RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/Advances

Nano $CoFe_2O_4$ supported antimony(III) as an efficient and recyclable catalyst for one-pot three-component synthesis of multisubstituted pyrroles

s Bao-Le Li, Hai-Chuan Hu, Li-Ping Mo and Zhan-Hui Zhang*

Received (in XXX, XXX) Xth XXXXXXX 200X, Accepted Xth XXXXXXXX 200X DOI: 10.1039/b000000x

 $\textbf{Abstract:} \ A \ novel \ magnetical \ nano-CoFe_2O_4 \ supported \ Sb \ ([CoFe_2O_4@SiO_2-DABCO-Sb]) \ was$

successfully constructed, which exhibited high catalytic activity for one-pot three-component synthesis of ¹⁰ multisubstituted pyrroles in the reaction of amines, nitroolefin and 1,3-dicarbonyl compounds. The magnetic heterogeneous catalyst could be easily recovered using an external magnet and reused many times without significant loss of catalytic activity.

Introduction

The development of environmentally benign, sustainable and ¹⁵ efficiently reusable catalyst are considered as key points from green chemistry for providing both economic and ecological benefits.¹ From this aspect, nanocatalysts have received a lot of attentions because of their unusual properties of a larger surface area to volume ratio which enhanced the contact between

- ²⁰ reactants and catalyst. They may effectively bridge the gap between homogeneous and heterogeneous catalysis due to their high dispersion properties, good catalytic activity and selectivity. Specifically, magnetic nanocatalysts are the most interesting owing to their easy and efficient isolation and recovery with an
- ²⁵ external magnetic field, which avids loss of the catalyst associated with filtration or centrifugation and they have been widely applied in organic reactions.²⁻⁵ Among various magnetic nanoparticles, cobalt ferrite (CoFe₂O₄) is a well-known magnetic material with the properties of high magnetocrystallineanisotropy,
- ³⁰ moderate saturation magnetization, excellent chemical stability, low toxicity, readily accessibility and inexpensiveness which make it a promising material as catalysts upport.⁶ Recently, antimony (III) chloride has been applied in organic synthesis due to its accessibility and easier to handle than other metal halides.⁷
- ³⁵ However, antimony trichloride reacts violently with water because of its property of hygroscopic in the air. The immobilization of antimony (III) chloride on magnetic nanoparticles may overcome this defect, simplified process setups, and eventually allowed straightforward catalyst recovery and ⁴⁰ further reuse.

College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China.

E-mail: zhanhui@mail.nankai.edu.cn; Fax: +86 31180787431

⁴⁵ †Electronic Supplementary Information (ESI) available: ¹H NMR and ¹³C NMR spectra of all compounds. See DOI: 10.1039/b000000x/

Pyrrole is one of the most important simple heterocycles owing to its antitumor, anti-inflammatory, antibacterial, antioxidant, and antifungal properties.⁸ Furthermore, the pyrrole 50 ring has been frequently found in a broad range of natural products and biologically active compounds.⁹ In addition, pyrrole derivatives are also particularly important in materials science.¹⁰ These utilities continue to drive the interest in the development of new synthetic methods for pyrroles. The traditional routes to their 55 preparation are multistep reactions, as illustrated by the Paal-Knorr cyclization of 1.4-dicarbonyls with ammonia or primary amines.¹¹ This methods suffer from several drawbacks, such as stepwise reactions, narrow substrate scope, and lacking the variation of substituents on the pyrrole ring due to the unity of 60 starting materials. For all these reasons, the search for new atomeconomical and green synthetic methods, which avoid the use of special reagents, cost, time, and steps from readily available and inexpensive materials for the synthesis of functionalized pyrrole derivatives has attracted much attention.^{12,13} Very recently, 65 multicomponent coupling reactions (MCRs) which lead to the connection of three or more starting materials in a single synthetic operation with high atom economy and bond-forming efficiency offer significant advantages over classical stepwise methods. For this reasons, the development of new 70 multicomponent reactions is rapidly becoming one of the important tools in modern organic synthesis.¹⁴ Combining both advantages of multicomponent reaction and the magnetic supported nanocatalysts, the development of a new atom-efficient and environmentally friendly synthetic procedure for the efficient 75 preparation of structurally diverse pyrroles is therefore an

5 preparation of structurally diverse pyrroles is therefore an interesting challenge.

In conjunction with our studies on the design of magnetic nanocatalysts¹⁵ and sustainable synthesis development,¹⁶ we wish to report here a novel magnetic nanoparticle-supported Sb ⁸⁰ ([CoFe₂O₄@SiO₂-DABCO-Sb]) and its application for the

PAPER

synthesis of *N*-protected functionalized pyrroles *via* threecomponent reactions of amines, nitroolefin and 1,3-dicarbonyl compounds (Scheme 1).

 $_5$ Scheme 1 Synthesis of fuctionalized pyrroles in the presence of CoFe_2O_4@SiO_2-DABCO-Sb

Results and discussion

Firstly, we prepared $CoFe_2O_4$ nanoparticles as described in our previous work^{15d} by a chemical co-precipitation technique using

¹⁰ FeCl₃·6H₂O and CoCl₂·6H₂O as precursors. CoFe₂O₄ nanoparticles were easily coated with a layer of SiO₂ though chemical bonds by sonication of CoFe₂O₄ suspension in a 1L solution with the molar composition of 292 NH₄OH:1 CTABr:2773 H₂O and tetraethyl orthosilicate (TEOS).¹⁷ The 15 obtained CoFe₂O₄@SiO₂ was then treated with an excess amount 3-chloropropyltrimethoxysilane and triethylamine in dry of toluene at 110 °C to give CoFe₂O₄@SiO₂ bonded 3propylchloride.18 Then, 3-chloropropyl CoFe2O4@SiO2 reacted with 1.4-diazabicyclo[2.2.2]octane (DABCO) in refluxing 20 acetone to afford $CoFe_2O_4$ (∂ SiO_2-DABCO. Finally. CoFe₂O₄@SiO₂-DABCO and antimony trichloride was added in a round-bottomed flask contained acetone under reflux conditions to yield MNPs supported Sb catalyst ([CoFe₂O₄@SiO₂-DABCO- $Sb])^{19}$ (Scheme 2).

25

Scheme 2 Synthesis of CoFe₂O₄@SiO₂-DABCO-Sb

- As determined by inductively coupled plasma mass spectrometry (ICP-MS), the content of antimony in the CoFe₂O₄@SiO₂-DABCO-Sb catalyst was 6.32 wt%, which ³⁰ provides direct evidences for the fact that antimony was immobilized onto the silica-coated magnetic nanoparticles. The EDS elemental analysis indicated the presence of Fe, Co, Si, Cl, O, C, N and Sb (Fig. 1). Figure 2 shows Fourier transform infrared (FT-IR) spectrum of CoFe₂O₄@SiO₂ and ³⁵ CoFe₂O₄@SiO₂-DABCO-Sb. The presence of Co-O and Fe-O bonds in the magnetic particles was confirmed by the
- characteristic peak appeared at 597 cm⁻¹, which are the evidence to verify the presence of magnetic nanoparticles. The obvious broad peak near 1200 cm⁻¹ is anti symmetric Si-O-Si stretching. ⁴⁰ Two bands are present at 797 and 462 cm⁻¹ assignable to
- symmetric Si-O-Si stretching and bending modes respectively. The band that presents at near 2948 cm⁻¹ provides direct evidences to support the existence of stretching of alkyl C-H. New peaks near 1474 cm⁻¹ is due to CH₂, and a characteristic
- ⁴⁵ broad absorbance at 1000-1200 cm⁻¹ shows the existence of C-N stretching, which clearly indicates the presence of DABCO. As shown in Figure 3, the SEM of the magnetic CoFe₂O₄@SiO₂-DABCO-Sb catalyst demonstrates that the particles is spherical or quasi-spherical shape with a mean particle diameter of 1.00 μ m,
- ⁵⁰ which was also in a good agreement with the results from TEM (Figure 4). In addition, the TEM image apparently shows the core-shell structure, giving the indirect evidence to verify the formation of silica shell on the surface of cobalt ferrite (Figure 4b). The powder X-ray diffraction pattern of prepared catalyst

⁵⁵ CoFe₂O₄@SiO₂-DABCO-Sb in Figure 5 was confirmed that the sample is typical CoFe₂O₄ crystals phases. It displays diffraction peaks at around 18.4°, 30.1°, 35.6°, 43.3°, 57.3° and 62.6° corresponding to the (111), (220), (311), (400), (511) and (440), which can be well indexed to the cubic spinel phase of CoFe₂O₄ ⁶⁰ in accordance with literature data (JCPDS 22-1086).

Fig. 1 EDS spectrum of CoFe₂O₄@SiO₂-DABCO-Sb

Fig. 2 IR spectra of the (a) $CoFe_2O_4@SiO_2$ and (b) $CoFe_2O_4@SiO_2-DABCO-Sb$

 5 Fig. 3 SEM image of CoFe_2O_4@SiO_2-DABCO-Sb (a) "fresh" catalyst and (b) "recovered" catalyst after the fifth run

Fig. 4 TEM images of (a) $CoFe_2O_4@SiO_2$ -DABCO-Sb (b) a typically core-shell structure of $CoFe_2O_4@SiO_2$ NPs

Fig. 5 XRD pattern of CoFe₂O₄@SiO₂-DABCO-Sb

The activity of the immobilized antimony catalyst was initially evaluated for the model reaction of (*E*)-(2-nitroprop-1en-1-yl)benzene (1 mmol), aniline (1 mmol) and acetylacetone (1 ¹⁵ mmol) in ethanol at 80 °C. The reaction, as shown in Table 1, proceeded very slowly in the absence of catalyst and only a trace of desired product was found after heating for more than 12 h (Table 1, entry 1). Gratifyingly, CoFe₂O₄@SiO₂-DABCO-Sb exhibited very high activity, leading to the formation of 1-(2,5-²⁰ dimethyl-1,4-diphenyl-1*H*-pyrrol-3-yl)ethanone (**4b**) in 80% yield in ethanol at 80 °C (Table 1, entry 17). Solvent screening revealed a significant solvent effect. When shifting the solvent to water, THF, methanol, CH₃CN or toluene, **4b** was obtained in 30, 45, 40, 70, or 38% yield, respectively (Table, entries 7-11). The EtOH-H₂O (1:1) system was also examined for this reaction,

- ⁵ showing lower yield of the product (Table, entry 12). Among all these solvents, ethanol was found to be the best one and afforded the highest yield. Furthermore, the reaction was investigated under solvent-free condition, the yield of product was not improved (Table, entry 13). Finally, reaction temperature and
- ¹⁰ catalyst amount were further examined in ethanol. Decreasing the reaction temperature from 80 °C to 60 °C, the yield suffered an obvious decrease (52%, Table 1, entry 14). Lowering the catalyst loading to 0.5%, the yield decreased to 64%, whereas an increasing in catalyst concentration to 1 mol% did not produce ¹⁵ better results.

Table 1 Reaction of (E)-(2-nitroprop-1-en-1-yl)benzene, aniline and acetylacetone in different conditions^{*a*}

	NO ₂ + +	0 0	catalyst solvent	Ph N Ph
Entry	vCatalyst	Solvent	Temperature [°C]] Yield [%]
1	no	EtOH	80	trace
2	γ-Fe ₂ O ₃ @SiO ₂ -TfOH	EtOH	80	46
3	γ-Fe ₂ O ₃ @HAP-SO ₃ H	EtOH	80	48
4	γ-Fe ₂ O ₃ @SiO ₂ -NHC-Cu(II)	EtOH	80	57
5	γ-Fe ₂ O ₃ @SiO ₂ -NHC-Zn(II)	EtOH	80	60
6	CoFe ₂ O ₄ @SiO ₂	EtOH	80	40
7	CoFe2O4@SiO2-DABCO-Sb	H ₂ O	80	30
8	CoFe2O4@SiO2-DABCO-Sb	THF	80	45
9	CoFe2O4@SiO2-DABCO-Sb	MeCN	reflux	40
10	CoFe2O4@SiO2-DABCO-Sb	MeOH	reflux	70
11	CoFe2O4@SiO2-DABCO-Sb	Toluene	80	38
12	CoFe ₂ O ₄ @SiO ₂ -DABCO-Sb	EtOH- H ₂ O (1:1)	80	36
13	CoFe2O4@SiO2-DABCO-Sb	Solvent- free	80	78
14	CoFe ₂ O ₄ @SiO ₂ -DABCO-Sb	EtOH	60	52
15	CoFe ₂ O ₄ @SiO ₂ -DABCO-Sb (0.1 mol%)	EtOH	80	64
16	CoFe ₂ O ₄ @SiO ₂ -DABCO-Sb (0.3 mol%)	EtOH	80	75
17	CoFe ₂ O ₄ @SiO ₂ -DABCO-Sb (0.5 mol%)	EtOH	80	80
18	$CoFe_2O_4@SiO_2-DABCO-$ Sb (1 mol%)	EtOH	80	80
19	CoFe ₂ O ₄ @SiO ₂ -DABCO-Sb (0.5 mol%)	EtOH	80	82 ^b

^{*a*} Reaction condition: (*E*)-(2-nitroprop-1-en-1-yl)benzene (1 mmol), aniline (1 mmol) and acetylacetone (1 mmol), catalyst (0.5 mol%), solvent (1 ml), 12 h. ^{*b*} 50 mmol scale.

Besides, the reactivities of different magnetical nano catalysts ²⁰ such as nano γ -Fe₂O₃@SiO₂-TfOH, ^{15b} γ -Fe₂O₃@HAP-SO₃H, ^{15a} γ -Fe₂O₃@SiO₂-NHC-Cu(II), ^{12d} γ -Fe₂O₃@SiO₂-NHC-Zn(II), ^{12d} and CoFe₂O₄@SiO₂ were investigated. It was observed that

 $CoFe_2O_4@SiO_2$ -DABCO-Sb served as the best catalyst to provide **4b** in optimum yield. Therefore, the optimal conditions ²⁵ were established as follows: use of 0.5 mol% $CoFe_2O_4@SiO_2$ -DABCO-Sb as the catalyst and ethanol as the solvent to perform the reaction at 80 °C. To exploit the potential of the current catalytic system, the model reaction was scaled up to 50 mmol. As expected, the desired product could be obtained in 82% yield ³⁰ (Table 2, entry 19).

Having identified the optimized reaction conditions, the scope and limitations of this three-component reaction were next explored by variation of substituents R and Ar of the nitroolefin component. Satisfactorily as shown in Table 2, when R is 35 hydrogen in nitroolefins, the reaction was completed in 0.25 h to afford 4a in 93% yield (Table 2, entry 1). The alkyl group of nitroolefins exhibited an influence for this three-component reaction. The reaction with methyl-substituted nitroolefins was slower, but high yield of product was also maintained (Table 2, 40 entry 2). Early experiments using the conditions reported by Silveira showed that CeCl₃ 7H₂O promoted this reaction to give **4b** in only 45% yield.²⁰ Nitroolefins with ethyl group smoothly produced the corresponding products 41-4n, although longer reaction times were required as the steric hindrance of R 45 increased. Arvl groups with electron-rich or electron-poor substituents in nitroolefins revealed little impact on the reaction times and the yields of the products. Furthermore, the substrates with heteroaryl groups such as 2-furyl and 2-thienyl groups afforded 4i, 4j and 4n, 4o respectively in high yield. Moreover, 50 examination of nitroolefin with a larger aromatic group, such as naphthyl, was also applied to this reaction to afford the desired product 4k, albeit in relatively lower yield.

Next, we set out to test the reactivity of various substituted amines. As depicted in Table 2, most of aniline with electron-55 donating or weakly electron-withdrawing subsititutents were found to be applicable to this reaction and gave the expected products in high to excellent yields. The nature of the substituent on the benzene ring of aniline had a slight impact on the yields. For example, for substrates with a methyl or methoxy group 60 attached on the benzene ring, the corresponding products were obtained in yields of 82% and 88%, respectively (entries 19 and 20). Aniline with strongly electron-withdrawing group such as trifluoromethyl decreased the reactivity and gave lower but still acceptable yield. However, the target product could not be 65 obtained when a strong electron-withdrawing group such as nitro was present. Moreover, amines containing heteroaromatic goups such as furan-2-ylmethanamine also underwent the reaction, affording the desired products 4ab and 4as in high yield. Also, 9H-fluoren-2-amine was well tolerated to give 4r and 4ac in good 70 yield. Additionally, different kinds of aliphatic amines gave the desired products in excellent yield.

To further explore the substrate scope, we then extended the scope of this reaction to several β -ketoesters such as methyl acetoacetate, ethyl acetoacetate, 2-methoxyethyl acetoacetate, 75 allyl acetoacetate, *tert*-butyl 3-oxobutanoate, isobutyl 3-oxobutanoate and methyl 3-oxopentanoate. In general, β -ketoesters were also found to be suitable reaction partners in this reaction and gave the desired products in high yields (Table 2, entries 38-44). Thus, these successful results greatly proved that this procedure was extendable to various substrates in three-component reactions, generating moderate to high yields of the functionalized pyrroles.

Table 2 Synthesis of fuctionalized pyrroles 4

		NO ₂ 0 0	CoFe	₀O₄@SiO₂-DABCO-S		Ar		
	AI	$\begin{bmatrix} 1 & + R^1 N H_2 + \\ R & R^2 \end{bmatrix}$	R ³	EtOH, 80 °C	\rightarrow R^2 N	∽R		
	1	2 3			Γ R ¹ 4			
Entry	Nitroolefin	Amine	R^2	R ³	Product	Time (h)	Yield $(\%)^a$	mp (°C)
1	NO ₂	PhNH ₂	Me	Me	4a	0.25	93	106-107
2	NO ₂	PhNH ₂	Me	Me	4b	12	80	102-103
3	NO ₂	PhNH ₂	Me	Me	4c	12	87	oil
4	F NO ₂	PhNH ₂	Me	Me	4d	14	86	127-128
5	CI NO2	PhNH ₂	Me	Ме	4e	16	75	oil
6		PhNH ₂	Me	Me	4f	16	78	108-110
7		PhNH ₂	Me	Me	4g	14	85	146-147
8		PhNH ₂	Me	Me	4h	16	75	oil
9	NO ₂	PhNH ₂	Me	Me	4i	15	88	101-102
10	S NO ₂	PhNH ₂	Me	Me	4j	15	82	81-82
11	NO ₂	PhNH ₂	Me	Me	4k	12	47	133-134
12	NO ₂	PhNH ₂	Me	Me	41	20	80	oil
13	NO2	PhNH ₂	Me	Me	4m	20	80	oil
14	NO ₂	PhNH ₂	Me	Me	4n	20	76	oil
15	S NO ₂	PhNH ₂	Me	Me	40	20	78	oil
16	NO ₂	4-CMe ₃ C ₆ H ₄ NH ₂	Me	Me	4p	0.5	92	146-148

RSC Advances

Page	6	of	14
гаус	υ	UI.	14

17	NO ₂	NH ₂	Me	Me	4q	1	75	142-143
18	NO ₂	NH ₂	Me	Me	4r	1	80	148-149
19	NO ₂	4-CH ₃ C ₆ H ₄ NH ₂	Me	Me	4s	12	82	112-113
20	NO ₂	4-OCH ₃ C ₆ H ₄ NH ₂	Me	Me	4t	12	88	130-132
21	NO ₂	4-FC ₆ H ₄ NH ₂	Me	Me	4u	14	82	95-96
22	NO ₂	4-CIC ₆ H ₄ NH ₂	Me	Me	4v	15	75	oil
23	NO ₂	2-BrC ₆ H ₄ NH ₂	Me	Me	4w	16	70	oil
24	NO ₂	3-BrC ₆ H ₄ NH ₂	Me	Me	4x	16	72	oil
25	NO ₂	4-BrC ₆ H ₄ NH ₂	Me	Me	4y	15	77	106-107
26	NO ₂	4-CF ₃ C ₆ H ₄ NH ₂	Me	Me	4z	16	51	oil
27	NO ₂	4-OCF ₃ C ₆ H ₄ NH ₂	Me	Me	4 aa	14	85	125-126
28	NO ₂	NH ₂	Me	Me	4ab	6	90	120-121
29	NO ₂	NH2	Me	Me	4ac	14	73	153-155
30	NO ₂	H ₂ C=CHCH ₂ NH ₂	Me	Me	4ad	6	91	oil
31	NO ₂	PhCH ₂ NH ₂	Me	Me	4ae	6	90	oil
32	NO ₂	PhCH ₂ CH ₂ NH ₂	Me	Me	4af	6	92	124-125
33	NO ₂	NH ₂	Me	Me	4ag	6	87	92-93
34	NO ₂	▶ NH ₂	Me	Me	4ah	6	89	oil
35	NO ₂		Me	Me	4ai	12	72	61-62
36	NO ₂	∕∕∕NH₂	Me	Me	4aj	6	88	Oil
37	NO ₂	NH ₂	Me	Me	4ak	6	86	oil

This journal is © The Royal Society of Chemistry [year]

The structures of the prepared products were identified from their IR, ¹H NMR, ¹³C NMR spectra and elemental analysis. The structure of the corresponding product **40** has also been s elucidated by single-crystal X-ray crystallographic analysis (Fig. 6).

Fig. 6 Single-crystal X-ray structural of compound 40 (CCDC 964609)

The magnetic CoFe₂O₄@SiO₂-DABCO-Sb catalyst exhibited ¹⁰ high reactivity in the reaction of synthesis of multisubstituted pyrroles owing to its high dispersion in EtOH and easy accessibility to the active sites. Upon completion of the reaction, the catalyst can be easily removed using an external magnetic from the reaction mixture, avoiding a filtration step. The recover ¹⁵ catalyst was washed with ethyl acetate, air-dried and then reused direcly in model reaction for the next round without further purification. The results showed that the catalyst can be recycled for up to five times with essentially no loss of catalytic activity, which indicates that the prepared catalyst possessed excellent ²⁰ activity and reusability (Table 3). Furthermore, the SEM image of recovered catalysts after fifth cycle does not show any significant change in the shape and size of the magnetic nanoparticles, which provides hard evidence to demonstrate that MNPs-supported Sb catalyst was high chemical stable (Fig. 3).

5	Table	3	Recycling	of the	catalyst	
---	-------	---	-----------	--------	----------	--

Entry	Recycle	Yield (%) ^a		
1	1st	80		
2	2nd	80		
3	3rd	78		
4	4th	78		
5	5th	76		
^a Isolated yield				

Conclusions

In summary, a new type of magnetically separable and easily recyclable heterogeneous Sb catalyst have been successfully prepared by immobilizing Sb onto DABCO-modified MNPs, 30 which has demonstrated a promising catalytic activity for the one-pot three-component coupling reaction of amines, nitroolefin and 1,3-dicarbonyl compounds. This environmentally friendly, atom-economical and efficient methodology allows preparation of various multisubstituted pyrroles with good to excellent yields starting from readily available materials under mild conditions.

⁵ This magnetic nanoparticle CoFe₂O₄ supported Sb catalyst can easily be separated and recovered from the reaction mixture by decantation using an external magnet. And no significant loss of activity occurred after five consecutive cycles, indicating great potential in large-scale industrial processes.

10 Experimental section

All solvents and chemicals were obtained commercially and were used as received. IR spectra were recorded using KBr pellets or as liquid films on KBr pellets with a Bruker-TENSOR 27 spectrometer. X-ray diffraction analysis was carried out using

- ¹⁵ a PANalytical X'Pert Pro X-ray diffractometer. Surface morphology and particle size were studied using a Hitachi S-4800 SEM instrument. Transmission electron microscope (TEM) observation was performed using Hitachi H-7650 microscope at 80 KV. Elemental compositions were determined with a Hitachi
- ²⁰ S-4800 scanning electron microscope equipped with an INCA 350 energy dispersive spectrometer (SEM-EDS) presenting a 133 eV resolution at 5.9 keV. The ICP-MS analyses were carried out with an X Series 2 spectometer. Melting points were measured on an X-4 digital melting point apparatus are uncorrected. NMR
- ²⁵ spectra were recorded with a Bruker DRX-500 spectrometer at 500 MHz for ¹H NMR and 125 MHz for ¹³C NMR using CDCl₃ as the solvent and TMS as an internal standard. Elemental analyses were performed on a Vario EL III CHNOS elemental analyzer.

30 Preparation of CoFe₂O₄@SiO₂-DABCO-Sb magnetic nanoparticles

 $CoFe_2O_4$ NPs were prepared by a chemical co-precipitation technique using $FeCl_3 \cdot 6H_2O$ and $CoCl_2 \cdot 6H_2O$ as precursors according to our previously reported procedure.^{15d} Coating of a ³⁵ layer of silica on the surface of the $CoFe_2O_4$ NPs was prepared according to the procedure of Chen et al.¹⁷ The $CoFe_2O_4$ NPs (0.5 g) were dispersed in a 1L solution with the molar composition of 292 NH₄OH : 1 CTABr : 2773 H₂O under vigorous mixing. Tetraethyl orthosilicate was then added successively. After

- ⁴⁰ stirring for 24 h at room temperature, the black $CoFe_2O_4$ NPs were collected with a permanent magnet, followed by washing three times with ethanol, diethyl ether and drying at 100 °C in a vacuum for 24 h. The obtained $CoFe_2O_4@SiO_2$ (0.5g) was added to the solution of 3-chloropropyltrimethoxysilane (5 mmol) and
- ⁴⁵ triethylamine (0.25 mL) in dry toluene (20 ml) and refluxed for 48 h. After the reaction finished, the 3-chloropropyl CoFe₂O₄@SiO₂ NPs were separated by a permanent magnet, washed with double-distilled water and anhydrous ethanol, and dried at 100 °C for 5 h to give the 3-chloropropyl CoFe₂O₄@SiO₂.
- 50 For the preparation of CoFe₂O₄@SiO₂-DABCO: 3chloropropyl CoFe₂O₄@SiO₂ (0.5 g) and DABCO (0.56 g, 5 mmol) were added in a 50 mL round-bottomed flask contained dry acetone (30 mL) and refluxed for 36 h. The solid was collected using a permanent magnet, followed by washing with 55 acetone, ethanol, and methanol in turn. Finally, the obtained
- CoFe₂O₄@SiO₂-DABCO was dried under vacuum at 60 °C for 24 h.

The obtained $CoFe_2O_4@SiO_2$ -DABCO (0.25 g) were added to the solution of antimony (III) chloride (0.225 g) in dry acetone (0 (10 mL) in a 25 mL round-bottomed flask equipped with a reflux condenser, and refluxed for 12 h. The resulting solid was collected using a permanent magnet, followed by washing three times with acetone and dried under vacuum at 50 °C for 12 h to give CoFe_2O_4@SiO_2-DABCO-Sb as a black powder.

65 General procedure for synthesis of functionalized pyrroles 4

To a mixture of amines (1 mmol), nitroolefin (1 mmol) and 1,3dicarbonyl compound (1 mmol) in EtOH (1 ml), CoFe₂O₄@SiO₂-DABCO-Sb (0.5 mol%) was added. The reaction mixture was stirred at 80 °C (monitored by TLC). After completion of the 70 reaction, the reaction mixture was cooled to room temperature and the catalyst was separated magnetically, washed with ethyl acetate, and used for subsequent cycles after drying under vacuum. The crude products were obtained by evaporation of the solvent and purified by column chromatography on silica gel 75 using ethyl acetate/hexane as the eluent.

1-(2-Methyl-1,4-diphenyl-1*H***-pyrrol-3-yl)ethanone (4a).** White solid, 106-107 °C; IR (KBr): 3037, 2928, 1657, 1498, 1412, 1228, 752, 700 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 2.08 (s, 3H), 2.41 (s, 3H), 6.67 (s, 1H), 7.30-7.34 (m, 3H), 7.38-7.39 (m, ⁸⁰ 4H), 7.42 (t, *J* = 7.5 Hz, 1H), 7.49 (t, *J* = 7.0 Hz, 2H); ¹³C NMR (CDCl₃, 125MHz) δ 12.9, 31.1, 120.6, 122.6, 126.2, 126.3, 126.8, 128.1, 128.3, 129.3, 129.3, 135.3, 136.0, 138.7, 197.6 ppm. Anal. Calcd for C₁₉H₁₇NO: C, 82.88; H,6.22; N, 5.09. Found: C, 82.72;

- H, 6.04; N, 4.95; ESI-MS: m/z =276 (M+1)⁺. **1-(2,5-Dimethyl-1,4-diphenyl-1***H***-pyrrol-3-yl)ethanone (4b). White solid, mp 102-103 °C; IR (KBr): 2920, 1641, 1496, 1383, 1165, 952, 704 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) \delta 1.85 (s, 3H), 1.93 (s, 3H), 2.28 (s, 3H), 7.25-7.32 (m, 5H), 7.40 (t,** *J* **= 7.5 Hz, 2H), 7.46 (t,** *J* **= 7.0 Hz, 1H), 7.51 (t,** *J* **= 7.5 Hz, 2H) ppm; ⁹⁰ ¹³C NMR (CDCl₃, 125MHz) \delta 11.1, 13.0, 31.0, 121.8, 122.1, 126.6, 126.7, 128.1, 128.2, 128.6, 129.4, 130.5, 134.9, 136.9, 137.6, 197.3 ppm; Anal. Calcd for C₂₀H₁₉NO: C, 83.01; H, 6.62; N, 4.84; Found: C, 82.92; H, 6.47; N, 4.71; ESI-MS: m/z =290 (M+1)⁺.**
- ⁹⁵ **1-(2,5-Dimethyl-1-phenyl-4-(p-tolyl)-1H-pyrrol-3yl)ethanone (4c).** Yellow sticky liquid; IR (KBr): 2920, 1653, 1518, 1458, 1383, 1165, 950, 700 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.84 (s, 3H), 1.95 (s, 3H), 2.28 (s, 3H), 2.39 (s, 3H), 7.18-7.21 (m, 4H), 7.25 (d, J = 7.5 Hz, 2H), 7.45 (t, J = 7.5 Hz, 2H), 7.45 (t, J = 7.5 Hz, 2H), 7.50 (t, J =
- ¹⁰⁰ 1H), 7.50 (t, J = 7.5 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 11.2, 13.0, 21.2, 31.0, 121.8, 122.0, 126.6, 128.2, 128.6, 128.9, 130.3, 133.8, 134.8, 136.1, 137.6, 197.5 ppm; Anal. Calcd for C₂₁H₂₁NO: C, 83.13; H, 6.98; N, 4.62; Found: C, 83.02; H, 6.79; N, 4.58; ESI-MS: m/z = 304 (M+1)⁺.
- **1**-(4-(4-Fluorophenyl)-2,5-dimethyl-1-phenyl-1*H*-pyrrol-**3**-yl)ethanone (4d). Yellow solid, mp 127-128 °C; IR (KBr): 2922, 1649, 1514, 1415, 1383, 1215, 954, 698 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.82 (s, 3H), 1.94 (s, 3H), 2.28 (s, 3H), 7.09 (t, *J* = 8.5 Hz, 2H), 7.24-7.28 (m, 4H), 7.47 (t, *J* = 7.0 Hz, 1H), 110 7.52 (t, *J* = 8.0 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 11.0, 13.0, 31.0, 115.1 (d, ²*J*_{CF} = 21.2 Hz),120.9, 121.7, 126.8, 128.1, 128.7, 129.5, 131.9 (d, ³*J*_{CF} = 7.5 Hz), 132.8 (d, ⁴*J*_{CF} = 3.2 Hz), 135.0, 137.5, 161.8 (d, ¹*J*_{CF} = 244.1 Hz), 196.9 ppm; Anal. Calcd for C₂₀H₁₈FNO: C, 78.15; H, 5.90; N, 4.56; Found: C, 78.01; H, 115 5.76; N, 4.45; ESI-MS: m/z = 308 (M+1)⁺.

1-(4-(2-Chlorophenyl)-2,5-dimethyl-1-phenyl-1*H***-pyrrol-3-yl)ethanone (4e).** Yellow sticky liquid; IR (KBr): 2920, 1647, 1516, 1406, 1384, 1168, 950, 700 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.76 (s, 3H), 1.91 (s, 3H), 2.32 (s, 3H), 7.24-7.34 (m, ¹²⁰ 5H), 7.45-7.49 (m, 2H), 7.51 (t, *J* = 7.5 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 11.1, 13.3, 30.1, 119.0, 121.3, 126.6, 127.2,

128.1, 128.3, 128.6, 128.7, 129.5, 132.8, 135.0, 135.3, 136.0, 137.4, 196.2 ppm; Anal. Calcd for $C_{20}H_{18}CINO: C$, 74.18; H, 5.60; N, 4.33; Found: C, 74.09; H, 5.47; N, 4.19; ESI-MS: m/z = 324 (M+1)⁺.

- **1-(4-(3-Chlorophenyl)-2,5-dimethyl-1-phenyl-1***H***-pyrrol-3-yl)ethanone (4f).** Yellow solid, mp 108-110 °C; IR (KBr): 2920, 1647, 1595, 1516, 1383, 1168, 952, 696 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.84 (s, 3H), 1.97 (s, 3H), 2.27 (s, 3H), 7.19 (d, *J* = 7.5 Hz, 1H), 7.23-7.34 (m, 5H), 7.47 (t, *J* = 7.0 Hz, 1H),
- ¹⁰ 7.52 (t, J = 7.5 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 11.1, 13.0, 31.0, 120.7, 121.7, 126.7, 127.0, 128.1, 128.7, 128.8, 129.4, 129.5, 130.4, 134.0, 135.2, 137.3, 138.9, 196.7 ppm; Anal. Calcd for C₂₀H₁₈ClNO: C, 74.18; H, 5.60; N, 4.33; Found: C, 74.08; H, 7.44; N, 4.25; ESI-MS: m/z = 324 (M+1)⁺.
- **1-5 1-(4-(4-Chlorophenyl)-2,5-dimethyl-1-phenyl-1***H***-pyrrol-3-yl)ethanone (4g).** Yellow solid, mp 146-147 °C; IR (KBr): 2914, 1647, 1489, 1383, 1166, 1087, 952, 698 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.85 (s, 3H), 1.98 (s, 3H), 2.30 (s, 3H), 7.26-7.28 (m, 4H), 7.40 (d, J = 8.0 Hz, 2H), 7.49 (t, J = 7.0 Hz,
- ²⁰ 1H), 7.54 (t, J = 7.5 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 11.1, 13.0, 31.1, 120.8, 121.7, 126.9, 128.1, 128.4, 128.7, 129.5, 131.7, 132.5, 135.1, 135.4, 137.4, 196.8 ppm; Anal. Calcd for C₂₀H₁₈ClNO: C, 74.18; H, 5.60; N, 4.33; Found: C, 74.06; H, 5.48; N, 4.25; ESI-MS: m/z = 324 (M+1)⁺.
- 1-(2,5-Dimethyl-4-(4-nitrophenyl)-1-phenyl-1*H*-pyrrol-3-yl)ethanone (4h). Yellow sticky liquid; IR (KBr): 2922, 1647, 1527, 1348, 1174, 954, 690 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.86 (s, 3H), 2.01 (s, 3H), 2.29 (s, 3H), 7.25 (d, *J* = 7.0 Hz, 2H), 7.49-7.58 (m, 4H), 7.64 (d, *J* = 7.5 Hz, 1H), 8.18 (d, *J* = 7.5 Hz,
- ³⁰ 2H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 11.1, 13.2, 31.1, 119.8, 121.5, 121.6, 125.0, 127.6, 128.1, 129.0, 129.6, 135.6, 136.7, 137.2, 138.8, 195.9 ppm; Anal. Calcd for C₂₀H₁₈N₂O₃: C, 71.84; H, 5.43; N, 8.38; Found: C, 71.76; H, 5.32; N, 8.25; ESI-MS: m/z = 335 (M+1)⁺.
- ³⁵ **1-(4-(Furan-2-yl)-2,5-dimethyl-1-phenyl-1***H***-pyrrol-3-yl)ethanone (4i).** White solid, mp 101-102 °C; IR (KBr): 2922, 1643, 1516, 1383, 1172, 1076, 954, 705 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.93 (s, 3H), 2.05 (s, 3H), 2.27 (s, 3H), 6.32 (d, *J* = 3.0 Hz, 1H), 6.48 (s, 1H), 7.21 (d, *J* = 7.0 Hz, 2H), 7.45-7.52 (m,
- ⁴⁰ 4H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 11.3, 12.9, 29.4, 109.1, 111.0, 111.4, 121.1, 128.0, 128.8, 129.4, 129.5, 135.7, 137.2, 141.9, 148.9, 196.5 ppm; Anal. Calcd for C₁₈H₁₇NO₂: C, 77.40; H, 6.13; N, 5.01; Found: C, 77.28; H, 6.07; N, 4.85; ESI-MS: m/z = 280 (M+1)⁺.
- ⁴⁵ **1-(2,5-Dimethyl-1-phenyl-4-(thiophen-2-yl)-1***H***-pyrrol-3-yl)ethanone (4j).** Yellow solid, mp 81-82 °C; IR (KBr): 2918, 1647, 1498, 1383, 1261, 1076, 945, 698 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.88 (s, 3H), 2.05 (s, 3H), 2.27 (s, 3H), 6.94 (dd, *J* = 1.0, 3.5 Hz, 1H), 7.07 (dd, *J* = 3.5, 5.0 Hz, 1H), 7.23 (d, *J* = 7.0
- ⁵⁰ Hz, 2H), 7.33 (dd, J = 1, 5.0 Hz, 1H), 7.45-7.52 (m, 3H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 11.2, 13.1, 30.3, 113.5, 122.3, 125.8, 127.1, 127.9, 128.1, 128.8, 128.9, 129.5, 135.3, 137.3, 137.6, 196.8 ppm; Anal. Calcd for C₁₈H₁₇NOS: C, 73.19; H, 5.80; N, 4.74; Found: C, 73.02; H, 5.65; N, 4.59; ESI-MS: m/z = 296 ⁵⁵ (M+1)⁺.
- **1-(2,5-Dimethyl-4-(naphthalen-1-yl)-1-phenyl-1***H***-pyrrol-3-yl)ethanone (4k).** Yellow solid, mp 133-134 °C; IR (KBr): 2918, 1647, 1498, 1383, 1276, 949, 702 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.63 (s, 3H), 1.71 (s, 3H), 2.39 (s, 3H), 7.32 (d, *J* =
- ⁶⁰ 7.5 Hz, 2H), 7.43-7.55 (m, 7H), 7.82 (d, *J* = 8.5 Hz, 1H), 7.85 (d, *J* = 8.5 Hz, 1H), 7.89 (d, *J* = 8.0 Hz, 1H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 11.2, 13.4, 30.1, 119.5, 122.3, 125.5, 125.8, 126.2, 126.3, 127.5, 128.2, 128.3, 128.6, 128.7, 129.1, 129.5, 133.6, 133.7, 134.8, 135.6, 137.6, 196.9 ppm; Anal. Calcd for
 ⁶⁵ C₂₄H₂₁NO: C, 84.92; H, 6.24; N, 4.13; Found: C, 84.81; H, 6.19;

N, 4.02; ESI-MS: $m/z = 340 (M+1)^+$.

1-(5-Ethyl-2-methyl-1,4-diphenyl-1*H*-pyrrol-3yl)ethanone (41). Yellow sticky liquid; IR (KBr): 2929, 1653,

y formation (41). Tenow sucky inquire, in (KB1). 2523, 1033, 1496, 1253, 1166, 1028, 700 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 70 0.71 (t, J = 7.5 Hz, 3H), 1.89 (s, 3H), 2.26 (s, 3H), 2.27 (q, J = 0.71 (t, J

7.5 Hz, 2H), 7.28-7.33 (m, 5H), 7.39 (t, J = 8.0 Hz, 2H), 7.46-7.53 (m, 3H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 12.9, 14.9, 17.9, 31.0, 121.7, 121.9, 126.7, 128.2, 128.5, 128.7, 129.3, 130.6, 132.9, 135.1, 137.0, 137.6, 197.2 ppm; Anal. Calcd for 75 C₂₁H₂₁NO: C, 83.13; H, 6.98; N, 4.62; Found: C, 82.99; H, 6.79; N, 4.55; ESI-MS: m/z = 304 (M+1)⁺.

1-(5-Ethyl-2-methyl-1-phenyl-4-(p-tolyl)-1*H***-pyrrol-3-yl)ethanone (4m).** Yellow sticky liquid; IR (KBr): 2929, 1653, 1498, 1363, 1165, 950, 700 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ so 0.71 (t, *J* = 7.5 Hz, 3H), 1.91 (s, 3H), 2.26 (s, 3H), 2.27 (q, *J* = 7.5 Hz, 2H), 2.39 (s, 3H), 7.18-7.22 (m, 4H), 7.27-7.29 (m, 2H), 7.45-7.52 (m, 3H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 12.9, 14.9, 18.0, 21.2, 31.0, 121.7, 121.8, 128.5, 128.6, 128.9, 129.3, 130.4, 132.9, 133.9, 135.0, 136.2, 137.6, 197.3 ppm; Anal. Calcd for ss C₂₂H₂₃NO: C, 83.24; H, 7.30; N, 4.41; Found: C, 82.90; H, 7.28;

N, 4.27; ESI-MS: m/z = 318 (M+1)⁺. **1-(5-Ethyl-4-(furan-2-yl)-2-methyl-1-phenyl-1***H***-pyrrol-3-yl)ethanone (4n).** Yellow sticky liquid; IR (KBr): 2931, 1647, 1508, 1432, 1151, 1010, 704 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 90 0.82 (t, *J* = 7.5 Hz, 3H), 2.03 (s, 3H), 2.24 (s, 3H), 3.35 (q, *J* = 7.5 Hz, 2H), 6.33 (d, *J* = 3.0 Hz, 1H), 6.47-6.48 (m, 1H), 7.23-7.25 (m, 2H), 7.46-7.53 (m, 4H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 12.8, 15.0, 18.3, 29.4, 109.2, 110.8, 110.9, 121.1, 128.3, 128.9, 129.4, 135.8, 137.1, 141.9, 148.8, 196.5 ppm; Anal. 95 Calcd for C₁₉H₁₉NO₂: C, 77.79; H, 6.53; N, 4.77; Found: C, 77 (5) H (42) H (45); ESI M(5; m/c= 10.4 (M+1)⁺]

77.62; H, 6.42; N, 4.59; ESI-MS: m/z = 194 (M+1)⁺. **1-(5-Ethyl-2-methyl-1-phenyl-4-(thiophen-2-yl)-1***H***-pyrrol-3-yl)ethanone (40).** Yellow sticky liquid; IR (KBr): 2931, 1647, 1558, 1508, 1288, 1074, 700 cm⁻¹; ¹H NMR (CDCl₃, 500 100 MHz) δ 0.78 (t, J = 7.5 Hz, 3H), 2.03 (s, 3H), 2.25 (s, 3H), 2.32

(q, J = 7.5 Hz, 2H), 6.96 (dd, J = 1.5, 3.5 Hz, 1H), 7.08 (dd, J = 3.5, 5.5 Hz, 1H), 7.26-7.27 (m, 2H), 7.34 (dd, J = 1.5, 5.5 Hz, 1H), 7.46-7.53 (m, 3H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 12.9, 15.1, 18.2, 30.2, 112.9, 122.2, 125.8, 127.0, 128.1, 128.4, 128.8, ¹⁰⁵ 129.4, 135.1, 135.5, 137.3, 137.5, 196.9 ppm; Anal. Calcd for

 $C_{19}H_{19}NOS: C, 73.75; H, 6.19; N, 4.53; Found: C, 73.59; H, 6.00; N, 4.51; ESI-MS: m/z = 310 (M+1)⁺.$

1-(1-(5-(*Tert***-butyl)phenyl)-2-methyl-5-phenyl-1***H***-pyrrol-3-yl)ethanone (4p).** White solid, 146-148 °C; IR (KBr): 2929, 110 1650, 1512, 1408, 1220, 843, 756, 702 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.37 (s, 9H), 2.07 (s, 3H), 2.41 (s, 3H), 6.65 (s, 1H), 7.25 (d, *J* = 8.5 Hz, 2 H), 7.30-7.32 (m, 1H), 7.37-7.38 (m, 4H), 7.58 (d, *J* = 8.5 Hz, 2 H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 12.9, 31.1, 31.3, 34.7, 120.7, 122.4, 125.7, 126.1, 126.2, 126.7, 115 128.2, 129.3, 135.4, 136.1, 136.1, 151.2, 197.6 ppm; Anal. Calcd for C₂₃H₂₅NO: C, 83.34; H, 7.60; N, 4.23; Found: C, 83.28; H, 7.56; N, 4.15; ESI-MS: m/z = 332 (M+1)⁺.

1-(2-Methyl-1-(naphthalen-1-yl)-4-phenyl-1H-pyrrol-3-yl)ethanone (4q). White solid, 142-143 °C; IR: 3130, 2929, 1657, 120 1506, 1438, 1257, 1234, 1128, 806, 777; ¹H NMR (CDCl₃, 500 MHz) δ 2.15 (s, 3H), 2.22 (s, 3H), 6.71 (s, 1H), 7.32 (t, J = 7.5 Hz, 1H), 7.38-7.48 (m, 6H), 7.50-7.53 (m, 1H), 7.57 (t, J = 7.5 Hz, 2H), 7.96 (t, J = 9.0 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 12.4, 31.2, 121.7, 121.8, 122.9, 125.2, 125.3, 126.1, 126.8, 126.9, 125 127.6, 128.2, 128.3, 129.3, 129.4, 130.6, 134.1, 135.3, 136.1, 137.0, 197.7 ppm; Anal. Calcd for C₂₃H₁₉NO: C, 84.89; H, 5.89; N, 4.30; Found: C, 84.79; H, 5.81; N, 4.15; ESI-MS: m/z = 326 (M+1)⁺.

1-(1-(9*H***-Fluoren-2-yl)-2-methyl-4-phenyl-1***H***-pyrrol-3-¹³⁰ yl)ethanone (4r). White solid, 148-149 °C; IR (KBr): 3035, 2920,** 1657, 1512, 1404, 772, 732 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 2.09 (s, 3H), 2.45 (s, 3H), 3.98 (s, 2H), 6.72 (s, 1H), 7.31-7.43 (m, 8H), 7.50 (s, 1H), 7.58 (d, *J* = 7.5 Hz, 1H), 7.82 (d, *J* = 7.5 Hz, 1H), 7.86 (d, *J* = 7.5 Hz, 1H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 13.1, 31.2, 36.9, 120.2, 120.3, 120.8, 122.5, 123.0, 125.0, 125.2,

- 5 0 13.1, 31.2, 36.9, 120.2, 120.3, 120.8, 122.5, 123.0, 125.0, 125.2, 126.3, 126.8, 127.1, 127.3, 128.3, 129.4, 135.5, 136.1, 137.2, 140.5, 141.7, 143.4, 145.3, 197.6 ppm; Anal. Calcd for $C_{26}H_{21}NO: C, 85.92; H, 5.82; N, 3.85;$ Found: C, 85.86; H, 5.69; N, 3.78; ESI-MS: $m/z = 364 (M+1)^+$.
- 10 1-(2,5-Dimethyl-4-phenyl-1-(p-tolyl)-1*H*-pyrrol-3yl)ethanone (4s). Yellow solid mp 112-113 °C: IR (KBr):

yl)ethanone (4s). Yellow solid, mp 112-113 °C; IR (KBr): 2920, 1647, 1508, 1383, 1166, 950, 704 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.84 (s, 3H), 1.93 (s, 3H), 2.28 (s, 3H), 2.43 (s, 3H), 7.13 (d, J = 8.0 Hz, 2H), 7.29-7.31 (m, 5H), 7.39 (t, J = 7.5 Hz, 2H),

- ¹⁵ ppm; ¹³C NMR (CDCl₃, 125MHz) δ 10.9, 12.8, 20.9, 30.7, 121.4, 121.7, 126.3, 126.5, 127.6, 127.9, 129.8, 130.2, 134.6, 134.8, 136.7, 138.3, 197.0 ppm; Anal. Calcd for C₂₁H₂₁NO: C, 83.13; H, 6.98; N, 4.62; Found: C, 83.1; H, 6.79; N, 4.52; ESI-MS: m/z = 304 (M+1)⁺.
- ²⁰ 1-(1-(4-Methoxyphenyl)-2,5-dimethyl-4-phenyl-1*H*pyrrol-3-yl)ethanone (4t). Yellow solid, mp 130-132 °C; IR (KBr): 2902, 1654, 1514, 1383, 1247, 958, 707 cm⁻¹; ¹H NMR
- (CDCl₃, 500 MHz) δ 1.84 (s, 3H), 1.93 (s, 3H), 2.28 (s, 3H), 3.87 (s, 3H), 7.01 (d, *J* = 9.0 Hz, 2H), 7.17 (d, *J* = 8.5 Hz, 2H), 7.29-²⁵ 7.31 (m, 3H), 7.39 (t, *J* = 7.0 Hz, 2H) ppm; ¹³C NMR (CDCl₃,
- 125MHz) δ 11.1, 13.0, 30.9, 55.5, 114.6, 121.6, 121.9, 126.5, 127.0, 128.2, 129.1, 130.1, 130.5, 135.2, 136.9, 159.5, 197.2 ppm; Anal. Calcd for C₂₁H₂₁NO₂: C, 78.97; H, 6.63; N, 4.39; Found: C, 78.88; H, 6.45; N, 4.32; ESI-MS: m/z = 320 (M+1)⁺.
- ³⁰ **1-(1-(4-Fluorophenyl)-2,5-dimethyl-4-phenyl-1***H***-pyrrol-3-yl)ethanone (4u).** Yellow solid, mp 95-96 °C; IR (KBr): 2918, 1647, 1508, 1383, 1222, 952, 704 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.84 (s, 3H), 1.92 (s, 3H), 2.27 (s, 3H), 7.19-7.24 (m, 4H), 7.28-7.33 (m, 3H), 7.39 (t, J = 7.0 Hz, 2H) ppm; ¹³C NMR
- ³⁵ (CDCl₃, 125MHz) δ 11.1, 12.9, 30.9, 116.3 (d, ² J_{CF} = 22.7 Hz),121.9, 122.2, 126.7, 128.2, 129.9 (d, ³ J_{CF} = 8.7 Hz), 130.4, 133.5 (d, ⁴ J_{CF} = 3.3 Hz), 134.9, 136.7, 162.3 (d, ¹ J_{CF} = 247.5 Hz), 197.4 ppm; Anal. Calcd for C₂₀H₁₈FNO: C, 78.15; H, 5.90; N, 4.56; Found: C, 78.06; H, 5.81; N, 4.49; ESI-MS: m/z = 308 ⁴⁰ (M+1)⁺.
- **1-(1-(4-Chlorophenyl)-2,5-dimethyl-4-phenyl-1H-pyrrol-3-yl)ethanone (4v).** Yellow sticky liquid; IR (KBr): 2920, 1647, 1496, 1384, 1166, 952, 690 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.85 (s, 3H), 1.92 (s, 3H), 2.28 (s, 3H), 7.21 (d, *J* = 8.5 Hz, 2H), 45 7.28-7.32 (m, 3H), 7.39 (t, *J* = 7.0 Hz, 1H), 7.48 (d, *J* = 8.5 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 11.1, 13.0, 30.9, 122.1, 122.4, 126.5, 126.7, 128.2, 129.5, 129.7, 130.4, 134.6, 134.7,
- 136.1, 136.6, 197.3 ppm; Anal. Calcd for $C_{20}H_{18}CINO$: C, 74.18; H, 5.60; N, 4.33; Found: C, 74.05; H, 5.48; N, 4.26; ESI-MS: m/z $_{50} = 324 (M+1)^+$.

1-(1-(2-Bromophenyl)-2,5-dimethyl-4-phenyl-1*H***-pyrrol-3-yl)ethanone (4w).** Yellow sticky liquid; IR (KBr): 2918, 1508, 1481, 1383, 1273, 1166, 952, 706 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.79 (s, 3H), 1.94 (s, 3H), 2.23 (s, 3H), 7.29-7.41 (m, ⁵⁵ 7H), 7.47 (t, J = 7.5 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 10.6, 12.6, 31.0, 121.7, 122.2, 123.8, 126.3, 126.6, 128.1, 128.5, 130.3, 130.5, 130.6, 133.6, 134.8, 136.8, 137.2, 197.3 ppm; Anal. Calcd for C₂₀H₁₈BrNO: C, 65.23; H, 4.93; N, 3.80; Found: C, 62.20; H, 4.87; N, 3.69; ESI-MS: m/z ⁶⁰ = 368 (M+1)⁺.

1-(1-(3-Bromophenyl)-2,5-dimethyl-4-phenyl-1*H***-pyrrol-3-yl)ethanone hydrobromide (4x).** Yellow sticky liquid; IR (KBr): 2920, 1647, 1508, 1479, 1383, 1273, 1166, 952, 698 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.86 (s, 3H), 1.92 (s, 3H), 2.29 (s, ⁶⁵ 3H), 7.22 (d, *J* = 8.0 Hz, 1H), 7.28-7.33 (m, 3H), 7.40 (t, *J* = 8.0 Hz, 3H), 7.45 (s, 1H), 7.61 (d, J = 8.0 Hz, 1H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 11.2, 13.0, 31.0, 122.1, 122.4, 122.8, 126.5, 126.7, 127.0, 128.3, 130.4, 130.7, 131.4, 131.9, 134.7, 136.6, 138.9, 197.3 ppm; Anal. Calcd for C₂₀H₁₈BrNO: C, 65.23; H, 70 4.93; N, 3.80; Found: C, 65.04; H, 4.81; N, 3.69; ESI-MS: m/z =

 10 4.95; N, 5.80; Found: C, 65.04; H, 4.81; N, 5.09; ESI-MS: $m/2 = 368 (M+1)^+$. **1-(1-(4-Bromophenyl)-2,5-dimethyl-4-phenyl-1***H*-pyrrol-

3-yl)ethanone (4y). Yellow solid, mp 106-107 °C; IR (KBr): 2922, 1658, 1519, 1489, 1384, 1263, 1168, 952, 705 cm⁻¹; ¹H 75 NMR (CDCl₃, 500 MHz) δ 1.85 (s, 3H), 1.92 (s, 3H), 2.28 (s, 3H), 7.15 (d, J = 8.5 Hz, 2H), 7.28-7.33 (m, 3H), 7.39 (t, J = 7.5 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 11.1, 13.0, 31.0, 122.1, 122.4, 122.7, 126.5, 126.7, 128.2, 129.8, 130.4, 132.7, 134.7, 136.6, 197.4 ppm; Anal. Calcd 80 for C₂₀H₁₈BrNO: C, 65.23; H, 4.93; N, 3.80; Found: C, 65.07; H, 4.85; N, 3.72; ESI-MS; m/z = 368 (M+1)⁺.

1.2. 1.2. 1.2. 1.2. 1.11. 1.1. 1.2. 1.2. 3.06 (M1+1) **1. 1.2. 1.3. 1**

⁹⁰ 140.8, 197.3 ppm; Anal. Calcd for $C_{21}H_{18}F_3NO$: C, 70.58; H, 5.08; N, 3.92; Found: C, 70.50; H, 4.89; N, 3.82; ESI-MS: m/z = 358 (M+1)⁺.

1-(2,5-Dimethyl-4-phenyl-1-(4-

(trifluoromethoxy)phenyl)-1*H*-pyrrol-3-yl)ethanone (4aa). ⁹⁵ White solid, mp 125-126 °C; IR (KBr): 2926, 1660, 1508, 1410, 1384, 1269, 956, 705 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.85 (s, 3H), 1.92 (s, 3H), 2.28 (s, 3H), 7.29-7.33 (m, 5H), 7.36-7.41 (m, 4H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 11.1, 12.9, 30.9, 119.4 (q, ¹J_{FC} =256.6 Hz), 121.8, 122.1, 122.4, 126.5, 126.7, 128.2,

¹⁰⁰ 129.7, 130.4, 134.7, 136.0, 136.6, 149.0, 197.3 ppm; Anal. Calcd for $C_{21}H_{18}F_3NO_2$: C, 67.55; H, 4.86; N, 3.75; Found: C, 67.45; H, 4.80; N, 3.69; ESI-MS: m/z = 374 (M+1)⁺.

1-(1-(Furan-2-ylmethyl)-2,5-dimethyl-4-phenyl-1H-

pyrrol-3-ylethanone (4ab). White solid, mp 120-121 °C; IR ¹⁰⁵ (KBr): 2922, 1643, 1518, 1406, 1383, 1292, 941, 702 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.85 (s, 3H), 2.13 (s, 3H), 2.58 (s, 3H), 5.00 (s, 2H), 6.14 (d, *J* = 7.5 Hz, 1H), 6.32 (dd, *J* = 2.0 Hz, 3.0 Hz, 1H), 7.22-7.24 (m, 2H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.35-7.38 (m, 3H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 10.3, 11.7, ¹¹⁰ 31.0, 40.6, 107.9, 110.4, 121.6, 122.2, 125.9, 126.6, 128.1, 130.6, 134.1, 137.0, 142.6, 149.9, 197.2 ppm; Anal. Calcd for C₁₉H₁₉NO₂: C, 77.79; H, 6.53; N, 4.77; Found: C, 77.72; H, 6.47; N, 4.68; ESI-MS: m/z = 294 (M+1)⁺.

1-(1-(9H-fluoren-2-yl)-2,5-dimethyl-4-phenyl-1H-pyrrol-

3-yl)ethanone (4ac). Yellow solid, mp 153-155 °C; IR (KBr): 2922, 1654, 1518, 1489, 1357, 1265, 952, 709 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.89 (s, 3H), 1.95 (s, 3H), 2.32 (s, 3H), 3.99 (s, 2H), 7.27-7.44 (m, 9H), 7.59 (d, J = 7.5 Hz, 1H), 7.83 (d, J =7.5 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H) ppm; ¹³C NMR (CDCl₃, 120 125MHz) δ 11.3, 13.2, 31.1, 36.9, 120.3, 120.5, 121.8, 122.2, 124.9, 125.2, 126.6, 126.9, 126.9, 127.1, 127.4, 128.3, 130.6, 135.2, 136.0, 137.0, 140.5, 142.2, 143.5, 144.5, 197.3 ppm; Anal. Calcd for C₂₇H₂₃NO: C, 85.91; H, 6.14; N, 3.71; Found: C, 85.88; H, 6.01; N, 3.56; ESI-MS: m/z = 378 (M+1)⁺.

yl)ethanone (4ad). Yellow sticky liquid; IR (KBr): 2920, 1647, 1516, 1406, 1384, 1155, 941, 704 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.86 (s, 3H), 2.03 (s, 3H), 2.48 (s, 3H), 4.46 (s, 2H), 4.83 (d, *J* = 17.0 Hz, 1H), 5.18 (d, *J* = 10.5 Hz, 1H), 5.87-5.94 (m, 1H), 130 7.23 (d, *J* = 7.0 Hz, 2H), 7.29 (t, *J* = 7.0 Hz, 1H), 7.37 (t, *J* = 7.5

Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 10.0, 11.4, 31.0, 45.7, 116.4, 121.3, 122.1, 125.7, 126.5, 128.1, 130.6, 132.6, 134.0, 137.1, 197.2 ppm; Anal. Calcd for C₁₇H₁₉NO: C, 80.60; H, 7.56; N, 5.53; Found: C, 80.57; H, 7.48; N, 5.47; ESI-MS: m/z = 5 254 (M+1)⁺.

1-(1-Benzyl-2,5-dimethyl-4-phenyl-1*H***-pyrrol-3yl)ethanone (4ae).** Yellow sticky liquid; IR (KBr): 2918, 1647, 1516, 1406, 1155, 945, 704 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.90 (s, 3H), 2.00 (s, 3H), 2.47 (s, 3H), 5.11 (s, 2H), 6.97 (d, *J* =

¹⁰ 7.5 Hz, 2H), 7.26-7.35 (m, 6H), 7.38 (t, J = 7.5 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 10.3, 11.8, 31.1, 46.9, 121.6, 122.4, 125.7, 126.0, 126.6, 127.5, 128.2, 128.9, 130.6, 134.2, 136.8, 137.1, 197.3 ppm; Anal. Calcd for C₂₁H₂₁NO: C, 83.13; H, 6.98; N, 4.62; Found: C, 83.02; H, 6.91; N, 4.49; ESI-MS: m/z = 304 ¹⁵ (M+1)⁺.

1-(2,5-Dimethyl-1-phenethyl-4-phenyl-1*H***-pyrrol-3yl)ethanone (4af). White solid, mp 124-125 °C; IR (KBr): 2939, 1639, 1510, 1410, 1151, 1026, 952, 700 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) \delta 1.86 (s, 3H), 1.93 (s, 3H), 2.49 (s, 3H), 2.94 (t,** *J* **= 20 7.5 Hz, 2H), 4.04 (t,** *J* **= 7.5 Hz, 2H), 7.11 (d,** *J* **= 7.5 Hz, 2H),**

- 7.21 (d, J = 7.5 Hz, 2H), 7.24-7.32 (m, 4H), 7.37 (t, J = 7.5 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 10.2, 11.8, 31.0, 36.9, 45.3, 121.5, 122.2, 125.6, 126.5, 127.0, 128.2, 128.7, 128.8, 130.6, 133.7, 137.2, 137.7, 197.1 ppm; Anal. Calcd for ²⁵ C₂₂H₂₃NO: C, 83.24; H, 7.30; N, 4.41; Found: C, 83.07; H, 7.22;
- $^{25}C_{22}R_{23}NO.C, 83.24, H, 7.50, N, 4.41, Found. C, 83.07, H, 7.2. N, 4.25; ESI-MS: m/z = 318 (M+1)⁺.$

(S)-1-(2,5-Dimethyl-4-phenyl-1-(1-phenylethyl)-1*H*pyrrol-3-yl)ethanone (4ag). Yellow solid, mp 92-93 °C; IR (KBr): 2920, 1645, 1518, 1396, 1269, 950, 704 cm⁻¹; ¹H NMR

- ³⁰ (CDCl₃, 500 MHz) δ 1.86 (s, 3H), 1.88 (s, 3H), 1.92 (d, J = 7.5 Hz, 3H), 2.41 (s, 3H), 5.64 (q, J = 7.0 Hz, 1H), 7.12 (d, J = 7.5 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.28 (t, J = 6.5 Hz, 2H), 7.33-7.38 (m, 4H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 11.5, 12.6, 18.8, 31.2, 52.7, 122.0, 122.9, 125.9, 126.5, 127.2, 128.1, 128.7,
- $_{35}$ 130.7, 134.0, 137.2, 140.9, 197.7 ppm; Anal. Calcd for $C_{22}H_{23}NO;$ C, 83.24; H, 7.30; N, 4.41; Found: C, 83.07; H, 7.21; N, 4.30; ESI-MS: m/z = 318 (M+1)^+.

1-(1-Cyclopropyl-2,5-dimethyl-4-phenyl-1*H*-pyrrol-3-

- **yl)ethanone (4ah).** Yellow sticky liquid; IR (KBr): 2924, 1647, ⁴⁰ 1516, 1465, 1384, 1151, 950, 702 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.96 (q, J = 5.5 Hz, 2H), 1.14 (q, J = 7.0 Hz, 2H), 1.83 (s, 3H), 2.14 (s, 3H), 2.59 (s, 3H), 2.93-2.98 (m, 1H), 7.21 (d, J = 7.5 Hz, 2H), 7.28 (t, J = 7.5 Hz, 1H), 7.36 (t, J = 7.5 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 8.1, 11.3, 13.0, 26.0, 31.0,
- ⁴⁵ 121.3, 121.9, 126.5, 127.9, 128.1, 130.5, 136.5, 137.1, 197.1 ppm; Anal. Calcd for $C_{17}H_{19}NO$: C, 80.60; H, 7.56; N, 5.53; Found: C, 80.48; H, 7.39; N, 5.49; ESI-MS: m/z = 254 (M+1)⁺.

1-(1-Cyclopentyl-2,5-dimethyl-4-phenyl-1*H*-pyrrol-3-

- **yl)ethanone (4ai).** Yellow solid, mp 61-62 °C; IR (KBr): 2924, ⁵⁰ 1647, 1508, 1406, 1383, 1161, 950, 704 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.65-1.75 (m, 4H), 1.82 (s, 3H), 1.92-2.05 (m, 4H), 2.11 (s, 3H), 2.57 (s, 3H), 4.63-4.70 (m, 1H), 7.22 (d, *J* = 7.0 Hz, 2H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.36 (t, *J* = 7.5 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 11.8, 12.9, 25.2, 31.1, 56.3, 121.9,
- $_{55}$ 122.9, 125.7, 126.5, 128.1, 130.6, 133.9, 137.3, 197.5 ppm; Anal. Calcd for $C_{19}H_{23}NO:$ C, 81.10; H, 8.24; N, 4.98; Found: C, 81.10; H, 8.15; N, 4.79; ESI-MS: m/z = 282 (M+1)⁺.

1-(2,5-Dimethyl-4-phenyl-1-propyl-1*H*-pyrrol-3-

yl)ethanone (4aj). Yellow sticky liquid; IR (KBr): 2933, 1647,
60 1506, 1408, 1383, 1155, 950, 704 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.99 (t, J = 7.5 Hz, 3H), 1.67-1.74 (m, 2H), 1.84 (s, 3H), 2.06 (s, 3H), 2.52 (s, 3H), 3.77 (t, J = 8.0 Hz, 2H), 7.22 (d, J = 7.5 Hz, 2H), 7.28 (t, J = 7.0 Hz, 1H), 7.36 (t, J = 7.5 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 10.3, 11.3, 11.8, 23.8, 30.9,
65 45.3, 121.2, 122.1, 125.4, 126.4, 128.1, 130.6, 133.7, 137.2,

197.1 ppm; Anal. Calcd for $C_{17}H_{21}NO$: C, 79.96; H, 8.29; N, 5.49; Found: C, 79.89; H, 8.21; N, 5.39; ESI-MS: $m/z = 256 (M+1)^+$.

1-(1-Butyl-2,5-dimethyl-4-phenyl-1*H*-pyrrol-3-

- **yl)ethanone (4ak).** Yellow sticky liquid; IR (KBr): 2931, 1647, ⁷⁰ 1512, 1408, 1383, 1155, 952, 704 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.98 (t, *J* = 7.5 Hz, 3H), 1.37-1.44 (m, 2H), 1.62-1.68 (m, 2H), 1.84 (s, 3H), 2.06 (s, 3H), 2.52 (s, 3H), 3.80 (t, *J* = 7.0 Hz, 2H), 7.22 (d, *J* = 7.5 Hz, 2H), 7.29 (t, *J* = 7.0 Hz, 1H), 7.36 (t, *J* = 7.5 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 10.3, 11.8, 13.8, ⁷⁵ 20.1, 30.9, 32.6, 43.5, 121.2, 122.1, 125.3, 126.4, 128.1, 130.6, 133.7, 137.2, 197.1 ppm; Anal. Calcd for C₁₈H₂₃NO: C, 80.26; H, 8.61; N, 5.20; Found: C, 80.18; H, 8.47; N, 5.12; ESI-MS: m/z = 270 (M+1)⁺.
- Methyl**2,5-dimethyl-1,4-diphenyl-1***H*-pyrrole-3-80carboxylate (4al). Yellow solid, mp 108-109 °C; IR (KBr): 2918,1685, 1525, 1379, 1165, 1072, 952, 700 cm⁻¹; ¹H NMR (CDCl₃,500 MHz) δ 1.88 (s, 3H), 2.31 (s, 3H), 3.61 (s, 3H), 7.24-7.30 (m,5H), 7.36 (t, J = 7.5 Hz, 2H), 7.46 (t, J = 7.0 Hz, 1H), 7.51 (t, J =7.5 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 11.3, 12.8, 50.4,
- ⁸⁵ 110.7, 122.4, 126.0, 126.9, 127.5, 128.3, 128.6, 129.5, 130.4, 135.9, 136.4, 137.8, 166.4 ppm; Anal. Calcd for $C_{20}H_{19}NO_2$: C, 78.66; H, 6.27; N, 4.59; Found: C, 78.47; H, 6.09; N, 4.48; ESI-MS: m/z = 306 (M+1)⁺.
- Ethyl2,5-dimethyl-1,4-diphenyl-1*H*-pyrrole-3-carboxylate (4am). Yellow solid, mp 83-84 °C; IR (KBr): 2922,1681, 1533, 1381, 1280, 974, 702 cm⁻¹; ¹H NMR (CDCl₃, 500MHz) δ 1.01 (t, J = 7.0 Hz, 3H), 1.87 (s, 3H), 2.31 (s, 3H), 4.07(q, J = 7.0 Hz, 2H), 7.23-7.26 (m, 3H), 7.29 (d, J = 7.0 Hz, 2H),7.33 (t, J = 7.0 Hz, 2H), 7.44 (t, J = 7.5 Hz, 1H), 7.50 (t, J = 8.095 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 11.3, 12.7, 14.0,59.1, 111.1, 122.4, 125.9, 126.7, 127.4, 128.3, 128.6, 129.5,130.5, 135.7, 136.5, 137.8, 165.9 ppm; Anal. Calcd forC₂₁H₂₁NO₂: C, 78.97; H, 6.63; N, 4.39; Found: C, 78.89; H, 6.56;N, 4.28; ESI-MS: m/z = 320 (M+1)⁺.
- 2-Methoxyethyl 2,5-dimethyl-1,4-diphenyl-1*H*-pyrrole-3-carboxylate (4an). Yellow solid, mp 72-73 °C; IR (KBr): 2922, 1701, 1384, 1274, 1078, 846, 702 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.85 (s, 3H), 2.30 (s, 3H), 3.18 (s, 3H), 3.34 (t, *J* = 5.0 Hz, 2H), 4.17 (t, *J* = 5 Hz, 2H), 7.22-7.26 (m, 3H), 7.29 (d, *J* = ¹⁰⁵ 7.0 Hz, 2H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.44 (t, *J* = 7.5 Hz, 1H), 7.49 (t, *J* = 7.5 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 11.2, 12.7, 58.7, 62.3, 70.3, 110.6, 122.4, 125.9, 126.8, 127.4, 128.3, 128.6, 129.4, 130.5, 136.1, 136.4, 137.8, 165.7 ppm; Anal. Calcd for C₂₂H₂₃NO₃: C, 75.62; H, 6.63; N, 4.01; Found: C, 76.48; H, ¹¹⁰ 6.45; N, 3.92; ESI-MS: m/z = 350 (M+1)⁺.

Allyl 2,5-dimethyl-1,4-diphenyl-1*H*-pyrrole-3-carboxylate (4ao). Yellow sticky liquid; IR (KBr): 2920, 1685, 1508, 1384, 1273, 1172, 927, 698 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.88 (s, 3H), 2.32 (s, 3H), 4.55 (d, *J* = 5.0 Hz, 2H), 4.97 (dd, *J* = 1.5, 17.0 ¹¹⁵ Hz, 1H), 5.01 (d, *J* = 10.5 Hz, 1H), 5.68-5.76 (m, 1H), 7.45-7.26 (m, 3H), 7.30 (d, *J* = 7.0 Hz, 2H), 7.34 (t, *J* = 7.5 Hz, 2H), 7.46 (t, *J* = 7.0 Hz, 1H), 7.51 (t, *J* = 7.0 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 11.2, 12.8, 64.1, 110.7, 116.8, 122.4, 126.0, 126.9, 127.5, 128.3, 128.6, 129.5, 130.5, 132.6, 136.1, 136.4, 137.8, 120 165.6 ppm; Anal. Calcd for C₂₂H₂₁NO₂: C, 79.73; H, 6.39; N, 4.23; Found: C, 79.70; H, 6.25; N, 4.11; ESI-MS: m/z = 332 (M+1)⁺.

Methyl2-ethyl-5-methyl-1,4-diphenyl-1*H*-pyrrole-3-
carboxylate (4ap). Yellow solid, mp 100-101 °C; IR (KBr):1252916, 1685, 1523, 1284, 1155, 1072, 983, 700 cm⁻¹; ¹H NMR
(CDCl₃, 500 MHz) δ 1.04 (t, J = 7.0 Hz, 3H), 1.85 (s, 3H), 2.74
(q, J = 7.5 Hz, 2H), 3.61 (s, 3H), 7.24-7.31 (m, 5H), 7.36 (t, J =
7.5 Hz, 2H), 7.46-7.52 (m, 3H) ppm; ¹³C NMR (CDCl₃,
125MHz) δ 11.2, 14.7, 19.5, 50.4, 109.8, 122.3, 125.9, 126.9,
130130127.4, 128.5, 128.7, 129.4, 130.4, 136.4, 137.8, 142.0, 166.1 ppm;

RSC Advances Accepted Manuscript

Anal. Calcd for $C_{21}H_{21}NO_2$: C, 78.97; H, 6.63; N, 4.39; Found: C, 78.90; H, 6.55; N, 4.29; ESI-MS: $m/z = 320 (M+1)^+$.

Tert-butyl2,5-dimethyl-1,4-diphenyl-1H-pyrrole-3-
carboxylate (4aq). Yellow solid, mp 96-97 °C; IR (KBr): 2926,
5 1685, 1541, 1384, 1288, 1159, 1080, 698 cm⁻¹; ¹H NMR (CDCl₃,
500 MHz) δ 1.26 (s, 9H), 1.87 (s, 3H), 2.30 (s, 3H), 7.23-7.26 (m,
3H), 7.29 (d, J = 7.0 Hz, 2H), 7.35 (t, J = 7.5 Hz, 2H), 7.44 (t, J =
7.5 Hz, 1H), 7.49 (t, J = 8.0 Hz, 2H) ppm; ¹³C NMR (CDCl₃,
125MHz) δ 11.2, 12.4, 28.0, 79.2, 112.7, 122.1, 125.8, 126.4,
10 127.5, 128.3, 128.5, 129.4, 130.4, 135.2, 136.9, 137.9, 165.5 ppm;
Anal. Calcd for C₂₃H₂₅NO₂: C, 79.51; H, 7.25; N, 4.03; Found: C,

79.33; H, 7.09; N, 3.92; ESI-MS: $m/z = 348 (M+1)^+$.

Isobutyl2,5-dimethyl-1,4-diphenyl-1*H*-pyrrole-3-
carboxylate (4ar). Yellow solid, mp 70-71 °C; IR (KBr): 2933,
15 1685, 1527, 1384, 1276, 1078, 949, 698 cm⁻¹; ¹H NMR (CDCl₃,
500 MHz) δ 0.67 (d, J = 7.0 Hz, 6H), 1.63-1.68 (m, 1H), 1.86 (s,
3H), 2.33 (s, 3H), 3.82 (d, J = 6.5 Hz, 2H), 7.22-7.35 (m, 7H),
7.45 (t, J = 7.5 Hz, 1H), 7.50 (t, J = 7.0 Hz, 2H) ppm; ¹³C NMR
(CDCl₃, 125MHz) δ 11.2, 12.8, 19.1, 27.6, 69.8, 111.0, 122.4,
20 126.0, 126.8, 127.5, 128.3, 128.6, 129.5, 130.5, 135.9, 136.7,
137.8, 166.1 ppm; Anal. Calcd for C₂₃H₂₅NO₂: C, 79.51; H, 7.25;
N, 4.03; Found: C, 79.23; H, 7.07; N, 3.95; ESI-MS: m/z = 348
(M+1)⁺.

1-(5-Ethyl-1-(furan-2-ylmethyl)-2-methyl-4-phenyl-1*H*-**25 pyrrol-3-yl)ethanone (4as).** White solid, mp 103-104 °C; IR (KBr): 2929, 1647, 1498, 1406, 1151, 1010, 704 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.01 (t, *J* = 7.5 Hz, 3H), 1.82 (s, 3H), 2.49 (q, *J* = 7.5 Hz, 2H), 2.55 (s, 3H), 5.02 (s, 2H), 6.09 (t, *J* = 2.5 Hz, 1H), 6.32 (dd, *J* = 1.5, 3.0 Hz, 1H), 7.24-7.26 (m, 2H), 7.30 (t, *J*

 $_{30} = 7.0$ Hz, 1H), 7.35-7.38 (m, 3H) ppm; 13 C NMR (CDCl₃, 125MHz) δ 11.7, 15.3, 17.6, 31.0, 40.6, 107.7, 110.4, 121.8, 122.0, 126.7, 128.1, 130.5, 131.8, 134.3, 137.1, 142.4, 150.1, 197.2 ppm; Anal. Calcd for C₂₀H₂₁NO₂: C, 78.15; H, 6.89; N, 4.56; Found: C, 78.11; H, 6.76; N, 6.82; ESI-MS: m/z = 308 as (M+1)⁺.

1-(1-Benzyl-5-ethyl-2-methyl-4-phenyl-1*H***-pyrrol-3yl)ethanone (4at).** Yellow sticky liquid; IR (KBr): 2931, 1653, 1498, 1398, 1415, 952, 700 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.95 (t, *J* = 7.5 Hz, 3H), 1.87 (s, 3H), 2.37 (q, *J* = 7.5 Hz, 2H), 40 2.42 (s, 3H), 5.13 (s, 2H), 6.94 (t, *J* = 7.5 Hz, 2H), 7.25-7.34 (m, 6H), 7.38 (t, *J* = 7.5 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 11.8, 15.6, 17.7, 31.1, 46.8, 121.7, 122.2, 125.5, 126.7, 127.4, 128.1, 128.9, 130.6, 132.1, 134.4, 137.1, 137.2, 197.3 ppm; Anal. Calcd for C₂₂H₂₃NO: C, 83.24; H, 7.30; N, 4.41; Found: C, 83.29; 45 H, 7.25; N, 4.33; ESI-MS: m/z = 318 (M+1)⁺.

1-(1-CyclopropyI-5-ethyI-2-methyI-4-phenyI-1*H***-pyrroI-3-yl)ethanone (4au).** Yellow sticky liquid; IR (KBr): 2931, 1647, 1516, 1413, 1163, 1016, 704 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.99 (q, J = 5.0 Hz, 2H), 1.08 (t, J = 7.5 Hz, 3H), 1.15 (q, J = 7.0 St Hz, 2H), 1.80 (s, 3H), 2.56 (q, J = 7.5 Hz, 2H), 2.58 (s, 3H), 2.97-3.01 (m, 1H), 7.22 (d, J = 7.0 Hz, 2H), 7.29 (t, J = 7.0 Hz, 2H), 7.36 (d, J = 7.0 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 8.0, 13.3, 14.8, 18.1, 26.2, 31.0, 121.4, 121.7, 126.6, 128.1, 130.5, 133.8, 136.7, 137.2, 197.1 ppm; Anal. Calcd for St C₁₈H₂₁NO: C, 80.86; H, 7.92; N, 5.24; Found: C, 80.71; H,7.75;

N, 5.08; ESI-MS: m/z = 268 (M+1)⁺. **1-(5-Ethyl-2-methyl-4-phenyl-1-propyl-1***H***-pyrrol-3-yl)ethanone (4av).** Yellow sticky liquid; IR (KBr): 2974, 1647, 1550, 1452, 1288, 952, 700 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 60 0.99 (t, *J* = 7.5 Hz, 3H), 1.03 (t, *J* = 7.5 Hz, 3H), 1.68-1.76 (m, 2H), 1.81 (s, 3H), 2.42 (q, *J* = 7.5 Hz, 2H), 2.52 (s, 3H), 3.77 (t, *J* = 8.0 Hz, 3H), 7.23-7.26 (m, 2H), 7.30 (t, *J* = 7.5 Hz, 1H), 7.36 (t, *J* = 7.5 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 11.3, 11.9, 15.5, 17.6, 24.2, 30.9, 45.2, 121.5, 121.8, 126.5, 128.1, 130.6, 65 131.4, 133.7, 137.4, 197.0 ppm; Anal. Calcd for C₁₈H₂₃NO: C, 80.26; H, 8.61; N, 5.20; Found: C, 80.15; H, 8.47; N, 5.02; ESI-MS: $m/z = 270 (M+1)^+$.

Acknowledgements

We gratefully acknowledge the financial supports by the ⁷⁰ National Natural Science Foundation of China (NNSFC) (Nos. 21272053 and 21072042) and Nature Science Foundation of Hebei Province (No. B2011205031).

References

- (a) P. Anastas and N. Eghbali, Chem. Soc. Rev., 2010, **39**, 301-312;
 (b) R. A. Sheldon, Chem. Soc. Rev., 2012, **41**, 1437-1451; (c) M. B. Gawande, V. D. B. Bonifacio, R. Luque, P. S. Branco and R. S. Varma, Chem. Soc. Rev., 2013, **42**, 5522-5551; (d) M. B. Gawande, V. D. B. Bonifácio, R. Luque, P. S. Branco and R. S. Varma, ChemSusChem, 2014, **7**, 24-44.
- 80 2 M. B. Gawande, P. S. Branco and R. S. Varma, *Chem. Soc. Rev.*, 2013, **42**, 3371-3393.
- (a) A.-H. Lu, E. L. Salabas and F. Schueth, Angew. Chem. Int. Ed., 2007, 46, 1222-1244; (b) K. V. S. Ranganath, J. Kloesges, A. H. Schaefer and F. Glorius, Angew. Chem. Int. Ed., 2010, 49, 7786-7789; (c) M. B. Gawande, A. K. Rathi, P. S. Branco, I. D. Nogueira, A. Velhinho, J. J. Shrikhande, U. U. Indulkar, R. V. Jayaram, C. A. A. Ghumman, N. Bundaleski and O. M. N. D. Teodoro, Chem. Eur. J., 2012, 18, 12628-12632; (d) M. B. Gawande, A. K. Rathi, P. S. Branco, R. S. Varma, Appl. Sci., 2013, 3, 656-674.
- 4 (a) R. B. N. Baig and R. S. Varma, *Chem. Commun.*, 2013, 49, 752-770; (b) R. B. N. Baig and R. S. Varma, *Green Chem.*, 2013, 15, 398-417; (c) M. B. Gawande, P. S. Branco, I. D. Nogueira, C. A. A. Ghumman, N. Bundaleski, A. Santos, O. M. N. D. Teodoro and R. Luque, *Green Chem.*, 2013, 15, 682-689; (c) M. B. Gawande, A. Rathi, I. D. Nogueira, C. A. A. Ghumman, N. Bundaleski, O. M. N. D. Teodoro and P. S. Branco, *Chempluschem*, 2012, 77, 865-871.
 - 5 (a) R. B. N. Baig and R. S. Varma, Green Chem., 2012, 14, 625-632; (b) A. Saha, J. Leazer and R. S. Varma, Green Chem., 2012, 14, 67-71; (c) A. Rezaeifard, M. Jafarpour, A. Naeimi and R. Haddad, Green Chem., 2012, 14, 3386-3394; (d) B. R. Vaddula, A. Saha, J. Leazer and R. S. Varma, Green Chem., 2012, 14, 2133-2136; (e) M. B. Gawande, V. D. B. Bonifacio, R. S. Varma, I. D. Nogueira, N. Bundaleski, C. A. A. Ghumman, O. Teodoro and P. S. Branco, Green Chem., 2013, 15, 1226-1231; (f) M. B. Gawande, A. K. Rathi, I. D. Nogueira, R. S. Varma and P. S. Branco, Green Chem., 2013, 15, 1895-1899; (g) S. R. Kale, S. S. Kahandal, M. B. Gawande and R. V. Jayaram, Rsc Adv., 2013, 3, 8184-8192; (h) B. Karimi and E. Farhangi, Adv. Synth. Catal., 2013, 355, 508-516; (i) R. B. N. Baig, R. S. Varma, RSC Adv., 2014, 4, 6568-6572; (j) A. S. Burange, S. R. Kale, R. Zboril, M. B. Gawande, R. V. Jayaram, RSC Adv., 2014, 4, 6597-6601; (k) R. Mrówczyński, A. Nan, J. Liebscher, RSC Adv., 2014, 4, 5927-5952.
 - 6 J. K. Rajput and G. Kaur, Cat. Sci. Technol., 2014, 4, 142-151.
 - 7 (a) Y. H. Liu, Z. H. Zhang and T. S. Li, Synthesis, 2008, 3314-3318;
 (b) Y. H. Liu, Q. S. Liu and Z. H. Zhang, Tetrahedron Lett., 2009, 50, 916-921.
 - 8 (a) J. R. Rosien, W. Seichter and M. Mazik, Org. Biomol. Chem., 2013, **11**, 6569-6579; (b) J. T. Manka, A. L. Rodriguez, R. D. Morrison, D. F. Venable, H. P. Cho, A. L. Blobaum, J. S. Daniels, C. M. Niswender, P. J. Conn, C. W. Lindsley and K. A. Emmitte, Bioorg. Med. Chem. Lett., 2013, **23**, 5091-5096; (c) M. Z. Wang, H. Xu, T. W. Liu, Q. Feng, S. J. Yu, S. H. Wang and Z. M. Li, Eur J Med Chem., 2011, **46**, 1463-1472.
 - 9 H. Fan, J. N. Peng, M. T. Hamann and J. F. Hu, *Chem. Rev.*, 2010, 110, 3850-3850.
 - 10 Y. Q. Yang, Q. Zhang, J. F. Zheng and S. B. Zhang, *Polymer*, 2013, 54, 3254-3260.
 - (a) L. Knorr, Ber. Dtsch. Chem. Ges. 1884, 17,1635-1642; (b) Z.
 H. Zhang, J. J. Li and T. S. Li, Ultrason. Sonochem., 2008, 15, 673-676; (c) D. Bandyopadhyay, S. Mukherjee, J. C. Granados, J. D.
 Short and B. K. Banik, Eur. J. Med. Chem., 2012, 50, 209-21; (d) F.
 P. Ma, P. H. Li, B. L. Li, L. P. Mo, N. Liu, H. J. Kang, Y. N. Liu and Z. H. Zhang, Appl. Catal. A : Gen., 2013, 457, 34-41; (e) V.

100

105

110

115

120

125

130

Polshettiwar, B. Baruwati and R. S. Varma, *Chem. Commun.*, 2009, 1837-1839.

- 12 V. Estevez, M. Villacampa and J. C. Menendez, *Chem. Commun.*, 2013, **49**, 591-59.
- ⁵ 13 (a) Y. Han, Y. Sun, J. Sun and C. G. Yan, *Tetrahedron*, 2012, 68, 8256-8260; (b) S. Madabhushi, V. S. Vangipuram, K. K. R. Mallu, N. Chinthala and C. R. Beeram, *Adv. Synth. Catal.*, 2012, 354, 1413-1416; (c) Y. L. Zhao, C. H. Di, S. D. Liu, J. Meng and Q. Liu, *Adv. Synth. Catal.*, 2012, 354, 3545-3550; (d) H. Lee and B. H.
- Kim, *Tetrahedron*, 2013, 69, 6698-6708; (e) B. L. Li, P. H. Li, X.
 N. Fang, C. X. Li, J. L. Sun, L. P. Mo and Z. H. Zhang, *Tetrahedron*, 2013, 69, 7011-7018; (f) Y. Li, Q. Y. Li, H. W. Xu, W. Fan, B. Jiang, S. L. Wang and S. J. Tu, *Tetrahedron*, 2013, 69, 2941-2946; (g) C. C. Silveira, S. R. Mendes, G. M. Martins, S. C.
- Schlosser and T. S. Kaufman, *Tetrahedron*, 2013, **69**, 9076-9085; (*h*)
 X. C. Tu, W. Fan, B. Jiang, S. L. Wang and S. J. Tu, *Tetrahedron*, 2013, **69**, 6100-6107; (*i*) J. B. Bharate, R. Sharma, S. Aravinda, V. K. Gupta, B. Singh, S. B. Bharate and R. A. Vishwakarma, *Rsc Adv.*, 2013, **3**, 21736-21742.
- 14 (a) Y. L. Gu, Green Chem., 2012, 14, 2091-2128; (b) P. Prasanna,
 S. Perumal and J. C. Menendez, Green Chem., 2013, 15, 1292-1299.
 15 (a) J. Deng, L. P. Mo, F. Y. Zhao, L. L. Hou, L. Yang and Z. H.
- Zhang, Green Chem., 2011, **13**, 2576-2584; (b) J. Deng, L. P. Mo, F. Y. Zhao, Z. H. Zhang and S. X. Liu, ACS Comb. Sci., 2012, **14**, 335-341; (c) Y. H. Liu, J. Deng, J. W. Gao and Z. H. Zhang, Adv.
- 25 335-341; (c) Y. H. Liu, J. Deng, J. W. Gao and Z. H. Zhang, Adv. Synth. Catal., 2012, **354**, 441-447; (d) P.-H. Li, B.-L. Li, Z.-M. An, L.-P. Mo, Z.-S. Cui and Z.-H. Zhang, Adv. Synth. Catal., 2013, **355**, 2952-2959; (e) P. H. Li, B. L. Li, H. C. Hu, X. N. Zhao and Z. H. Zhang, Catal. Commun., 2014, **46**, 118-122.
- ³⁰ 16 (a) X. N. Zhang, Y. X. Li and Z. H. Zhang, *Tetrahedron*, 2011, **67**, 7426-7430; (b) Z. H. Zhang, X. N. Zhang, L. P. Mo, Y. X. Li and F. P. Ma, *Green Chem.*, 2012, **14**, 1502-1506; (c) R. Y. Guo, P. Wang, G. D. Wang, L. P. Mo and Z. H. Zhang, *Tetrahedron*, 2013, **69**, 2056-2061; (d) R. Y. Guo, Z. M. An, L. P. Mo, S. T. Yang, H. X.
- Liu, S. X. Wang, and Z. H. Zhang, *Tetrahedron*, 2013, 69, 9931-9938; (e) R. Y. Guo, Z. M. An, L. P. Mo, R. Z. Wang, H. X. Liu, S X. Wang and Z.-H. Zhang, *ACS Comb. Sci.*, 2013, 15, 557-563.
 - 17 X. Chen, K. F. Lam, Q. Zhang, B. Pan, M. Arruebo and K. L. Yeung, J. Phys. Chem. C, 2009, 113, 9804-9813.
- 40 18 A. Hasaninejad, M. Shekouhy, N. Golzar, A. Zare and M. M. Doroodmand, *Appl. Catal. A:Gen.*, 2011, 402, 11-22.
 - 19 A. R. Hajipour, N. Najafi and F. Rafiee, *Appl. Organomet. Chem.*, 2013, 27, 228-231.
 - 20 C. C. Silveira, S. R. Mendes, G. M. Martins, S. C. Schlösser and T. S. Kaufman, *Tatrahadron*, 2013, **69**, 9076-9085
- 45 S. Kaufman, *Tetrahedron*, 2013, **69**, 9076-9085.

• Graphical Abstract:

