RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

ARTICLE TYPE

One-pot metal-free synthesis of highly substituted pyrroles from 2acetyl-3-methylene-1,4-dicarbonyl compounds and primary amines via TBHP and activated carbon oxidative aromatization of dihydropyrrole †

Wei Yang, Yu Zhou, Haifeng Sun, Lei Zhang, Fei Zhao, Hong Liu*

s Received (in XXX, XXX) Xth XXXXXXXX 200X, Accepted Xth XXXXXXXX 200X DOI: 10.1039/b000000x

A metal-free one-pot cascade process for the synthesis of 1,2,3,4-tetrasubstituted pyrroles *via* a tandem enamine, aza-Michael addition and TBHP, activated carbon ¹⁰ oxidative aromatization is reported. This strategy features the formation of two C-N bonds in moderate to excellent yields and a broad substrate tolerance.

Polysubstitued pyrroles are an important class of the nitrogencontaining heterocyclic compounds exhibiting a broad spectrum

- ¹⁵ of biological properties such as antitumor,¹ anti-inflammatory² and antibacterial³ in numerous bioactive natural products⁴ and pharmaceuticals.⁵ Therefore, considerable efforts have focused on the development of synthetic methods to obtain these valuable compounds. Generally, the classical methods include the Knorr,⁶
- ²⁰ Paal-knorr⁷ and Hantzsch⁸ reactions in a multistep process from preformed intermediates. Recently, many novel synthetic approaches catalyzed by transition-metal have been reported.⁹ For example, we have reported Pd(OCOCF₃)₂ catalyzed-cascade reaction of 2-alkenal-1,3-dicarbonyl compounds with primary
- ²⁵ amines to synthesize 1,2,3,5-tetrasubstituted pyrroles in moderate to excellent yields (Scheme 1).^{9a} Beller's group has disclosed ruthenium catalyzed ketones, amines and vicinal diols into pyrroles in high temperature using borrowing hydrogen method.^{9b} However, metal-free mediated approaches may be less explored using the synthesize of the
- ³⁰ compared to transition-metal catalyzed systems in recent years.¹⁰ As the majority of transition-metal-catalyzed methods suffered from the employment of precious, toxic transition-metal catalysts, harsh reaction conditions and even in some cases the N-containing components must be preactivated,^{9f-h} thus, developing
- as a new synthetic approach obviating employment of transitionmetal catalysts from commercially accessible amines under mild conditions is highly attractive. Toward this end, we developed a metal-free and highly efficient strategy to synthesis of 1,2,3,4tetrasubstituted pyrroles using tert-butyl hydroperoxide and estimated apple and an extern with the meaning
- 40 activated carbon as oxidative system via a tandem enamine,

CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China. E-mail: hliu@mail.shcnc.ac.cn.

⁴⁵ † Electronic supplementary information (ESI) available: Experimental procedures, compound characterizations, and ¹H and ¹³C NMR spectra. See DOI: 10.1039/ b000000x

aza-Michael addition and oxidative aromatization at ambient conditions. The protocol provides a potential route for the ⁵⁰ synthesis of tetrasubstituted pyrroles in moderate to excellent yields.

This work: metal-free one-pot synthesis of highly substitued pyrroles

Scheme 1. Transition-metal-catalyzed and metal-free mediated synthesis of pyrroles.

55 Initially, 3-acetyl-4-methylenehexane-2,5-dione 1a and aniline 2a were selected as the model substrates to explore the optimal reaction conditions for the synthesis of highly substituted pyrrole 3a. As shown in Table 1, a variety of different solvents were screened for their effect on the production of compound 3a.We 60 observed that the reaction was stirred in toluene for 18 h at room temperature in the presence of TBHP to afford the targeting product 3a with 78% yield whereas other solvents such as DMF, CHCl₃, THF gave the desired product in 45-62% yields (entries 1-4). Some other oxidants were probed instead of TBHP for 65 further improving the reaction yield. The results showed that only 62% and 35% yields of the desired product 3a was obtained when K₂S₂O₈ and MCPBA were used as oxidants respectively (entries 5, 6). While, no targeted products were obtained by employing $PhI(OAc)_2$, DDQ and H_2O_2 as oxidants respectively (entries 7, 8, 70 9). Treatment of 1a and 2a in toluene under air atmosphere as the sole oxidant gave the product 3a in good yield (65%, entry 10) which facilitated the reaction operation without degas procedure. When activated carbon was involved as the oxidant instead of TBHP, the product 3a was formed in 76% yield (entry 11) 75 indicating the activated carbon is a highly effective oxidant for this transformation.¹¹ Therefore, we further explored the combined oxidative system of activated carbon and TBHP, the reaction yield dramatically increased to 93%. In this way, the optimal reaction condition was identified using activated carbon and TBHP as the oxidant system in toluene at room temperature for 18 h.

Table 1. Optimization of the reaction conditions^a

O O O O O O O O O O O H	NH ₂	<mark>Oxidant, Solvent</mark> RT, 18 h ► 〈	
1a	2a		3a
Entry	Solvent	Oxidant	Yield $(\%)^b$
1	DMF	TBHP	45
2	CHCl ₃	TBHP	62
3	THF	TBHP	51
4	Toluene	TBHP	78
5	Toluene	$K_2S_2O_8$	62
6	Toluene	MCPBA	35
7	Toluene	PhI(OAc) ₂	NP^d
8	Toluene	DDQ	NP^d
9	Toluene	H_2O_2	NP^d
10	Toluene	Air	65
11^{c}	Toluene	activated carbon	76
12^c	Toluene	TBHP + activated carbon	1 93

^{*a*} A mixture of **1a** (0.25 mmol), **2a** (0.5 mmol) and oxidant (150µL of 5.5M TBHP in decane solution or 0.75 mmol for the other ones) in solvent (1 mL) was stirred at room temperature for 18h. ^{*b*} Isolated yield. ^{*c*} 36mg activated carbon was added to the reaction. ^{*d*} NP indicated that no desired product **3a** was obtained.

With the optimal reaction conditions in hand, we then surveyed the scope of this approach to synthesize a wide range of pyrroles derivatives **3** (table 2). We firstly utilized substrate **1a** to test the

- ¹⁰ reactivity of various amines. The results showed that this protocol was compatible with significant structurally various amines. The substitution pattern of the methyl and ethyl groups on the phenyl ring has a very limited impact (**3b-3d**, entries 2-4). With two substituents on the phenyl rings such as 2-naphthalenamine, 3,4-
- ¹⁵ dimethylaniline, 2,4-dimethylaniline, 2-methyl-4-fluoroaniline were suitable for this protocol as illustrated by providing the pyrrole products **3f-3i** in good to excellent yields (75-93%, entries 6-9). However, the anilines bearing strong electrondonating groups such as methoxyl, methylenedioxyl on the
- ²⁰ phenyl rings underwent reaction to afford the targeting product 3e and 3j in good yields only when the reaction was performed at -20 °C temperature. The probable reason was attributed to the electronic effect. This explanation was proved by the fact that 4-acetamidoaniline 2o afforded the desired pyrrole in higher yield
- ²⁵ than the 1,4-diaminobenzene **2p** did under the same reaction conditions. Furthermore, as compared to 2-Toluidine **2d**, the substrate **2i** possessing an additional electron-withdrawing group on the phenyl ring supported this explanation for providing the pyrrole **3i** in 93% yield (entry 9). A diverse range of functional
- ³⁰ groups such as bromo, chloro, ester, ethynyl, acetyl amino, amino on the anilines proceeded smoothly to yield the corresponding pyrrole derivatives **3k-3q** in 56% to 80% yields. While, 4nitroaniline could't afford the pyrrole due to the strong electronwithdrawing group reduced the nucelophilicity of the nitrogen of
- ³⁵ the aniline (**3r**, entry 18). In addition to aromatic amines, the reaction proceeded as expected when aliphatic amines were involved in the reaction (entries 19-25). The isopentyl, Bn, n-Bu,

allyl, 3-methoxypropyl amines **2s-2w** afforded the desired products in moderate yields (entries 19-23). While the more steric ⁴⁰ isopropyl and t-Bu amines gave the poor yields (entries 24-25).

⁴⁰ Isopropyl and t-Bu amines gave the poor yields (entries 24-25). Futhermore, by-products were observed when aliphatic amines were involved.

To further expand the scope of the method, we probed several substrate 1 derivatives. The results implied that the more hindered ⁴⁵ substrate 1z appeared to be a good candidate for this cascade reaction. Moreover, the variation of R₂ functionalities on 1 such as phenyl and ethoxyl groups could react with aniline 2a to afford the structurally diverse pyrroles 3aa-3ab (entries 27, 28). Furthermore, the substrate 1ac offered the product 3ac in good ⁵⁰ yield (80%, entry 29), while switching to substrate 1ad lead to

Table 2. The scope of TBHP and activate carbon oxidative aromatization synthesis of pyrroles 3^a

$R^3 \longrightarrow 0$ $R^1 \longrightarrow 0$	H_2N-R^4	TBHP Activated carbon Toluene, RT	R^1 R^4 R^4 R^3
1	2		3

		-
Entry	$R^1, R^2, R^3, R^4, 3$	Yield $(\%)^b$
1	CH ₃ , CH ₃ , CH ₃ , Ph, 3a	93
2	CH ₃ , CH ₃ , CH ₃ , 3-EtPh, 3b	80
3	CH ₃ , CH ₃ , CH ₃ , 4-MePh, 3c	80
4	CH ₃ , CH ₃ , CH ₃ , 2-MePh, 3d	85
5^c	CH ₃ , CH ₃ , CH ₃ ,4-MeOPh, 3e	80
6	CH ₃ , CH ₃ , CH ₃ , 2-Naphthyl, 3f	78
7	CH ₃ , CH ₃ , CH ₃ , 3,4-Me ₂ Ph, 3g	75
8	CH ₃ , CH ₃ , CH ₃ , 2,4-Me ₂ Ph, 3h	85
9	CH ₃ , CH ₃ , CH ₃ , 2-Me-4-FPh, 3i	93
10^c	CH ₃ , CH ₃ , CH ₃ , 3,4-OCH2OPh, 3j	52
11	CH ₃ , CH ₃ , CH ₃ , 4-BrPh, 3k	80
12	CH ₃ , CH ₃ , CH ₃ , 3-EthynylPh, 3l	76
13	CH ₃ , CH ₃ , CH ₃ , 3-ClPh, 3m	80
14	CH ₃ , CH ₃ , CH ₃ , 4-COOCH ₂ CH ₃ Ph, 3n	50
15	CH ₃ , CH ₃ , CH ₃ , 4-NHCOCH ₃ Ph, 30	70
16	CH ₃ , CH ₃ , CH ₃ , 4-NH ₂ Ph, 3p	56
17	CH ₃ , CH ₃ , CH ₃ , 3,4-ClPh, 3q	62
18	CH ₃ , CH ₃ , CH ₃ , 4-NO ₂ Ph, 3r	0
19	CH ₃ , CH ₃ , CH ₃ , isopentyl, 3s	40
20	CH ₃ , CH ₃ , CH ₃ , Bn, 3t	46
21	CH ₃ , CH ₃ , CH ₃ , n-Bu, 3u	32
22	CH ₃ , CH ₃ , CH ₃ , allyl, 3v	35
23	CH ₃ , CH ₃ , CH ₃ , 3-methoxy-propyl, 3w	25
24	CH ₃ , CH ₃ , CH ₃ , isopropyl, 3x	18
25	CH ₃ , CH ₃ , CH ₃ , t-Bu, 3y	10
26	Et, Et, CH ₃ , Ph, 3z	82
27	CH ₃ , Ph, CH ₃ , Ph, 3aa	80
28	CH ₃ , OEt, CH ₃ , Ph, 3ab	76
29	CH ₃ , CH ₃ , Ph, Ph, 3ac	80
30	CH ₃ ,CH ₃ , OEt, Ph, 3ad	30

 a A mixture of 1a~(0.25~mmol), 2a~(0.5~mmol), $150~\mu L~TBHP~(5.5~M$ in decane solution) and 36mg activated carbon in toluene (1 mL) was stirred at room temperature overnight. b Isolated yield . c The reaction was conducted at -20 $^o C$

55 dramatically decrease in reaction yield under the same conditions. These observed results indicated that the ketone functional group

55

promoted the formation of pyrroles more easily than ester did in this cascade reaction (**3ac** *vs* **3ad**, entries 29, 30).

To gain insight into the mechanism, 3-acetyl-4-methylenehexane-

- 2,5-dione **1a** and p-anisidine **2e** were performed under N₂ atmosphere in the absence of TBHP and activated carbon, giving an intermediate followed by separation. ¹H NMR, ¹³C NMR and HRESI spectrums confirmed the intermediate structure is **3e'**. Then the intermediate **3e'** was added to a mixture of TBHP and activated carbon in toluene under the optimal conditions to afford
- ¹⁰ the desired pyrrole **3e** in 75% yield (Scheme 2). On the basis of the reaction outcomes, a plausible mechanism for synthesis of pyrroles **3** from substrates **1** and **2** is proposed in Scheme 3. Treatment of **1a** and **2e** in toluene at -20 °C generated the enamine intermediate **I** which was followed by intramolecular
- ¹⁵ aza-Michael addition resulting in the formation of intermediate **3e'**. Then, the intermediate **3e'** was subjected to oxidized by TBHP and activated carbon to afford the final pyrrole product **3e**.^{10k,1}

Scheme 2. Oxidative aromatization of 2,3-dihydropyrrole intermediate **3e'** to pyrrole **3e**

Scheme 3. A proposed mechanism for the cascade reaction.

- ²⁵ In conclusion, we have successfully developed an efficient metalfree mediated oxidative aromatization cascade approach for the one-pot synthesis of synthetically and biologically meaningful pyrroles. This approach features metal-free, milder reaction conditions, readily available reagents and afford the desired highly syntheticated pyrroles in generate to
- ³⁰ highly substituted pyrroles in cascade fashion in moderate to excellent yields for a diverse range of substrates.

We gratefully acknowledge financial support from the National Natural Science Foundation of China (Grants 91229204, and 81025017), National S&T Major Projects (2012ZX09103101-072 and 2012ZX09301001-005).

Notes and references

- 1 P. Cozzi and N. Mongelli, Curr. Pharm. Des., 1998, 4, 181.
- 2 Zoete, V.; Maglia, F.; Rouge é, M.; Bensasson, R. V. Free Radical Biol. Med. 2000, 28, 1638.
- G. Daidone, B. Maggio and D. Schillari, *Pharmazie*, 1990, **45**, 441.
 (a) I. S. Young, P. D. Thornton and A. Thompson, *Nat. Prod. Rep.*, 2010, **27**, 1801; (b) H. Fan, J. G. Peng, M. T. Hamann and J. F. Hu,

Chem. Rev., 2008, **108**, 264; (c) B. M. Trost and G. B. Dong, *Org. Lett.*, 2007, **9**, 2357; (d) C. T. Walsh, S. Garneau-Tsodikova and A. R.

- ⁴⁵ Howard-Jones, *Nat. Prod. Rep.*, 2006, 23, 517; (e) A. Grube and M. Koeck, *J. Nat. Prod.*, 2006, 69, 1212; (f) C. Rochais, V. Lisowski, P. Dallemagne and S. Rault, *Bioorg. Med. Chem*, 2006, 2006, 14, 8162; (g) F. Bellina and R. Rossi, *Tetrahedron*, 2006, 62, 7213; (h) P. Lewer, E. L. Chapin, P. R. Graupner, J. R. Gilbert and C. Peacock, *J. Nat. Prod.*, 2003, 66, 143.
 - (a) Y. Arikawa, H. Nishida, O. Kurasawa, A. Hasuoka, K. Hirase, N. Inatomi, Y. Hori, J. Matsukawa, A. Imanishi, M. Kondo, N. Tarui, T. Hamada, T. Takagi, T. Takeuchi and M. Kajino, *J. Med. Chem.*, 2012, 55, 4446; (b) G. La Regina, R. Silvestri, M. Artico, A. Lavecchia, E. N. Kurasawa, A. B. Katakawa, A. Katakawa, A. Hamada, T. Takaya, A. Katakawa, A. Imanishi, M. Kondo, N. Tarui, T. Hamada, T. Takaya, T. Takeuchi and M. Kajino, *J. Med. Chem.*, 2012, 55, 4446; (b) G. La Regina, R. Silvestri, M. Artico, A. Lavecchia, E. Katakawa, A. Katakawa, A. Katakawa, A. Katakawa, A. Katakawa, A. Katakawa, A. Katakawa, K. Katakawa, K.
 - Novellino, O. Befani, P. Turini and E. Agostinelli, *J. Med. Chem.*, 2007, **50**, 922; (c) S. Youssef, O. Stuve, S. S. Zamvil et al, *Nature*, 2002, **420**, 78; (d) R. B. Thompson, *FASEB J.*, 2001, **15**, 1671.
 - 6. L. Knorr, Ber. Dtsch. Chem. Ges., 1884, 17, 1635.
 - 7. C. Pall, Ber. Dtsch. Chem. Ges., 1885, 18, 367.
- 60 8. A. Hantzsch, Ber. Dtsch. Chem. Ges., 1890, 23, 1474.
- For recent examples of transition-metal-catalyzed pyrrole synthesis, see: (a) W. Yang, L. L. Huang, H. Liu, W. Wang and H. Li, *Chem. Commun.*, 2013, 49, 4667; (b) M. Zhang, X. J. Fang, H. Neumann and M. Beller, *J. Am. Chem. Soc.*, 2013, 135, 11384; (c) M. Zhang, H.
- Neumann and M. Beller, Angew. Chem. Int. Ed., 2013, 52, 597; (d) L.
 H. Wang and L. Ackermann, Org. Lett., 2013, 15, 176; (e) W. T. Teo,
 W. Rao, M. J. Koh and P. W. Chan, J. Org. Chem., 2013, 78, 7508; (f)
 Z. Z. Shi, M. Suri and F. Glorius, Angew. Chem. Int. Ed., 2013, 52, 4892; (g) L. K. Meng, K. Wu, C. Liu and A. W. Lei, Chem. Commun.,
 - 2013, 49, 5853; (h) Z. Y. Chen, B. L. Lu, Z. H. Ding, K. Gao and N. Yoshikai, Org. Lett., 2013, 15, 1966; (i) S. Y. Peng, L. Wang, J. Y. Huang, S. F. Sun, H. B. Guo and J. Wang, Adv. Synth. Catal., 2013, 355, 2550; (j) T. Miura, K. Hiraga, T. Biyajima, T. Nakamuro and M. Murakami, Org. Lett., 2013, 15, 3298;(k) S. Michlik and R. Kempe, Nature Chamistra, 2014, 5, 1400; (h) P. V. S. Paddy, M. P. Paddy, Y.
 - Nature Chemistry, 2013, 5, 140; (1) B. V. S. Reddy, M. R. Reddy, Y. G. Rao, J. S. Yadav and B. Sridhar, Org. Lett., 2013, 15, 464; (m) G. Lonzi and L. A. López, Adv. Synth. Catal., 2013, 355, 1948; (n) J. Ke, C. He, H. Y. Liu, M. J. Li and A. W. Lei, Chem. Commun., 2013, 49, 7549; (o) M. Zhao, F. Wang and X. W. Li, Org. Lett., 2012, 14, 1412;
 - (p) Y. J. Jiang, W. C. Chan and C.-M. Park, J. Am. Chem. Soc., 2012, 134, 4104; (q) C. He, S. Guo, J. Ke, J. Hao, H. Xu, H. Y. Chen and A. W. Lei, J. Am. Chem. Soc., 2012, 134, 5766; (r) B. M. Trost, J. P. Lumb and J. M. Azzarelli, J. Am. Chem. Soc., 2011, 133, 740; (s) M. P. Huestis, L. Chan, D. R. Stuart and K. Fagnou, Angew. Chem. Int. Ed., 2011, 50, 1338; (t) I. Nakamura and Y. Yamamoto, Chem. Rev., 2004, 104, 2127.
- For recent examples of metal-free mediated pyrrole synthesis, see: (a)
 F. Tripoteau, L. Eberlin, M. A. Fox, B. Carboni and A. Whiting, *Chem. Commun.*, 2013, **49**, 5414; (b) Y. C. Hu, C. X. Wang, D. P.
 Wang, F. Wu and B. S. Wan, *Org. Lett.*, 2013, **15**, 3146; (c) T.
- Wang, F. Wu and B. S. Wan, Org. Lett., 2015, 19, 5146, (c) F. Maehara, R. Kanno, S. Yokoshima and T. Fukuyama, Org. Lett., 2012, 14, 1946; (d) I. Kumar, N. A. Mir, P. Ramaraju and B. P. Wakhloo, RSC Advances, 2012, 2, 8922; (e) K. Ramesh, S. N. Murthy, K. Karnakar and Y. V. D. Nageswar, Tetrahedron Letters, 2015, 10, 5146, 2015
- 2011, 52, 3937; (f) B. Das, N. Bhunia and M. Lingaiah, Synthesis, 2011, 2011, 3471; (g) M. Rueping and A. Parra, Org. Lett., 2010, 12, 5281; (h) J. Y. Wang, X. P. Wang, Z. S. Yu and W. Yu, Adv. Synth. Catal., 2009, 351, 2063; (i) Y. Lu and B. A. Arndtsen, Org. Lett., 2009, 11, 1369; (j) D. J. St. Cyr and B. A. Arndtsen, J. Am. Chem.
- Soc., 2007, 129, 12366. (k) Y. J. Li, H. M. Huang, H. Q. Dong, J. H. Jia, L. Han, Q. Ye and J. R. Gao, J. Org. Chem., 2013, 78, 9424. (l)
 G. Bharathiraja, S. Sakthivel, M. Sengoden and T. Punniyamurthy, Org. Lett., 2013, 15, 4996.
- For selected examples of activted carbon oxidative aromatization, see:

 (a) M. Hayashi, K. Okunaga, S. Nishida, K. Kawamura and K. Eda, *Tetrahedron Lett*, 2010, **51**, 6734;
 (b) Y. Kawashita and M. Hayashi, *Molecules*, 2009, **14**, 3073;
 (c) K.-i. Okunaga, Y. Nomura, K. Kawamura, N. Nakamichi, K. Eda and M. Hayashi, *Heterocycles*, 2008, **76**, 715;
 (d) S. Haneda, A. Okui, C. Ueba and M. Hayashi, *Tetrahedron*, 2007, **63**, 2414;
 (e) Y. Kawashita, N. Nakamichi, H. Kawabata and M. Hayashi, *Org. Lett.*, 2003, **5**, 3713.

Graphical Abstract

A metal-free one-pot mild cascade process for the synthesis of 1,2,3,4-tetrasubstitued pyrroles via a tandem enamine, aza-Michael addition and TBHP, activated carbon oxidative aromatization is reported. This strategy features the formation of two C-N bonds in moderate to excellent yields and broad substrate tolerance.