative cohesive conjunctions in analytical essays, and additive and temporal cohesive conjunctions 

in summative essays (Durst, 1987). We compared the mean word count by SE-Tasks using ANOVA. We 

calculated the ratio of each cohesive conjunction-type by dividing the frequency by the total word count. 

We used these cohesive conjunction-type ratios as observed variables for the subsequent Latent Profile 

analysis. We postulated that the overt explanatory behaviour of the students would be associated with the 

structural characteristics (total word count and cohesive conjunction-type ratios). 
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Table A1 Cohesive Conjunction Categories as Described by Durst (1987) 

Cohesive 

Conjunction 

categories 

Description and examples 

Additive 
Indicates coordination; two sentences are given equal weight. Examples include 

conjunctions such as "and," "also," "furthermore," "or", “plus”, “that”. 

Temporal 
Conjunctive relation showing chronological connection. Examples include "after," "then," 

"when,” “once”, “while". 

Causal 
Indicate cause and effect relation. Examples include "because," "so," "therefore," "thus", 

“since”, “due”, “as”, “if”. 

Adversative 
Indicate that what follows contrasts with what has just been said. Examples include "in 

fact," "but," "however," "instead", “although”, “whereas”, “though”, “yet”. 

 

We performed LPA using the conjunction-type ratios and total word count as observed variables 

(i.e., five observed variables). The output of the LPA analysis of the conjunction-type ratios was the 

categorization of students into distinct profile classes based on their text construction, the Text 

Construction Profiles, TC-Profile. Table A2 shows examples of coded responses from the learning event 

data, and the corresponding observed variables we used in the latent profile analyses. 
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Table A2 Example Report of Textual Analysis and Structural Analysis of Learning Event Responses 

Structural Analysis Textual Analysis 

Cohesive Conjunctions 
Response Examples 

Value BI DI E P U NR 
Value 

Total 

words Additive Temporal Causal Adversative 

Count 1 1 0 0 0 0 Count 66 0 1 1 1 

The change in entropy for the system 

is less than zero therefore the 

∆S_surr must have a larger increase 

of entropy than the negative decrease 

of the entropy of the system for the 

process to be spontaneous, meaning 

∆S_univ will still be greater than 

0.(DI)  When water freezes the 

system loses entropy, but the outside 

surroundings gain more entropy than 

what was lost by the system.(BI)  

Code- 

-ratio 
0.5 0.5 0 0 0 0 

Count 

per 100 

words 

- 0 1.52 1.52 1.52 

Count 0 1 1 1 0 0 Count 48 0 0 2 1 

Water freezes at 0˚C.(P) After frozen, 

no matter how much more energy is 

lost (E = heat) it’s still just as frozen 

– it can never be “more frozen” w/ 

more cold.(E) The process is 

spontaneous, yet negative because 

the system is more negative than the 

surroundings are positive.(DI)  

Code-

ratio 
0 0.33 0.33 0.33 0 0 

Count 

per 100 

words 

- 0 0 4.17 2.08 

 

Association analysis between self-explaining tasks and self-explaining profile. We used Chi-

square tests to determine the association between Text Construction Profiles membership, TC-Profile, and 

the Self-Explaining Task, SE-Task. We used IBM SPSS Statistics (Version 21.0.0.0) for the Chi-square 

tests. 
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Results and discussion 

 

Pilot Study 

Following we describe results corresponding to the analysis of the pilot study dataset. These results 

informed the implementation of the main study and also supported findings from the main study. 

 

Code type distribution. Students’ responses were coded following the coding scheme described 

in the methodology section to produce a tally of the codes in each response. Initially, we analysed the 

association between these code types and the self-explaining task, SE-Task (Table A3). For this analysis 

the codes “unclassifiable, U” and “non-relevant, NR” were excluded because they did not contribute 

valuable insight about the self-explaining behaviour. From the total count of codes it is interesting to 

notice that for this dataset, the “deductive inference” code presents the highest count (Table A3). This 

suggests that students were actively engage in the generation of inferences. It is also noticeable that the 

“elaboration, E” and “paraphrasing, P” codes have high number of occurrences. These E and P codes are 

associated with lower explanatory sophistication as they describe responses that recount information. 

High counts in E and P codes thus suggested that students relied heavily on recounting information when 

prompted to write explanations.  

The Chi-square test showed no significant association between the code types and the SE-Tasks, 

at a 95% confidence interval, χ2 (9, N = 269) = 15.83, p = .07. Nonetheless, inspection of Table A3 

showed evidence of a trend: higher percentages (dark grey shaded cells) of the “bridging inference, BI” 

code are found in the self-explaining-to-others task, SEO, and self-explaining agreement/disagreement 

task, EADA. This finding suggests that the SEO and EADA tasks prompted students to generate more 

bridging inferences to link chemistry concepts (i.e., entropy and the Second Law of Thermodynamics). In 

the case of the code “deductive inference, DI” the higher percentage was found in the EADA task, which 

suggests that students generated more deductive inferences while working on this SE-task. In the case of 

the DI code the SEA (self-explain own answer) and SEIA (self-explain incorrect answer) tasks had 

moderately high percentages too, thus engaging students in the generation of inferences as well. In the 

case of the “elaboration, E” code, the results suggest a similar percentage in the SEO, EADE and SEA 

tasks, but a higher percentage in the SEIA task. Finally, the “paraphrasing, P” code presents higher 

percentages in the EADA and SEIA tasks, suggesting that responses on these SE-tasks were heavily 
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composed of recounted information. In summary, these results suggest that, although not statistically 

significant, the code types in the students’ responses were associated with the self-explaining tasks.  

 

Table A3 Pilot study learning event code type distribution by SE-Task 

SE-Task 
Code Type Total 

%SEO %EADA %SEA %SEIA 

BI 25 40 32 16 12 

DI 95 17 33 26 24 

E 77 25 22 21 32 

P 72 14 33 18 35 

U 21 14 24 38 24 

NR 28 29 29 14 29 

Without codes “U” and “NR”: χ2 (9, N = 269) = 15.83, p = .07. 

 

The results in Table A3 show the total number of code types per SE-Task, but for 80% of the 

students the responses were not composed of only one code. Therefore the follow-up analysis considered 

the code types and the total number of codes in each response. This way, we accounted for the 

relationship among all the code types present in each response for the categorization of student’s self-

explaining behaviour.  

 

Latent profile analysis. We used Latent Profile Analysis (LPA) to identify patterns in code-ratios 

(i.e., number of code type divided by total codes in response) in students’ responses. These analyses 

required the selection of the best model for the data. In order to make that decision the following 

information was used: number of profiles selected; goodness of fit indexes (Loglikelihood (LLH), 

Akaike’s Information Criterion (AIC), Bayesian Information Criterion (BIC), sample-size adjusted 

Bayesian Information Criteria (SSA–BIC)); likelihood ratio tests (Voung–Lo–Mendell–Rubin and 

parametric bootstrap); and homogeneity (referred to as entropy value) and cases size in each profile. Next 

we describe the model selection process for the pilot study. 

Consistent with common practice, we explored solutions with varying numbers of profiles and 

selected the one that made the most sense in terms of interpretability and model fit information. We 

evaluated one- to ten-profile solutions models in relation to indexes of fit commonly used for this purpose 

(Table A4). For the information criteria Loglikelihood, LLH, the value increased as the number of 

profiles increased thereby indicating progressive model fitness from the model with only one profile up to 
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the model with ten profiles. Thus, the LLH value did not provide useful information for the model 

selection. For the three information indexes (AIC, BIC, and SSA-BIC), lower values indicate better 

model fit. Our results showed that all information indexes progressively became lower as the model 

solution incorporated more profiles (Figure A1). This indicated that model solutions with more profiles 

seemed to better fit the data. In the case of the Voung–Lo–Mendell–Rubin (VLMR) test and parametric 

Bootstrap Likelihood Ratio Test (BLRT) the p-value reflects how significant it is to have a model with n-

profiles against a model with (n-1)-profiles (“n” being the number of profiles within each model). 

Therefore, if the p-values are lower than .05 this means that the model solution with n-profiles is 

favourable over the model solution with (n-1)-profiles. The p-values for the BLRT were all lower than .05 

suggesting that any model solutions are significantly better than the corresponding previous model 

solution, thus these results did not help in selecting a model solution.  The results in Table A4 showed 

that only the model solutions with two-profiles and five-profiles have a p-value lower than .05 for the 

VLMR test, suggesting that these model solutions were favourable over the other model solutions. 

Finally, the last criteria for the model solution selection are the homogeneity (i.e. entropy value) of the 

profiles in the model and the number of cases in each profile within the model solutions. In our case both 

the two-profile and five-profile solution models had high homogeneity. We selected the five-profile 

model solution (grey shaded cells in Table A4) because larger number of profiles increased our 

categorization power of students. This was a judgment call based on the model fitness, parsimony and 

interpretability of the five-model solution.  
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Table A4 Goodness of fit for LPA models based on code-ratios, pilot study dataset (N=103) 

Group Sizes Number 

of 

Profiles 

Number of 

Parameters 
LLH AIC BIC 

SSA–

BIC 
p VLMR 

p  

BLRT 
Entropy LT1

% 

LT5

% 

LP 1 8 -85 186 207 182 — — — 0 0 

LP 2 13 -29 85 119 78 .00 .00 .99 0 0 

LP 3 18 31 -26 22 -35 .49 .00 1.0 0 0 

LP 4 23 89 -131 -71 -143 .20 .00 1.0 0 2 

LP 5 28 138 -221 -147 -235 .03 .00 .97 0 2 

LP 6 33 183 -300 -214 -318 .79 .00 .97 0 2 

LP 7 38 218 -359 -259 -379 .46 .00 .95 0 2 

LP 8 43 253 -420 -307 -443 .62 .00 .98 1 3 

LP 9 48 276 -457 -330 -482 .85 .00 .99 0 2 

LP 10 53 305 -503 -364 -531 .25 .00 .99 0 5 

Note: LLH = Loglikelihood; AIC = Akaike’s Information Criterion; BIC = Bayesian Information Criterion; SSA–BIC = 

sample-size adjusted Bayesian Information Criteria; p VLMR = p-value for the Voung–Lo–Mendell–Rubin likelihood ratio 

test for K versus K - 1 classes; p BLRT = p-value for the parametric bootstrap likelihood ratio test for K versus K - 1 classes. 

Group sizes refer to the number of groups with less than 1% and less than 5% of the cases, N = 103. 

 

Fig. A1 AIC, BIC and Sample-size adjusted BIC values for explanation sophistication one- to ten-profile model 

solutions. 
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 The profiles in the five-profile model are presented in Table A5. For each profile Table A5 shows 

the number of students in the group and the mean values for each of the four code-ratios. Figure A2 

presents the mean values of code-ratios for each profile as a visual aid for discussion. In the case of 

Profile 1, this group was composed of five students whose responses only contained “bridging inference, 

BI” codes. Therefore, we described this profile (SE-profile) as bridging inferential. Profile 2, a three-

member group, presented responses mainly using bridging and deductive inferences (89% of the 

response) so we described them as bridging/deductive inferential. Profile 3 is an interesting group of 

fourteen students whose responses used a mixture of all codes in evenly distributed ratios. We described 

this profile as “mixed-behaviour.” Profile 4, 63 students, had a high code-ratio for DI but also had a 

significant code-ratio of “paraphrasing, P”. In other words, deductive inferences predominated in these 

responses but students also relied significantly on recounting information. We described this profile as 

“deductive inferential.” Finally, the 18 students in Profile 5 relied heavily on elaboration statements, 

having a mean value of 92% of the response coded as “elaborations, E”. Thus, we described this profile as 

“elaborative.” 

 

Table A5 Code-ratios and SE-profile descriptors for five-profile model solution (N=103) 

Mean code-ratio 
Profile Group n 

BI DI E P 
SE-Profile descriptor 

Profile 1 5 1.00* 0.00* 0.00* 0.00* Bridging Inferential 

Profile 2 3 0.56* 0.33* 0.11 0.00 
Bridging/Deductive 

Inferential 

Profile 3 14 0.29* 0.26* 0.30* 0.15* Mixed-behaviour 

Profile 4 63 0.00 0.49* 0.15* 0.36* Deductive Inferential 

Profile 5 18 0.00 0.04 0.92* 0.04 Elaborative 

* p < .05. 
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Fig. A2 Profile plot for the five-profile solution model, code-ratios. 

 

The results in Table A5 support the interpretability of the LPA outcome (i.e., five-profile model 

solution) under the theoretical framework for the construct of self-explaining. This is because the LPA 

outcome allows the categorization of students’ self-explaining behaviour in five clearly distinct groups. 

This finding directly addresses the first research question: Do tasks that require different self-explaining 

engagement induce observable categorical differences in self-explaining behaviour in the context of a 

General Chemistry classroom? Findings support the emergence of observable categorical differences in 

self-explaining behaviour when tasks prompted pupils to provide written explanations. However, to fully 

answer this research question we studied the association of these self-explaining behaviours (SE-Profiles) 

with the self-explaining task (SE-Task).  

 

SE-Profile and SE-Task association analysis. Table A6 shows the cross tabulation of SE-Profile 

and SE-Task. The Chi-square test was not applicable in this case due to low sample size. This is because 

in the Chi-square calculation, 16 cells (80.0%) had an expected count value lower than five which is in 

violation of the Chi-square test requirements (less than 20% cells with expected count lower than five). 

Therefore the result from the Chi-square analysis was not conclusive, χ2 (12, N = 103) = 11.69, p = .47. 

Nonetheless, inspection of Table A6 shows an apparent trend. SEA and SEO tasks have a higher 

proportion of students in the SE-Profile associated with a more analytic behaviour (i.e., bridging 

inferential and bridging/deductive inferential). That is, more students coming from these SE-Tasks 

engaged in drawing inferences and connecting ideas. Conversely, SEIA and EADA SE-tasks have higher 

proportions of students in the least analytic behaviours (i.e., elaborative, and deductive inferential). The 
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apparent trend in Table A6 suggests that, although not statistically significant, the self-explaining tasks 

(SE-Tasks) were associated with the self-explaining behaviours (SE-Profiles). 

 

Table A6 Percentage distribution of SE-Profile across SE-Task (N=103) 

SE-Task 
SE-Profile n 

%SEA %SEO %EADA %SEIA 

Bridging Inferential 5 40 40 20 - 

Bridging/Deductive Inferential 3 33 33 33 - 

Mixed-behaviour 14 7 36 36 21 

Deductive Inferential 63 27 16 30 27 

Elaborative 18 22 28 11 39 
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Main Study 

Following we describe additional results corresponding to the analysis of the main study dataset. This 

information goes to a level of technical detail deeper than that discussed in the manuscript. 

 

LPA seven-profile model solution selection. We used Latent Profile Analysis (LPA) to identify 

patterns in code-ratios (i.e., number of code type divided by total codes in response) in students’ 

responses. These analyses required the selection of the best model for the data. In order to make that 

decision the following information was used: number of profiles selected; goodness of fit indexes 

(Loglikelihood (LLH), Akaike’s Information Criterion (AIC), Bayesian Information Criterion (BIC), 

sample-size adjusted Bayesian Information Criteria (SSA–BIC)); likelihood ratio tests (Voung–Lo–

Mendell–Rubin and parametric bootstrap); and homogeneity (referred to as entropy value) and cases size 

in each profile. 

Consistent with common practice, we explored solutions with varying numbers of profiles and 

selected the one that made the most sense in terms of interpretability and model fit information. We 

evaluated one- to ten-profile solutions models in relation to indexes of fit commonly used for this purpose 

(Table A7). For the information criteria Loglikelihood, LLH, the value increased as the number of 

profiles increases indicating progressive model fitness from the model with only one profile up to the 

model with ten profiles. Thus, the LLH value showed that a model with more profiles is favoured. For the 

three information indexes (AIC, BIC, and SSA-BIC), lower values indicate better model fit. Our results 

showed that all information indexes progressively became lower as the model solution incorporated more 

profiles (Figure A3). As the figure shows, the values decreased as the number of latent profiles increased 

up to seven and then they started to level off. This indicated that model solutions higher than seven-

profiles are favoured with no much improvement after seven profiles.  

In the case of the Voung–Lo–Mendell–Rubin (VLMR) test and parametric Bootstrap Likelihood 

Ratio Test (BLRT) the p-value reflects how significant it is to have a model with n-profiles against a 

model with (n-1)-profiles (“n” being the number of profiles within each model). Therefore, if the p-values 

are lower than .05 this means that the model solution with n-profiles is favourable over the model solution 

with (n-1)-profiles at a 95% confidence interval. In the case of the VLMR test the model solutions for 

two, three, six showed values lower than .05, also the seven-profile model solution showed a low p-value 

indicating that this solution is considerably good. The p-values for the BLRT were all lower than .05 

suggesting that any model solutions are significantly better than the corresponding previous model 
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solution, thus these results did not help in selecting a model solution. The entropy value for all model 

solution was close to the highest possible value of one, which means the homogeneity of the profiles in 

each solution is high, which is favourable. 

Inspection of the eight- to ten-profile model solutions showed three or more group sizes with less 

than 5% of the total cases. We considered that the eight- to ten-profile model solutions did not add 

valueable insight into the categorization of the students. Based on the results from Table A7 we selected 

the seven-profile model solution.  

 

Table A7 Goodness of fit for LPA models based on code-ratios, main study data (N=128) 

Group Sizes Number 

of 

Profiles 

Number of 

Parameters 
LLH AIC BIC SSA–BIC p VLMR 

p  

BLRT 
Entropy LT1

% 

LT5

% 

LP 1 8 -94 205 228 202 - - - 0 0 

LP 2 13 -41 108 145 104 .04 .00 .95 0 0 

LP 3 18 21 -6.2 45 -12 .03 .00 .99 0 0 

LP 4 23 86 -127 -61 -134 .26 .00 1.0 0 0 

LP 5 28 153 -250 -170 -258 .36 .00 1.0 0 2 

LP 6 33 199 -332 -238 -342 .01 .00 .96 0 2 

LP 7 38 259 -442 -334 -454 .07 .00 .98 0 2 

LP 8 43 273 -460 -337 -473 .54 .00 .98 0 3 

LP 9 48 329 -562 -425 -577 .35 .00 .98 0 4 

LP 10 53 343 -580 -429 -597 .60 .00 .99 0 5 

Note: LLH = Loglikelihood; AIC = Akaike’s Information Criterion; BIC = Bayesian Information Criterion; SSA–BIC = 

sample-size adjusted Bayesian Information Criteria; p VLMR = p value for the Voung–Lo–Mendell–Rubin likelihood ratio test 

for K versus K - 1 classes; p BLRT = p value for the parametric bootstrap likelihood ratio test for K versus K - 1 classes. 

Group sizes refer to the number of groups with less than 1% and less than 5% of the cases, N = 128. 

 

 

Page 29 of 35 Chemistry Education Research and Practice

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

C
he

m
is

tr
y

E
du

ca
tio

n
R

es
ea

rc
h

an
d

P
ra

ct
ic

e
A

cc
ep

te
d

M
an

us
cr

ip
t



	   	  

30	  |	  J.	  Name.,	  2012,	  00,	  1-‐3	   This	  journal	  is	  ©	  The	  Royal	  Society	  of	  Chemistry	  2012	  

 
Fig. A3 AIC, BIC and Sample-size adjusted BIC values for explanation sophistication one- to ten-profile solutions. 

 

Structural Analysis. We analysed the responses of the students in the main study phase for their 

structural composition in terms of (1) the total word count and (2) the cohesive conjunction type count 

(Table A8). Analysis showed no relevant differences among the self-explaining tasks, SE-Task, and self-

explaining profiles, SE-Profiles, across these two counts. These results suggest that the text construction 

of the written responses is not different between participants doing different self-explaining tasks, or 

behaving differently when self-explaining. However, we acknowledge that the extension of the 

participants’ responses is not as extensive as in the case of other research studies (e.g., mean total words = 

500) (Durst, 1987), and this may impact our resolution. 
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Table A8 Descriptive statistics of word counts by SE-Task (N=128)a 

Cohesive conjunctions per 100 words  

Mean (SD) SE-Task n 
Total words  

Mean (SD) 
Additive Temporal Causal Adversative 

SEA 29 61 (24) 2.4 (2.0) 1.5 (1.7) 4.3 (2.7) 0.72 (0.97) 

EADA 31 63 (23) 2.3 (2.0) 0.9 (1.1) 3.7 (2.5) 0.42 (0.85) 

SEO 35 55 (24) 2.1 (2.0) 1.3 (1.6) 4.0 (3.1) 0.49 (0.77) 

SEIA 33 64 (19) 3.0 (2.6) 1.1 (1.1) 2.6 (2.1) 0.76 (1.12) 

Total 128 61 (22) 2.2 (2.2) 1.2 (1.4) 3.6 (2.7) 0.60 (0.94) 

F 1.17 2.03 .96 2.68 1.00 ANOVA 

(3, 124) p .33 .11 .41 .05 .40 

Cohesive conjunctions per 100 words  

Mean (SD) SE-Profile n 
Total words  

Mean (SD) 
Additive Temporal Causal Adversative 

Bridging Inferential 25 60 (21) 2.5 (2.3) 1.3 (1.6) 4.0 (3.3) 0.60 (0.78) 

Mixed behavior 12 66 (22) 3.2 (2.8) 1.2 (1.4) 2.4 (1.8) 0.66 (1.14) 

Deductive Inferential 20 46 (24) 4.2 (3.8) 1.5 (1.8) 4.3 (3.1) 0.42 (0.96) 

Elaborative 24 62 (19) 3.5 (2.4) 1.4 (1.2) 3.3 (1.9) 0.67 (0.98) 

Summative  47 63 (22) 3.4 (2.4) 1.0 (1.2) 3.7 (2.7) 0.64 (0.99) 

Total 128 59.9 (22) 3.4 (2.7) 1.22 (1.4) 3.7 (2.7) 0.60 (0.95) 

F 2.65 1.3 0.65 1.24 .24 ANOVA 

(3, 124) p .04 .28 .63 .30 .92 
a Six responses were unintelligible and therefore removed from the analysis. 

 

To further analyse these data we used LPA to investigate categorical differences among students’ 

text construction behaviours, TC-Profiles. The idea of this LPA study was to identify groups of students 

with similar text construction styles (in terms of the length of the explanation and the used of cohesive 

conjunction words) when writing explanations. In contrast with the previously shown analysis of 

variance, ANOVA, which used only one word count in each analysis, the LPA used all of the five 

different word count values in each response as observed variables to classified students into text 

construction profiles, TC-Profiles. This allowed an in-depth categorization of students’ text construction 

behaviours. Next we studied potential differences of the text construction styles (TC-Profiles) across the 

experimental conditions (SE-Tasks) and self-explaining behaviours (SE-Profiles). 
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Latent profile analysis: Text construction profiles. The selection process for the best latent 

profile fit model solution followed the procedures described previously (see above). Results for the 

goodness of fit indexes are shown in Table A9 and Figure A4. The three-profile model solution showed 

the best fit for the data. Also the high value of homogenity (i.e., Entropy value = .998) in the three-profile 

model solution suggested that students’ membership within each of the three profiles was well 

established. This meant that all students within each profile had low uncertainty of belonging to other 

profile within the model solution. 

 

Table A9 Goodness of fit for LPA models based on word counts, main study data (N=128) 

Group Sizes Number 

of 

Profiles 

Number of 

Parameters 
LLH AIC BIC SSA–BIC 

p 

VLM

R 

p  

BLR

T 

Entropy LT1

% 

LT5

% 

LP 1 10 -1566 3151 3180 3148 - - - 0 0 

LP 2 16 -1537 3105 3151 3100 .55 .00 .94 0 0 

LP 3 22 -1479 3002 3065 2996 .04 .00 1.0 0 1 

LP 4 28 -1434 2923 3003 2915 .50 .00 .99 0 1 

LP 5 34 -1412 2893 2990 2882 .60 .00 .98 0 1 

LP 6 40 -1386 2851 2965 2839 .26 .00 .99 1 1 

LP 7 46 -1365 2823 2954 2808 .13 .00 .96 1 1 

LP 8 52 -1348 2801 2949 2785 .35 .00 .94 1 1 

LP 9 58 -1331 2779 2944 2761 .81 .60 .94 1 2 

LP 10 64 -1305 2738 2921 2718 .81 .02 .95 1 3 

Note: LLH = Loglikelihood; AIC = Akaike’s Information Criterion; BIC = Bayesian Information Criterion; SSA–BIC = 

sample-size adjusted Bayesian Information Criteria; p VLMR = p value for the Voung–Lo–Mendell–Rubin likelihood ratio test 

for K versus K - 1 classes; p BLRT = p value for the parametric bootstrap likelihood ratio test for K versus K - 1 classes. 

Group sizes refer to the number of groups with less than 1% and less than 5% of the cases, N = 128. 

 

Page 32 of 35Chemistry Education Research and Practice

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

C
he

m
is

tr
y

E
du

ca
tio

n
R

es
ea

rc
h

an
d

P
ra

ct
ic

e
A

cc
ep

te
d

M
an

us
cr

ip
t



	   	  

This	  journal	  is	  ©	  The	  Royal	  Society	  of	  Chemistry	  2012	   J.	  Name.,	  2012,	  00,	  1-‐3	  |	  33	  

Fig. A4 AIC, BIC and Sample-size adjusted BIC values for text construction one- to ten-profile model solutions. 

 

The results for the three-profile solution are shown in Table A10. Most profiles presented 

substantial differentiation among word counts (i.e., total word and cohesive conjunction counts). Figure 

A5 shows the cohesive conjunction counts for each profile as visual aid. Profile 1 showed the highest 

count of adversative cohesive conjunctions of the three profiles. We described this profile as 

“Adversative.” This profile size is small in comparison with the other and for practical reasons 

subsequent analyses did not consider it. Profile 2 showed the highest count of causal cohesive 

conjunctions, therefore we described it as “Causal.” Finally, Profile 3 showed the highest number of total 

word count. We described this profile as “longer-texts.” 

 

Table A10 Word counts for text construction three-profile model solution 

Cohesive conjunction per 100 words  

Mean (SD) Profile n 
Total words 

Mean (SD) 
Additive Temporal  Causal  Adversative 

TC-Profile 

Descriptor 

Profile 1 4 63 (21)* 1.3 (2.2)* 0.8 (1.4)* 2.2 (2.6)* 3.7 (0.3)* Adversative 

Profile 2 84 54 (21)* 2.2 (2.2)* 1.3 (1.4)* 4.0 (2.6)* 0.0 (0.3) Causal 

Profile 3 40 74 (21)* 2.5 (2.2)* 1.1 (1.4)* 2.9 (2.6)* 1.5 (0.3)* Longer-texts 

* p < .05. 
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Fig. A5 Profile plot for the three-profile solution model, cohesive conjunctions in 100 words. 

 

TC-Profile and SE-Task association analysis. For the association analysis of the TC-Profiles 

and the SE-Task, we did not consider the “adversative” profile due to its low number of cases. The Chi-

square test showed no significant association between the remaining two TC-Profiles and SE-Tasks at a 

95% confidence interval, χ2(3, N = 124) = 3.30, p = .35 (Table A11). This result suggests that the text 

construction behaviour of the students was not found to be different depending of the self-explaining task. 

This finding provides further support to the previously discussed ANOVA study (see above) as no 

significant differences were found among the writing styles of the students across the SE-Tasks.   

 

Table A11 Percentage distribution of TC-Profile across SE-Taska 

 SE-Task 
TC-Profile 

n %SEA %EADA %SEO %SEIA 

Adversative 4 25 25 - 50 

Causal 40 28 15 28 30 

Longer-texts 84 20 29 29 23 
a Without “Adversative” profile: χ2 (3, N = 124) = 3.30, p = .35. 

 

 

SE-Profile and TC-Profile association analysis. As in the previous analysis, for the association 

analysis of the SE-Profiles and the TC-Profiles, we did not consider the “adversative” profile due to its 
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low number of cases. The Chi-square test showed no significant association between the remaining two 

TC-Profiles and SE-Profile at a 95% confidence interval, χ2(4, N = 124) = 3.37, p = .50 (Table A2). This 

result suggests that the self-explaining behaviour of the student is not significantly associated to students’ 

text construction behaviour in terms of use of cohesive conjunction types and text extension. We 

acknowledge that the low mean values for total words in the students’ response presents a limitation for 

the resolution and power of this result. 

 

Table A12 Percentage distribution of SE-Profile across TC-Profilea 

 TC-Profile 
SE-Profile 

n %Adversative  %Causal %Longer-text 

Bridging Inferential 25 - 60 40 

Mixed behaviour 12 8 67 25 

Deductive Inferential 20 5 80 15 

Elaborative 24 4 63 33 

Summative  47 2 64 34 
a Without “Adversative” profile: χ2 (4, N = 124) = 3.37, p = .50. 
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