This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Molecular-iodine-catalyzed aerobic oxidative synthesis of β-hydroxy sulfones from alkenes

Atsumasa Kariya, a Tomoaki Yamaguchi, a Tomoya Nobuta, a Norihiro Tada, a Tsuyoshi Miura b and Akichika Itoh * a

The synthesis of β-hydroxy sulfones from alkenes and sodium sulfinates under aerobic oxidative conditions was achieved in the presence of a catalytic amount of molecular iodine. Molecular oxygen in air serves as the terminal oxidant and the catalytic amount of molecular iodine acts as the sulfonyl radical initiator and peroxide reductant.

Sulfur-containing compounds have been used in numerous applications including as medicines, agrochemicals, dyes, and semiconductors. Thus, construction of the C–S bond is important, and many C–S-bond-forming reactions have been developed to date. 1 In particular, β-hydroxy sulfones are not only one of the most important structural motifs in bioactive compounds 2 but also key reaction intermediates in organic synthesis. 3 In general, β-hydroxy sulfones are prepared via the nucleophilic addition of sulfinates to epoxides, 4 the reduction of β-oxosulfones, 5 or the hydroxylation of α,β-unsaturated sulfones. 6 In addition, the oxysulfonylation of alkenes, which are easy to handle and inexpensive substrates, using sulfonyl chloride or sulfonylhydrazide as sulfone sources has been reported. 7

On the other hand, we have developed various oxidation methods using catalytic iodine sources and molecular oxygen as the terminal oxidant under visible light irradiation. 8 Molecular oxygen is photosynthesized by plants and is an effective oxidant with atom efficiency higher than that of other oxidants such as toxic heavy metals and complex organic reagents. Through our study of aerobic photo-oxidation with iodine sources, we discovered the oxysulfonylation of alkenes. During the course of our present study, Lei and co-workers reported impressive results for the aerobic oxysulfonylation of alkenes using sulfinic acids. 9 However, this reaction requires sulfinic acids, which are air sensitive, as well as a stoichiometric amount of triphenylphosphine as the reductant. Herein, we report the synthesis of β-hydroxy sulfones from alkenes and sodium sulfinates, which are readily available and easily handled, using a catalytic amount of molecular iodine and molecular oxygen from air (Scheme 1).

Table 1 shows the results of the optimization of the reaction conditions. Styrene (1a) was chosen as the test substrate and reacted with sodium benzenesulfinate (2a) in the model reaction. When iodine was used as the catalyst and acetonitrile as the solvent under visible light irradiation conditions, hydroxy sulphone (3aa) was obtained in low yield (entry 1). Addition of protic acids, such as acetic acid, p-toluenesulfonic acid, and trifluoroacetic acid, provided increased yields of 3aa (entries 2–6). Thus, the solvent and iodine source were investigated using acetic acid as a cosolvent (entries 7–19), and the highest yield of 3aa was obtained using MeCN/AcOH (1 mL/0.4 mL) as the solvent and I2 as the catalyst (entry 19). Next, the necessity of visible light irradiation was examined, and the reaction was found to be depressed in the dark (entry 20). On the other hand, the reaction proceeded in high yield, even without positive irradiation of visible light (entry 21). In addition, without an iodine source and molecular oxygen, lower yields were obtained (entries 22 and 23).
Next, the scope and limitations of the reaction of various alkenes (1) and aryl sulfinates (2) under the optimized reaction conditions were investigated, and the results are presented in Table 2. In general, β-hydroxy sulfones were obtained in good to high yields, regardless of the electron-donating or withdrawing group on the aromatic ring of the styrene substrate (entries 1–7). In addition, a gram-scale reaction was carried out under the optimized conditions, and the desired product was obtained in good yield (entry 1). A longer reaction time was required for the reaction of 4-methoxystyrene (3g) because light absorption was interrupted by 3g, which is less soluble in the solvent (entry 7). Furthermore, sterically hindered o-methylstyrene and a disubstituted styrene were good substrates (entries 8 and 9) for the reaction. On the other hand, cyclohexene was a poor substrate, with the β-iodo sulfone trans-(2-iodocyclohexyl)sulfonylbenzene obtained in just 22% yield (entry 10). Finally, sulfinates other than sodium benzenesulfinate, including sodium 4-methylbenzenesulfinate and sodium 4-chlorobenzenesulfinate, were suitable and provided the desired products in high yields (entries 11 and 12).

To resolve the reaction mechanism, several control experiments were then examined. Without quenching with aq. Na₂S₂O₃, β-hydroxy sulfone 3aa was detected in 72% yield, and no β-hydroperoxysulfone 3aa' was detected in the 1H NMR spectrum (Scheme 2, equation 1). When 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) was added as a radical scavenger, however, the reaction did not proceed (Scheme 2, equation 2). On the other hand, when triethylborane instead of iodine was used as radical initiator, the reaction proceeded (Scheme 2, equation 3). These results indicating that a radical mechanism is involved. The β-iodo sulfone 4 was eliminated as a possible intermediate when its reaction under the optimized conditions resulted in its recovery (67% yield) and the formation of 3aa and 5 in low yield (Scheme 2, equation 4).
A plausible reaction path for this oxidation, postulated on the basis of all of the abovementioned results, is presented in Scheme 3. A sulfone radical is generated from sodium sulfinate and molecular iodine 7 upon exposure to light in the presence of acetic acid. This sulfone radical adds to the substrate 3 to give benzyl radical species 9, which traps molecular oxygen and is converted to peroxyradical 3′ and then hydroperoxide 4. Hydroperoxide 3′ is subsequently reduced to the β-hydroxy sulfone 3 by an iodide species, such as sodium iodide, and the hypoiodite is regenerated. Hypoiodite also serves as sulfone radical initiator via sulfonil iodide 7.

Scheme 3 Proposed reaction pathway for the aerobic oxidative synthesis of β-hydroxy sulfones.

Conclusions

In conclusion, we reported the synthesis of β-hydroxy sulfones from alkenes using molecular oxygen and molecular iodine. This novel reaction is interesting because it uses a catalytic amount of molecular iodine and molecular oxygen from the air as the terminal oxidant without light irradiation.

Notes and references

