RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

RSC Advances Accepted Manuscript

Intramolecular cyclization - decyclization of new sterically hindered diiminophenol. Synthesis and coordination abilities

Gleb A. Abakumov^{*a,b*}, Nikolay O. Druzhkov^{*a*}, Elena N. Egorova^{*a,a*}, Tatiana N. Kocherova^{*a*}, Andrey S. Shavyrin^{*a*} and Anton V. Cherkasov^{*a*}

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

The new sterically hindered benzoxazole I was synthesized by the reaction of 3-(2,6-diisopropylphenylimino) butan-2-one and 2-amino-4,6-di-tert-butylphenol. It is shown that compound I is in equilibrium with the open enamine form in solution.

The coordination abilities of \mathbf{I} have been studied. The ligand \mathbf{I} is shown to demonstrate either a neutral coordination type in complex with ¹⁰ cadmium iodide or monoanionic type in cadmium complexes obtained by the interaction of \mathbf{I} with Me₃Cd.

Introduction

Schiff base ligands have been extensively studied mainly due to their coordination abilities, facile syntheses, easily tunable steric factors, electronic properties and good solubility in common

- ¹⁵ solvents.¹⁻⁴ Transition metal complexes with oxygen and nitrogen donor Schiff bases (O,N-ligands) are of particular interest¹⁻⁴ because of their ability to possess unusual configurations and to be structurally labile. The Fe(III), Co(III), Ni(II), Zn(II), Cd(II) and lanthanide(III) complexes with ONN-ligand synthesized by
- ²⁰ reaction of 2-pyridincarboxaldehyde and substituted aminophenols⁵ have been obtained and investigated.⁶ Some of them can be used as photoactive materials.⁶⁻¹² In a series of papers it have been shown that the iminophenol derivatives synthesized by condensation of *o*-aminophenols with various ²⁵ substituted aldehydes can undergo the intramolecular cyclization
- to give five- or six-membered rings¹³⁻¹⁶ opening in alkaline solution in presence of metal ion.¹⁷

Recently we have described the synthesis of iminoketone¹⁸, which can act as carbonyl reagent in condensation reactions with

³⁰ substituted *o*-aminophenols. In this case the resulting products features hydroxyl group and sterically hindered N=C-C=N fragment. Such compounds may be used as either neutral or valent bonded ligands.

Results and discussion

- ³⁵ This study is aimed to the synthesis of the new sterically hindered ONN-ligand derived from the interaction of 3-(2,6diisopropylphenylimino)butan-2-one with 2-amino-4,6-di-tertbutylphenol and the investigation of the properties of obtained compound. The treatment of 3-(2,6-diisopropylphenylimino)-
- ⁴⁰ butan-2-one with the *o*-aminophenol leads to the colorless crystalline solid compound identified as dihydrobenzoxazole **I** by the spectral methods, ¹⁵N-¹H 2D *ge*-HSQC NMR spectrum and the X-ray structural analysis (Fig. 1). Compound **I** is the product of intramolecular cyclization of the desired N-substituted *o*-⁴⁵ iminophenol (Scheme 1).

Scheme 1 The synthesis of compound I.

Fig.1 The molecular structure of I. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms (except bonded to N(1)) are omitted for clarity. Selected distances [Å] and angles [°]: C(1)-O(1) 1.464(3), C(1)-N(1) 1.464(3), C(2)-O(1) 1.393(3), C(3)-N(1) 1.409(3), C(1)-C(16) 1.514(3), C(1)-C(17) 1.534(3), C(17)-C(18) 1.500(3), C(17)-55 N(2) 1.276(3), N(2)-C(19) 1.423(3), C(1)-O(1)-C(2) 105.7(2), C(1)-N(1)-C(3) 105.2(2), C(17)-N(2)-C(19) 122.0(2).

As we have mentioned above the *o*-iminophenols based on *o*-aminophenols with various substituted aldehydes are in equilibrium with an isomeric cyclic form of ligands. We tried to ⁶⁰ indicate each form of I by ¹H NMR in various solvents, but unfortunately concentration of this form is too low to be detected by NMR. This fact displays that the equilibrium is shifted completely to the dihydrobenzoxazole. However, an interesting phenomenon took place in deuterium methanol solution of I.

- ⁶⁵ The freshly prepared solution of compound **I** in CD₃OD features ¹H NMR typical for such compounds. However, within 3-5 minutes in solution the intensity of the C_{sp3} -CH₃ methyl group signal is greatly reduced (Fig. 2). In ¹³C NMR spectrum signal of this methyl group is transformed into a multiplet (Fig. 3).
- ⁷⁰ The decreasing of the methyl group signal intensity and arising of multiplet in ¹³C NMR can be caused by methyl group deuteration. The fact of selective deuteration of OH and NH groups in methanol-d4 and some other NMR solvents is widely known but selective deuteration of the methyl group in mild conditions is ⁷⁵ absolutely unusual.

Supposed H-D exchange can be explained by cyclization decyclization equilibrium in solution (Scheme 2). The hydroxyl of \mathbf{I}^* is rapidly deuterated in CD₃OD forming OD group. Subsequently, deuterium of OD group migrates into methyl group forming a partially deuterated CH₂D group and then CHD₂ group up to fully deuterated CD₃ group (compound **II**).

1.835 1.830 1.825 1.820 1.815 1.810 1.805 1.800 δ, ppn

Fig.3 Fragment of ¹³C NMR spectrum of I in CD₃OD after 5 min.

Scheme 2 The deuteration process in CD₃OD solution.

It should be noted that the peak of NH group is still present in the 10 ¹H NMR spectrum while the C_{sp3}-CH₃ methyl group signal is completely disappear.

After a three-time recrystallization of I in CD_3OD the selectively deuterated product II was isolated. The deuteration degree is proven by absence of the methyl group signal in ¹H NMR

¹⁵ spectrum. There are three signals observed in ²H NMR spectrum of compound **II**. The chemical shift of the most intensive signal assigned to CD₃ group (1.80 ppm) is close to the chemical shift of the methyl protons in source compound **I** (1.83 ppm). The intensity of ²H signals of CHD₂ (1.81 ppm) and CH₂D (1.82 ppm) ²⁰ groups are substantially lower.

The mass spectrum of **II** showed peaks both for the molecular ion at m/z = 451 and the ion corresponding to fragment of the molecule containing benzoxazole rings (m/z = 249) while the source compound **I** shows peaks at m/z=449 (M⁺) and 246.

- ²⁵ Taking into account the reaction conditions, the multiplicity of methyl signal in ¹³C NMR and the intensity of residual methyl protons in ¹H NMR spectra we may affirm that the deuteration mostly leads to product with completely deuterated methyl group. Another evidence of the existence of enamine form I^* in solution
- $_{30}$ is the oxidation of **I** by alkaline solution of potassium ferricyanide (Scheme 3). In this case C_{sp3} -Me group undergoes oxidation and the benzoxazine derivative **III** is formed. This reaction is possible due to the ring opening of **I** with formation of **I**^{*} intermediate.

Scheme 3 The synthesis of compound III.

The coordination abilities of the ligand I have been investigated. It is known that the neutral complexes of R-DAB (N,N'-⁴⁰ disubstituted diazabutadienes) are prepared by mixing of metal salt with the R-DAB ligand in stoichiometric molar ratio.¹⁹ In our case the interaction of ligand I with cadmium iodide results in formation of colorless powder of metal complex IV (Scheme 4).

Scheme 4 The synthesis of compound IV.

The signals shifting in NMR spectrum of obtained complex **IV** in comparison with source ligand **I** indicates the electron density displacement from organic ligand to metal atom and formation of ⁵⁰ molecular complex L*CdI₂ (L = **I**). In this case **I** acts as a neutral ligand coordinated by two nitrogen atoms.

The structure of **IV** has been determined by single-crystal X-ray diffraction (Fig.4). Cadmium atom in **IV** is in distorted tetragonal coordination environment with two nitrogen and two iodide statoms on the tops. Dihedral angle between two aromatic rings is slightly more than observed for the parent ligand **I** (86.0°) amounts to 88.7°. The distances Cd(1)-N(1) (2.347(1) Å) and Cd(1)-N(2) (2.297(2) Å) are shorter than the sum of Van-der-Waals radii of cadmium and nitrogen atoms (3.7 Å), and are slightly more than the sum of covalent radii of these atoms (2.1 Å²⁰). So the Cd-N distances are in the typical range of donor-acceptor bond lengths between aforementioned atoms. The bond lengths C(15)-O(1) (1.456(2) Å), C(15)-N(1) (1.469(2) Å) and C(17)=N(2) (1.275(2) Å) in ligand are in the range expected for 65 organic compounds.

Fig.4 The molecular structure of IV. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms (except bonded to N(1)) and Mefragments of iPr-, tBu-groups are omitted. Selected distances [Å] and angles [°]: Cd(1)-N(1) 2.347(1), Cd(1)-N(2) 2.297(2), Cd(1)-I(1) 2.6714(2), Cd(1)-I(2) 2.7132(2), O(1)-C(1) 1.393(2), O(1)-C(15) 1.456(2), N(1)-C(2) 1.451(2), N(1)-C(15) 1.469(2), C(1)-C(2) 1.378(2), C(15)-C(17) 1.543(2), C(15)-C(16) 1.512(2), C(17)-C(18) 1.494(3), N(2)-C(17) 1.275(2), N(2)-C(19) 1.453(2), I(1)-Cd(1)-I(2) 120.395(2), N(1)-Cd(1)-N(2) 71.48(5), C(1)-O(1)-C(15) 104.5(1), C(2)-N(1)-C(15) 102.3(1), C(17)-N(2)-C(19) 120.1(2).

In spite of **I** has cyclic structure in solid state methyl group deuteration in CD₃OD solution means that the open form (\mathbf{I}^*) containing phenol group is present in solution.

⁸⁰ The interaction of **I** with equimolar amount of dimethylcadmium in ether solution leads to cadmium phenolate derivative **V**. The reaction is accompanied with solution color change and release of

Scheme 5 The synthesis of compound V.

- ⁵ The molecular structure of V is depicted in Figure 5. According to X-Ray data analysis V adopts a dimeric structure with two cadmium cations bounded by two bridging oxygen atoms. The Cd(1) is in distorted tetragonal pyramidal environment: O(1), N(1), N(2) and C(61) form the base while O(2) occupies an apical
- ¹⁰ site. The Cd(2) is in distorted tetrahedron environment with the O(1), O(2), N(3) and C(62) in the tops. The Cd(1), O(1), Cd(2) and O(2) form a distorted rhombus. The Cd(1)-O(1) (2.374(3) Å) and Cd(2)-O(2) (2.225(3) Å)^{21,22} distances are significantly shorter than bonds Cd(1)-O(2) and Cd(2)-O(1) (2.398(3) Å and
- ¹⁵ 2.240(2) Å) which have donor-acceptor nature. Also these distances are shorter than the sum of covalent radii of these atoms. Values of Cd(1)-N(1) (2.344(3) Å), Cd(1)-N(2) (2.428(4) Å) and Cd(2)-N(3)(2.578(3) Å) lie in the range typical for donor-acceptor bond lengths of aforementioned atoms. The cadmium
- $_{20}$ atoms separated from each other by 3.370(4) Å. The distance between Cd(2) and N(4) atoms is 5.305(3) Å. This fact demonstrates that the N(4) atom is not coordinated on metal atom.
- In accordance to X-ray analysis ligands in dimer V are not ²⁵ identically coordinated. However there is only one set of signals belonging to the ligand in ¹H NMR spectrum. The above data may be caused by either dissociation of V in solution or the coordination sphere dynamics.

Fig.5 The molecular structure of V. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms and Me-fragments of iPr-, tBu-groups are omitted. Selected distances [Å] and angles [°]: Cd(1)-O(1) 2.374(3), Cd(1)-N(1) 2.344(3), Cd(1)-N(2) 2.428(4), Cd(1)-C(61) 2.146(4), Cd(2)-O(2) 2.225(3), Cd(2)-N(3) 2.578(3), Cd(2)-C(62)
 2.146(5), O(1)-C(1) 1.325(5), C(1)-C(2) 1.434(6), N(1)-C(2) 1.402(5), N(1)-C(15) 1.289(5), N(2)-C(16) 1.274(5), N(2)-C(19) 1.441(5), C(1)-C(2) 1.434(6), C(15)-C(16) 1.520(5), C(15)-C(17) 1.508(6), C(16)-C(18) 1.507(6), O(2)-C(31) 1.361(5), N(3)-C(32) 1.434(6), N(3)-C(45) 1.285(5), N(4)-C(46) 1.271(5), N(4)-C(49) 1.426(5), C(3)-C(32) 1.406(6), C(45)-C(46) 1.500(6), C(45)-C(47) 1.517(5), C(46)-C(48) 1.514(5), O(1)-Cd(1)-N(1) 62.7(1), N(1)-Cd(1)-N(2) 68.2(1), O(2)-Cd(2)-N(3) 67.9(1), O(1)-Cd(1)-O(2) 78.6(1), O(1)-Cd(2)-O(2) 85.2(2).

The interaction of Me_2Cd with I (molar ratio 1:2) leads to the formation of deep blue derivative VI (Scheme 6).

Scheme 6 The synthesis of compound VI.

The ¹H and ¹³C NMR spectra of **VI** demonstrate one set of signals belonging to the ligand.

50 The X-Ray analysis of VI shows that the phenolate ligands with diazabutadiene fragments are identically coordinated (Fig.6). The Cd(1) is in distorted octahedral environment. The N(1), N(3), N(4) and O(2) form the base while O(1) and N(2) occupy an apical sites. The o-aminophenolate fragments are plane and the 55 dihedral angle between ones amounts 84.9°. The rings of aniline fragments of the ligand are almost parallel to each other. Dihedral angle between ones is 18.4°. The Cd(1)-O(1) (2.258(1) Å) and Cd(1)-O(2) (2.262(1) Å) distances are significantly shorter than bonds Cd-O which have donor-acceptor nature. These distances 60 are comparable with Cd-O bonds lengths observed for the cadmium phenolate compounds.^{21,22} Values of Cd-N distances (Cd(1)-N(1) 2.333(1), Cd(1)-N(2) 2.397(1), Cd(1)-N(3) 2.318(1) and Cd(1)-N(4) 2.317(1) Å) lie in the range typical for donoracceptor bond nature between aforementioned atoms. The 65 distances C-C and C-N (C(15)-C(16) 1.510(2) Å, C(45)-C(46) 1.510(2) Å, N(1)-C(15) 1.286(2) Å, N(2)-C(17) 1.286(2) Å, N(3)-C(45) 1.289(2) Å and N(4)-C(46) 1.295 Å) are corresponded to bond orders of one and two, respectively.

Fig.6 The molecular structure of VI. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms and Me-fragments of iPr-, tBu-groups are omitted. Selected distances [Å] and angles [°]: Cd(1)-O(1) 2.258(1), Cd(1)-O(2) 2.262(1), Cd(1)-N(1) 2.333(1), Cd(1)-N(2) 2.397(1), Cd(1)-N(3) 2.318(1), Cd(1)-N(4) 2.371(1), O(1)-C(1) 1.299(3), N(1)-C(2) 1.404(2), N(1)-C(15) 1.286(2), N(2)-C(17) 1.286(2), N(2)-C(19) 1.450(1), C(1)-C(2) 1.438(2), C(15)-C(16) 1.510(2), C(15)-C(17) 1.500(2), C(16)-C(18) 1.502(2), O(2)-C(31) 1.301(2), N(3)-C(32) 1.404(2), N(3)-C(45) 1.289(2), N(4)-C(46) 1.295(2), N(4)-C(49) 1.444(2), C(31)-C(32) 1.430(2), C(45)-C(46) 1.510(2), C(45)-C(47)
 1.498(2), C(46)-C(48) 1.495(2), O(1)-Cd(1)-N(1) 72.14(4), N(1)-Cd(1)-N(2) 70.34(5), O(2)-Cd(1)-N(3) 72.48(4), N(3)-Cd(1)-N(4) 70.41(5), O(1)-Cd(1)-O(2) 96.46(4).

Conclusions

In the present work we have described the synthesis of novel ⁸⁵ ligand - benzoxazole I. It is shown that obtained compound I undergoes a ring open process to form the enamine species in solution. The coordination abilities of I have been studied. The ligand I is shown to demonstrate a neutral coordination type in complex with cadmium halide. A convenient procedure for the synthesis of cadmium complexes with the new sterically hindered ONN- ligand has been developed. This method may be used for a synthesis of the simillar complexes containing different metals.

Experimental

5 General

2-amino-4,6-di-tert-butylphenol was prepared according to a previously described procedures.²³ Solvents were purified by standard methods.²⁴ All synthesis have been conducted in evacuated ampoules.

- ¹⁰ The NMR spectra were recorded on a «Bruker Avance III» NMR spectrometer (400 MHz) using CDCl₃, CD₃OD or C₆D₆ as the solvents and tetramethylsilane as the internal standard. IR-spectra were recorded by 'Specord M-80. Elemental analyses were obtained on "EuroEA-3028-HT". Mass spectra was recorded on
- ¹⁵ mass spectrometer "Polaris Q" with ion trap mass analiser. Electron impact mass spectra (70 eV) were registrated in the mass range 50-550 m/e.

X-Ray crystallographic study of I, IV-VI

The X-ray data were collected on a Smart Apex diffractometer ²⁰ (for I and IV, graphite-monochromated, *MoKa*-radiation, ω -scan technique, $\lambda = 0.71073$ Å, T = 100(2) K) and a Agilent Xcalibur E diffractometer (for V and VI, graphite-monochromated, *MoKa*radiation, ω -scan technique, $\lambda = 0.71073$ Å, T = 100(2) K). The structures were solved by direct methods and were refined on F^2

- ²⁵ using SHELXTL²⁵ (I and IV) and CrysAlis Pro²⁶ (V and VI) package. All non-hydrogen atoms were found from Fourier syntheses of electron density and were refined anisotropically. H1A in I was also found from Fourier syntheses of electron density, but were refined isotropically. All other hydrogen atoms
- ³⁰ were placed in calculated positions and were refined in the riding model. *SADABS*²⁷ (**I** and **IV**) and *ABSPACK* (*CrysAlis Pro*)²⁶ (**V** and **VI**) were used to perform area-detector scaling and absorption corrections. The details of crystallographic, collection and refinement data are shown in Table 1 and corresponding cif
- ³⁵ files are available as supporting information. CCDC-772231 (I), 957572 (IV), 957573 (V), 957574 (VI) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via and compare of the supplementation of the control of the control of the supplementation of the suppl
- 40 ccdc.cam.ac.uk/products/csd/request.

Synthesis

N-(1-(5,7-di-tert-butyl-2-methyl-2,3-dihydrobenzo[d]-oxazol-2-yl)ethylidene)-2,6-diisopropylaniline (I)

- A solution of 2-amino-4,6-di-tert-butylphenol (0.34 g, 15 mmol) ⁴⁵ in methanol (30 mL) was added to 3-(2,6diisopropylphenylimino)butan-2-one (0.38 g, 1.6 mmol) in an evacuated ampoule. Reaction mixture was heated at 50 °C during 10-15 min. Upon concentration of reaction mixture to 15-20 mL colorless crystals are formed.
- ⁵⁰ Yield: 0.57 g (85%); m.p. = 82 °C. m/z 448 (M⁺, 100%); 449(M⁺+1, 33); 450(M⁺+2, 6). Found (%): C, 80.4; H, 9.9. Calculated for $C_{30}H_{44}N_2O$ (%): C, 80.3; H, 9.9. IR (nujol, v/cm⁻¹): 3291br, 3062m, 1914w, 1857w, 1796w, 1666s, 1624w, 1605m, 1418s, 1365s, 1327m, 1300m, 1266m, 1224s, 1193s, 1105s, ⁵⁵ 1079s 1020w, 1014w, 022w, 011w, 202w, 254, 222, 706</sup>
- 55 1079s, 1029w, 1014w, 938w, 911w, 892m, 854s, 823m, 796w,

774s, 747m, 716m, 667m, 644w, 583w, 552w, 510w. ¹H NMR (CDCl₃, δ/ppm, J/Hz): 0.79 and 0.83 (both d, 6H, (CH₃)₂CH, J=6.88); 1.26 and 1.36 (both s, 9H, tBu); 1.83 and 1.86 (both s, 3H, Me); 2.23 and 2.64 (both sept, 1H, (CH₃)₂CH, J=6.88 Γu,); ⁶⁰ 5.88 (s, 1H, NH); 6.74 (br s, 2H, H_{arom}); 7.02-7.14 (m, 3H, H_{arom}). ¹H NMR (CD₃OD, δ/ppm, J/Hz): 0.81 and 0.85 (both d, 3H, (CH₃)₂CH, J=6.88); 1.13 and 1.16 (both d, 3H, (CH₃)₂CH, J=6.88); 1.27 and 1.35 (both s, 9H, tBu); 1.81 and 1.83 (both s, 3H, Me); 2.31 and 2.69 (both sept, 1H, (CH₃)₂CH, J=6.88 Γu);

- ⁶⁵ 4.57 (s, 1H, NH); 6.73 and 6.75 (both d, 1H, H_{arom}, J=7.26 Γu);
 6.98-7.17 (m, 3H, H_{arom}). ¹³C NMR (CDCl₃, δ/ppm): 15.4, 22.3,
 22.7, 22.8, 23.0, 23.2, 24.8, 27.9, 28.2, 29.7, 31.8, 34.0, 34.6,
 76.7, 77.0, 77.3, 100.5, 107.4, 115.0, 122.9, 123.0, 123.8, 130.8,
 135.7, 136.0, 138.0, 144.2, 144.7, 144.9, 171.7 (C=N). ¹³C NMR
 ⁷⁰ (CD₃OD, δ/ppm): 14.4; 21.5; 21.8; 22.0; 22.2; 27.6; 27.9; 29.0;
 30.9; 33.6 (CH₃); 34.1 (CH₃); 100.3; 107.1; 114.5; 122.6; 123.7;
 130.5; 135.5; 135.8; 138.1; 144.1; 144.7; 144.9; 172.0 (C=N).
- 75 N-(1-(6,8-di-tert-butyl-2H-benzo[1,4]oxazin-3-yl) ethylidene)-2,6-diisopropylaniline (III)

The crystals of I suitable for X-ray were obtained from CH₃CN.

A solution of I (0.5 g., 1.1 mmol) in 15 mL of diethyl ether and the alkaline solution of potassium ferricyanide (1 g. K₂Fe(CN)₆, 0.1 g. KOH in 50 mL of water) were stirred 24 hours with a magnetic stirrer until I disappeared. Then the organic layer was separated and dried by MgSO₄. The ether was removed and the crude product was dissolved in acetonitrile. After cooling the yellow needle crystals were formed.

Yield: 0.43 g (86%). m.p. 167°C. Found (%): C, 80.7; H, 9.5.

- ⁸⁵ Calculated for C₃₀H₄₂N₂O(%): C, 80.9; H, 9.3. IR (nujol, v/cm⁻¹): 1627m, 1589w, 1360s, 1315m, 1258m, 1243m, 1217m, 1089w, 1021m, 976w, 938w, 912w, 882m, 826w, 792w, 762s, 720w, 698w, 679w, 653w. ¹H NMR (CDCl₃, δ/ppm, J/Hz): 1.14 and 1.15 (both d, 6H, CH(CH₃)₂, J=6.88); 1.34 (s, 9H, tBu); 1.41 (s,
- ⁹⁰ 9H, tBu); 2.07 (s, 3H, CH₃); 2.63 (sept, 2H, CH(CH₃)₂, J=6.88); 5.12 (s, 2H, CH₂); 7.08-7.34 (m, 5H, H_{arom}). ¹³C NMR (CDCl₃, δ /ppm): 15.7; 22.7; 23.2; 28.3; 29.7; 31.5; 34.4; 34.7; 61.2 (CH₂); 123.0; 123.2; 124.0; 124.6; 133.9; 135.2; 137.2; 143.6; 144.2; 145.8; 159.1 and 166.15 (C=N).

(N-(1-(5,7-di-tert-butyl-2-methyl-2,3-dihydrobenzo[d]oxazol-2-yl)ethylidene)-2,6-diisopropylaniline) cadmium diiodide (IV)

- A solution of I (0.1 g, 0.2 mmol) in diethyl ether (25 mL) was added to a suspension of CdI_2 in Et_2O (10 mL). Reaction mixture was stirred at 20 °C until cadmium iodide crystals disappeared. Hexane (30 mL) was added to the reaction solution and a colorless powder was formed after the ether evaporation. Yield: 0.12 g (73%). Found (%): C, 44.2; H, 5.5; Cd, 13.7; I,
- ¹⁰⁵ 31.2. Calculated for $C_{34}H_{54}CdI_2N_2O_2$ (%): C, 44.2; H, 5.3; Cd, 15.7; I, ¹⁰⁵ 31.2. Calculated for $C_{34}H_{54}CdI_2N_2O_2$ (%): C, 44.2; H, 5.4; Cd, ^{13.8}; I, 31.2. IR (nujol, v/cm⁻¹): 3120s (N-H), 1646s (C=N), ^{1413s}, 1364s, 1326w, 1270m, 1236m, 1179s, 1134s, 1115s, ^{1081s}, 965s, 916m, 893s, 871s, 837m, 803m, 788s, 754m, 743m, ^{720w}, 626w. ¹H NMR (CDCl₃, δ /ppm, J/Hz): 0.45 (d, 3H,
- ¹¹⁰ (CH₃)₂CH, J=6.73); 0.96 (d, 3H, (CH₃)₂CH, J=6.73); 1.19 (d, 3H, (CH₃)₂CH, J=6.73); 1.25 (d, 3H, (CH₃)₂CH, J=6.73); 1.33 (s, 9H, tBu); 1.35 (s, 9H, tBu); 1.96 (sept, 1H, (CH₃)₂CH, J=6.73); 2.04 (s, 3H, CH₃); 2.37 (s, 3H, CH₃); 2.86 (sept, 1H, (CH₃)₂CH, J=6.73);

Table1. The crystal data collection and structure refinement data for the complexes I, VI-VI.

Formula $C_{10}H_{44}N_{2O}$ $C_{34}H_{45}CdE_NO_2$ $C_{663,0}H_{107,50}Cd_{5N}O_{535}$ $C_{664}H_{60}CdN_{0,1}$ M_r 448.67 888.99 1265.08 1081.85 $Crystal size, mm^3$ 0.1550.10×0.05 0.42×0.14×0.12 0.40×0.10×0.10 0.40×0.20×0.20 $Crystal system$ $Triclinic$ Monoclinic $Triclinic$ Monoclinic $Space group$ $P-I$ $P2(I)/n$ $P-I$ $P2(I)/n$ a, A 11.2464(9) 19.3052(6) 12.7219(2) 15.0475(3) b, A 15.861(1) 11.9215(4) 17.4042(4) 26.8007(4) c, A 18.527(1) 19.4653(7) 17.4215(4) 16.0102(3) a, \circ 102.754(2) 90 72.473(2) 90 β, \circ 107.317(2) 119.466(1) 78.284(2) 109.913(2) γ, \circ 109.440(2) 90 73.561(2) 90 Cell volume, A 2781.0(4) 3900.4(2) 3498.5(1) 6070.6(2) Z 4 4 2 4 Dacto, g(cm^		Ι	IV	V	VI
M_r 448.67888.991265.081081.85 $Crystal size, mm²$ 0.15×0.10×0.050.42×0.14×0.120.40×0.10×0.100.40×0.20×0.20 $Crystal system$ $Triclinic$ $Monoclinic$ $Triclinic$ $Monoclinic$ $Space group$ $P.I$ $P2(I)/n$ $P.I$ $P2(I)/n$ a, A 11.2464(9)19.3052(6)12.7219(2)15.0475(3) b, A 15.861(1)11.9215(4)17.4042(4)26.8007(4) c, A 18.527(1)19.465(7)17.4215(4)16.0102(3) $a, °$ 102.754(2)9072.473(2)90 $\beta, °$ 107.317(2)119.466(1)78.284(2)109.913(2) $\gamma, °$ 109.440(2)9073.561(2)90 $\gamma, °$ 109.440(2)9073.561(2)90 $Cell volume, A$ 2781.0(4)3900.4(2)3498.5(1)6070.6(2) Z 4424 $D_{outo}, g/cm²$ 1.0721.5141.2011.184 $\mu, mm²$ 0.0642.1710.6520.405 $Foor5252525252Index ranges-13 \leq h \leq 13-23 \leq h \leq 23-15 \leq h \leq 15-18 \leq h \leq 18-19 \leq k \leq 19-14 \leq k \leq 14-21 \leq k \leq 21-33 \leq k \leq 33-22 \leq l \leq 22-23 \leq l \leq 24-21 \leq l \leq 21-19 \leq l \leq 19Reflns collected23923326855378192898Independent reflns1087276041358111878R_{mi}0.04520.$	Formula	$C_{30}H_{44}N_2O$	$C_{34}H_{54}CdI_2N_2O_2$	$C_{68.20}H_{107.50}Cd_2N_4O_{3.55}$	$C_{64}H_{96}CdN_4O_3$
Crystal size, mm² $0.15 \times 0.10 \times 0.05$ $0.42 \times 0.14 \times 0.12$ $0.40 \times 0.10 \times 0.10$ $0.40 \times 0.20 \times 0.20$ Crystal systemTriclinicMonoclinicTriclinicMonoclinicMonoclinicSpace groupP-I $P_2(I)/n$ P-I $P_2(I)/n$ a. A 11.2464(9)19.3052(6)12.7219(2)15.0475(3)b. A 15.861(1)11.9215(4)17.402(4)26.8007(4)c. A 18.527(1)19.4653(7)17.4215(4)16.0102(3) a , $^{\circ}$ 100.754(2)9072.473(2)90 β , $^{\circ}$ 107.317(2)119.466(1)78.284(2)109.913(2) γ , $^{\circ}$ 109.440(2)9073.561(2)90 γ , $^{\circ}$ 109.440(2)9073.561(2)90 ζ Cell volume, A 24424 $D_{culos}g/cm^3$ 1.0721.5141.2011.184 μ , mm²0.0642.1710.6520.405 F_{000} 984176813382320 2θ range, $^{\circ}$ 52525252Index ranges-13 $\leq h \leq 13$ -23 $\leq h \leq 23$ -15 $\leq h \leq 15$ -18 $\leq h \leq 18$ $-19 \leq k \leq 19$ -14 $\leq k \leq 14$ -21 $\leq k \leq 21$ -33 $\leq k \leq 33$ $-22 < i \leq 22$ 23 $\leq 1 \leq 24$ -21 $\leq i \leq 21$ -19 $\leq i \leq 19$ Refine collected23923326855378192898Independent refins1087276041358111878 R_{wit} 0.04520.02110.06740.0907	M_r	448.67	888.99	1265.08	1081.85
Crystal systemTriclinicMonoclinicTriclinicMonoclinicSpace groupP-1 $P2(1)/n$ P-1 $P2(1)/n$ a, \vec{A} 11.2464(9)19.3052(6)12.7219(2)15.0475(3)b, \vec{A} 15.861(1)11.9215(4)17.402(4)26.8007(4)c, \vec{A} 18.527(1)19.4653(7)17.4215(4)16.0102(3)a, $^{\circ}$ 102.754(2)9072.473(2)90 $\beta_{.}^{\circ}$ 107.317(2)119.466(1)78.284(2)109.913(2) $\gamma_{.}^{\circ}$ 109.440(2)9073.561(2)90Cell volume, \vec{A} 2781.0(4)3900.4(2)3498.5(1)6070.6(2) Z 4424 $D_{cals.} g/cm^3$ 1.0721.5141.2011.184 μ, mm^{-1} 0.0642.1710.6520.405 F_{600} 984176813382320 20 range, $^{\circ}$ 52525252Index ranges $-13 \le h \le 13$ $-23 \le h \le 23$ $-15 \le h \le 15$ $-18 \le h \le 18$ $-19 \le k \le 19$ $-14 \le k \le 14$ $-21 \le k \le 21$ $-33 \le k \le 33$ $-22 \le l \le 22$ $-23 \le l \le 24$ $-21 \le l \le 21$ $-19 \le l \le 19$ Refins collected23923326855378192898Independent refins1087276041358111878 R_{eet} 0.04520.02110.06740.0907Completenss to θ 99.699.488.799.6Data /restraints /parameters10872 / / 6197604	Crystal size, mm ³	0.15×0.10×0.05	0.42×0.14×0.12	0.40×0.10×0.10	0.40×0.20×0.20
Space groupP-IP2(1)/nP-IP2(1)/n a, \dot{A} 11.2464(9)19.3052(6)12.7219(2)15.0475(3) b, \dot{A} 15.861(1)11.9215(4)17.402(4)26.8007(4) c, \dot{A} 18.527(1)19.4653(7)17.4215(4)16.0102(3) a, \circ 102.754(2)9072.473(2)90 β, \circ 107.317(2)119.466(1)78.284(2)109.913(2) γ, \circ 109.440(2)9073.561(2)90 $cell volume, \dot{A}$ 2781.0(4)3900.4(2)3498.5(1)6070.6(2) Z 4424 $D_{calc} g/cm^3$ 1.0721.5141.2011.184 μ, mm^{r1} 0.0642.1710.6520.405 F_{600} 984176813382320 2θ range, \circ 52525252Index ranges $-13 \le h \le 13$ $-23 \le h \le 23$ $-15 \le h \le 15$ $-18 \le h \le 18$ $-19 \le k \le 19$ $-14 \le k \le 14$ $-21 \le k \le 21$ $-33 \le k \le 33$ $-22 \le l \le 22$ $-23 \le l \le 24$ $-21 \le l \le 21$ $-19 \le l \le 19$ Independent refins1087276041358111878 R_{en} 0.04520.02110.06740.9097Data /restraints /parameters10872 (0/6197604 / 0/38813581 / 45 / 73611878/7/688GooF1.0381.0261.0531.0331.033 $R_{el}(h=2a(l))$ 0.06670.02290.07480.0392w8; (all daa)0.15280.0566 <t< td=""><td>Crystal system</td><td>Triclinic</td><td>Monoclinic</td><td>Triclinic</td><td>Monoclinic</td></t<>	Crystal system	Triclinic	Monoclinic	Triclinic	Monoclinic
a, \dot{A} 11.2464(9)19.3052(6)12.7219(2)15.0475(3)b, \dot{A} 15.861(1)11.9215(4)17.4042(4)26.8007(4)c, \dot{A} 18.527(1)19.4653(7)17.4215(4)16.0102(3)a, \circ 102.754(2)9072.473(2)90 β , \circ 107.317(2)119.466(1)78.284(2)109.913(2) γ , \circ 109.440(2)9073.561(2)90 ζ 4424 $D_{calos} g/cm^3$ 1.0721.5141.2011.184 μ , mm ⁴ 0.0642.1710.6520.405 F_{000} 984176813382320 2θ range, \circ 52525252Index ranges $-13 \le h \le 13$ $-23 \le h \le 23$ $-15 \le h \le 15$ $-18 \le h \le 18$ $-19 \le k \le 19$ $-14 \le k \le 14$ $-21 \le k \le 21$ $-33 \le k \le 33$ $-22 \le l \le 22$ $-23 \le l \le 24$ $-21 \le l \le 21$ $-19 \le l \le 19$ Refins collected23923326855378192898Independent refins1087276041358111878 R_{mt} 0.04520.02110.06740.0907Completiness to θ 99.699.498.799.6Data /restraints /parameters10872 / 0/ 6197604 / 0/38813581 / 45 / 73611878 / 7 / 688GooF1.0381.0261.00311.0331.020wR ₂ (all data)0.15280.05660.19430.1020	Space group	P-1	P2(1)/n	P-1	P2(1)/n
b, \vec{A} 15.861(1)11.9215(4)17.4042(4)26.8007(4)c, \vec{A} 18.527(1)19.4653(7)17.4215(4)16.0102(3)a, $^{\circ}$ 102.754(2)9072.473(2)90 $\vec{\beta}, ^{\circ}$ 107.317(2)119.466(1)78.284(2)109.913(2) $\gamma, ^{\circ}$ 109.440(2)9073.561(2)90 $Cell volume, \vec{A}$ 2781.0(4)3900.4(2)3498.5(1)6070.6(2) Z 4424 $D_{calos} g/cm^3$ 1.0721.5141.2011.184 μ, mm^1 0.0642.1710.6520.405 F_{000} 984176813382320 2θ range, $^{\circ}$ 52525252Index ranges $-13 \le h \le 13$ $-23 \le h \le 23$ $-15 \le h \le 15$ $-18 \le h \le 18$ $-19 \le k \le 19$ $-14 \le k \le 14$ $-21 \le k \ge 21$ $-33 \le k \le 33$ $-22 \le l \le 22$ $-23 \le l \le 24$ $-21 \le l \le 21$ $-19 \le l \le 19$ Refins collected23923326855378192898Independent refins1087276041358111878 R_{mi} 0.04520.02110.06740.0907Completiness to θ 99.699.498.799.6Data /restraints /parameters10872/0/6197604/0/38813581/45/73611878/7/688GooF1.0381.0261.0531.0330.0392wR ₂ (all data)0.15280.05660.19430.1020	a, Å	11.2464(9)	19.3052(6)	12.7219(2)	15.0475(3)
c, \dot{A} 18.527(1)19.4653(7)17.4215(4)16.0102(3) a, \circ 102.754(2)9072.473(2)90 $\dot{\beta}, \circ$ 107.317(2)119.466(1)78.284(2)109.913(2) y, \circ 109.440(2)9073.561(2)90Cell volume, \dot{A} 2781.0(4)3900.4(2)3498.5(1)6070.6(2) Z 4424 $D_{calos} g/cm^3$ 1.0721.5141.2011.184 μ, mm^{-1} 0.0642.1710.6520.405 F_{000} 984176813382320 2θ range, \circ 52525252Index ranges $-13 \le h \le 13$ $-23 \le h \le 23$ $-15 \le h \le 15$ $-18 \le h \le 18$ $-19 \le k \le 19$ $-14 \le k \le 14$ $-21 \le k \ge 21$ $-33 \le k \le 33$ $-22 \le l \le 22$ $-23 \le l \ge 24$ $-21 \le l \le 21$ $-19 \le l \le 19$ Reflns collected23923326855378192898Independent reflns1087276041358111878 R_{ut} 0.04520.02110.06740.0907Completness to θ 99.699.498.799.6Data / restraints /parameters10872 / 0 / 6197604 / 0 / 38813581 / 45 / 73611878 / 7 / 688GooF1.0381.0261.0531.0331.033 $k_1(l 2aq(l))$ 0.06670.02290.07480.0392 $wR_2(all data)$ 0.15280.05660.19430.1020	b, Å	15.861(1)	11.9215(4)	17.4042(4)	26.8007(4)
a , °102.754(2)9072.473(2)90 β , °107.317(2)119.466(1)78.284(2)109.913(2) y , °109.440(2)9073.561(2)90Cell volume, A 2781.0(4)3900.4(2)3498.5(1)6070.6(2) Z 4424 D_{calc} g/cm ³ 1.0721.5141.2011.184 μ , mm ⁻¹ 0.0642.1710.6520.405 F_{000} 984176813382320 2θ range, °52525252Index ranges $-13 \le h \le 13$ $-23 \le h \le 23$ $-15 \le h \le 15$ $-18 \le h \le 18$ $-19 \le k \le 19$ $-14 \le k \le 14$ $-21 \le k \le 21$ $-33 \le k \le 33$ $-22 \le l \le 22$ $-23 \le l \le 24$ $-21 \le l \le 21$ $-19 \le l \le 19$ Refins collected23923326855378192898Independent refins1087276041358111878 R_{mt} 0.04520.02110.06740.0907Completness to θ 99.699.498.799.6Data /restraints /parameters10872 / 0 / 6197604 / 0 / 38813581 / 45 / 73611878 / 7 / 688GooF1.0381.0261.0531.0331.033 K_1 (all daa)0.15280.05660.19430.1020	с, Å	18.527(1)	19.4653(7)	17.4215(4)	16.0102(3)
β , °107.317(2)119.466(1)78.284(2)109.913(2) γ , °109.440(2)9073.561(2)90Cell volume, Å2781.0(4)3900.4(2)3498.5(1)6070.6(2)Z4424 D_{cello} g/cm³1.0721.5141.2011.184 μ , mm²0.0642.1710.6520.405 F_{000} 98417681338232020 range, °52525252Index ranges $-13 \le h \le 13$ $-23 \le h \le 23$ $-15 \le h \le 15$ $-18 \le h \le 18$ $-19 \le k \le 19$ $-14 \le k \le 14$ $-21 \le k \ge 21$ $-33 \le k \le 33$ $-22 \le l \le 22$ $-23 \le l \le 24$ $-21 \le l \le 21$ $-33 \le k \le 33$ Independent reflns1087276041358111878 R_{mt} 0.04520.02110.06740.0907Completness to θ 99.699.498.799.6Data /restraints /parameters10872 / 0 / 6197604 / 0 / 38813581 / 45 / 73611878 / 7 / 688GooF1.0381.0261.0531.033 R_1 (l $\ge 2\sigma(l)$)0.06670.02290.07480.0392 wR_2 (all data)0.15280.05660.19430.1020	<i>α</i> , °	102.754(2)	90	72.473(2)	90
y, °109.440(2)9073.561(2)90Cell volume, Å2781.0(4)3900.4(2)3498.5(1)6070.6(2)Z4424 D_{cello} g/cm³1.0721.5141.2011.184 μ , mm'0.0642.1710.6520.405 F_{000} 984176813382320 2θ range, °52525252Index ranges $-13 \le h \le 13$ $-23 \le h \le 23$ $-15 \le h \le 15$ $-18 \le h \le 18$ $-19 \le k \le 19$ $-14 \le k \le 14$ $-21 \le k \le 21$ $-33 \le k \le 33$ $-22 \le l \le 22$ $-23 \le l \le 24$ $-21 \le l \le 21$ $-19 \le l \le 19$ Refins collected23923326855378192898Independent refins1087276041358111878 R_{mt} 0.04520.02110.06740.0907Completness to θ 99.699.498.799.6Data /restraints /parameters10872 / 0 / 6197604 / 0 / 38813581 / 45 / 73611878 / 7 / 688GooF1.0381.0261.0531.0331.033 R_1 (l $\geq 2\sigma(l)$)0.06670.02290.07480.0392 wR_2 (all data)0.15280.05660.19430.1020	<i>β</i> , °	107.317(2)	119.466(1)	78.284(2)	109.913(2)
Cell volume, \hat{A} 2781.0(4)3900.4(2)3498.5(1)6070.6(2) Z 4424 $D_{calcs} g/cm^3$ 1.0721.5141.2011.184 μ , mm ⁻¹ 0.0642.1710.6520.405 F_{000} 984176813382320 2θ range, $^{\circ}$ 52525252 2θ range, $^{\circ}$ 52525252Index ranges $-13 \le h \le 13$ $-23 \le h \le 23$ $-15 \le h \le 15$ $-18 \le h \le 18$ $-19 \le k \le 19$ $-14 \le k \le 14$ $-21 \le k \le 21$ $-33 \le k \le 33$ $-22 \le l \le 22$ $-23 \le l \le 24$ $-21 \le l \le 21$ $-19 \le l \le 19$ Refins collected23923326855378192898Independent refins1087276041358111878 R_{int} 0.04520.02110.06740.0907Completness to θ 99.699.498.799.6Data /restraints /parameters10872 / 0 / 6197604 / 0 / 38813581 / 45 / 73611878 / 7 / 688GooF1.0381.0261.0531.0331.033 $R_1 (l > 2\sigma(l))$ 0.06670.02290.07480.0392 $w_{R_2} (all data)$ 0.15280.05660.19430.1020	γ, °	109.440(2)	90	73.561(2)	90
Z4424 $D_{calo} g/cm^3$ 1.0721.5141.2011.184 μ, mm^{-1} 0.0642.1710.6520.405 F_{000} 984176813382320 2θ range, °52525252Index ranges $-13 \le h \le 13$ $-23 \le h \le 23$ $-15 \le h \le 15$ $-18 \le h \le 18$ $-19 \le k \le 19$ $-14 \le k \le 14$ $-21 \le k \le 21$ $-33 \le k \le 33$ $-22 \le l \le 22$ $-23 \le l \le 24$ $-21 \le l \le 21$ $-19 \le l \le 19$ Refins collected23923 32685 53781 92898Independent refins1087276041358111878R_{mi}0.04520.02110.06740.0907Completness to θ 99.699.498.799.6Data /restraints /parameters10872 / 0 / 6197604 / 0 / 38813581 / 45 / 73611878 / 7 / 688GooF1.0381.0261.0531.033 $R_1 (l \ge 2\sigma(l))$ 0.06670.02290.07480.0392wR_2 (all data)0.15280.05660.19430.1020	Cell volume, Å	2781.0(4)	3900.4(2)	3498.5(1)	6070.6(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ζ	4	4	2	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_{calc}, g/cm^3$	1.072	1.514	1.201	1.184
F_{000} 984176813382320 2θ range, °52525252Index ranges $-13 \le h \le 13$ $-23 \le h \le 23$ $-15 \le h \le 15$ $-18 \le h \le 18$ $-19 \le k \le 19$ $-14 \le k \le 14$ $-21 \le k \le 21$ $-33 \le k \le 33$ $-22 \le l \le 22$ $-23 \le l \le 24$ $-21 \le l \ge 21$ $-19 \le l \le 19$ Refins collected23923326855378192898Independent refins1087276041358111878 R_{int} 0.04520.02110.06740.0907Completness to θ 99.699.498.799.6Data /restraints /parameters10872 / 0 / 6197604 / 0 / 38813581 / 45 / 73611878 / 7 / 688GooF1.0381.0261.0531.033 R_1 ($I \ge 2\alpha(I)$)0.06670.02290.07480.0392wR_2 (all data)0.15280.05660.19430.1020	μ , mm^{-1}	0.064	2.171	0.652	0.405
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F_{000}	984	1768	1338	2320
Index ranges $-13 \le h \le 13$ $-23 \le h \le 23$ $-15 \le h \le 15$ $-18 \le h \le 18$ $-19 \le k \le 19$ $-14 \le k \le 14$ $-21 \le k \le 21$ $-33 \le k \le 33$ $-22 \le l \le 22$ $-23 \le l \le 24$ $-21 \le l \le 21$ $-19 \le l \le 19$ RefIns collected23923326855378192898Independent refIns1087276041358111878Rint0.04520.02110.06740.0907Completness to θ 99.699.498.799.6Data /restraints /parameters10872 / 0 / 6197604 / 0 / 38813581 / 45 / 73611878 / 7 / 688GooF1.0381.0261.0531.033 R_1 ($I \ge 2\sigma(I)$)0.06670.02290.07480.0392wR_2 (all data)0.15280.05660.19430.1020	2 heta range, °	52	52	52	52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Index ranges	$-13 \le h \le 13$	$-23 \le h \le 23$	$-15 \le h \le 15$	$-18 \le h \le 18$
$-22 \le l \le 22$ $-23 \le l \le 24$ $-21 \le l \le 21$ $-19 \le l \le 19$ Reflns collected23923326855378192898Independent reflns1087276041358111878 R_{int} 0.04520.02110.06740.0907Completness to θ 99.699.498.799.6Data /restraints /parameters10872 / 0 / 6197604 / 0 / 38813581 / 45 / 73611878 / 7 / 688GooF1.0381.0261.0531.033 R_1 ($I \ge 2\sigma(I)$)0.06670.02290.07480.0392wR_2 (all data)0.15280.05660.19430.1020		$-19 \le k \le 19$	$-14 \le k \le 14$	$-21 \le k \le 21$	$-33 \le k \le 33$
Reflns collected23923326855378192898Independent reflns1087276041358111878 R_{int} 0.04520.02110.06740.0907Completness to θ 99.699.498.799.6Data /restraints /parameters10872 / 0 / 6197604 / 0 / 38813581 / 45 / 73611878 / 7 / 688GooF1.0381.0261.0531.033 R_1 ($I > 2\sigma(I)$)0.06670.02290.07480.0392w R_2 (all data)0.15280.05660.19430.1020		$-22 \le l \le 22$	$-23 \le l \le 24$	$-21 \le l \le 21$	$-19 \le l \le 19$
Independent reflns1087276041358111878 R_{int} 0.04520.02110.06740.0907Completness to θ 99.699.498.799.6Data /restraints /parameters10872 / 0 / 6197604 / 0 / 38813581 / 45 / 73611878 / 7 / 688GooF1.0381.0261.0531.033 R_1 (I>2 σ (I))0.06670.02290.07480.0392w R_2 (all data)0.15280.05660.19430.1020	Reflns collected	23923	32685	53781	92898
R_{int} 0.04520.02110.06740.0907Completness to θ 99.699.498.799.6Data /restraints /parameters10872 / 0 / 6197604 / 0 / 38813581 / 45 / 73611878 / 7 / 688GooF1.0381.0261.0531.033 R_1 ($I > 2\sigma(I)$)0.06670.02290.07480.0392wR_2 (all data)0.15280.05660.19430.1020	Independent reflns	10872	7604	13581	11878
Completness to θ 99.699.498.799.6Data /restraints /parameters10872 / 0 / 6197604 / 0 / 38813581 / 45 / 73611878 / 7 / 688GooF1.0381.0261.0531.033 R_1 ($I > 2\sigma(I)$)0.06670.02290.07480.0392wR_2 (all data)0.15280.05660.19430.1020	R_{int}	0.0452	0.0211	0.0674	0.0907
Data /restraints /parameters 10872 / 0 / 619 7604 / 0 / 388 13581 / 45 / 736 11878 / 7 / 688 GooF 1.038 1.026 1.053 1.033 R ₁ (I>2σ(I)) 0.0667 0.0229 0.0748 0.0392 wR ₂ (all data) 0.1528 0.0566 0.1943 0.1020	Completness to θ	99.6	99.4	98.7	99.6
GooF1.0381.0261.0531.033 R_1 (I>2 σ (I))0.06670.02290.07480.0392wR_2 (all data)0.15280.05660.19430.1020	Data /restraints /parameters	10872 / 0 / 619	7604 / 0 / 388	13581 / 45 / 736	11878 / 7 / 688
R_1 ($I > 2\sigma(I)$)0.06670.02290.07480.0392 wR_2 (all data)0.15280.05660.19430.1020	GooF	1.038	1.026	1.053	1.033
wR_2 (all data) 0.1528 0.0566 0.1943 0.1020	$R_{I}(I>2\sigma(I))$	0.0667	0.0229	0.0748	0.0392
	wR_2 (all data)	0.1528	0.0566	0.1943	0.1020

RSC Advances Accepted Manuscript

4.85 (br s, 1H, NH); 7.04-7.25 (m, 5H, H_{arom}). ¹³C NMR (CDCl₃, 5 δ /ppm): 17.98; 23.23; 23.77; 23.80; 24.15; 26.30; 28.22; 28.30; 29.91; 31.72; 34.42; 35.15; 100.54; 115.50; 121.96; 124.26; 124.43; 127.24; 131.15; 132.67; 138.08; 138.57; 140.12; 146.04; 146.28; 180.36 (C=N). The crystals of **IV** suitable for X-ray were obtained from Et₂O.

Methyl cadmium (2,4-di-tert-butyl-6-(3-(2,6-diisopropyl phenylimino)butan-2-ylidene)aminophenolate (V)

10

Me₂Cd (0.284g, 2 mmol) was added to a solution of **I** (0.898 g, 2mmol) in diethyl ether (30 mL). The color change from ¹⁵ colorless to deep brown took place immediately. Red-brown crystals were isolated after cooling.

Yield: 1.024 g (89%). Found (%): C, 64.8; H, 8.0; Cd, 19.6. Calculated for $C_{31}H_{46}CdN_2O$ (%): C, 64.7; H, 8.1; Cd, 19.6. ¹H NMR (CDCl₃, δ /ppm, J/Hz): -0.69 (m, 3H, CH₃Cd, J_{H-Cd} =

²⁰ 82.47); 1.12 (d, 6H, (CH₃)₂CH, J=6.86); 1.15 (d, 6H, (CH₃)₂CH, J=6.86); 1.35 (s, 9H, tBu); 1.50 (s, 9H, tBu); 2.17 (s, 3H, CH₃); 2.60 (sept, 2H, (CH₃)₂CH, J=6.86); 2.64 (s, 3H, CH₃); 6.87(d, 1H, H_{arom}, J=2.48); 7.17-7.21 (m, 3H, H_{arom}); 7.32 (d, 1H, H_{arom}, J=2.48). ¹³C NMR (CDCl₃, δ/ppm): -13.65 (CH₃Cd); 19.32; 23.75; 28.47; 29.55; 31.66; 34.00; 35.39; 115.65; 123.75; 124.83; 129.90; 131.44; 133.53; 137.47; 139.83; 142.50; 159.06 (C=N); 162.73 (C_{arom}-N); 167.48 (C=N). The crystals of V suitable for X-ray were obtained from Et₂O.

³⁰ Cadmium bis(2,4-di-tert-butyl-6-(3-(2,6-diisopropylphenyl imino)butan-2-ylidene) aminophenolate (VI)

 Me_2Cd (0.142 g, 1 mmol) was added to a solution of I (0.898 g, 2 mmol) in diethyl ether (30 mL). The color change from colorless to deep blue took place immediately. Blue crystals were isolated ³⁵ after cooling.

Yield: 0.84 g (83%). Found (%): C, 71.6; H, 8.6; Cd, 11.2.

Calculated for $C_{60}H_{86}CdN_4O_2$ (%): C, 71.5; H, 8.6; Cd, 11.2. IR (nujol, v/cm⁻¹): 1618w, 1589w, 1556s, 1522m, 1506s, 1411m, 1373s, 1361s, 1325s, 1299m, 1278s, 1254s (C-O), 1189s, 1157s, 1121s, 1056w, 1024w, 979s, 935w, 908m, 870m, 837s, 793m,

- ⁵ 781s, 734m, 704w, 645w, 633w, 597w, 583s, 553w, 512w, 485m. ¹H NMR (C₆D₆, δ/ppm, J/Hz): 0.30 (d, 3H, (CH₃)₂CH, J=6.81); 0.85 (d, 3H, (CH₃)₂CH, J=6.81); 1.08-1.10 (m, 6H, (CH₃)₂CH, J=6.81); 1.36 (s, 9H, tBu); 1.54 (s, 9H, tBu); 1.64 (s, 3H, CH₃); 2.36 (sept, 1H, (CH₃)₂CH, J=6.81); 2.41 (s, 3H, CH₃); 3.58 (sept,
- ¹⁰ 1H, (CH₃)₂CH, J=6.81); 6.96 (d, 1H, H_{arom}, J=2.22); 6.87-7.03 (m, 3H, H_{arom}); 7.44 (d, 1H, H_{arom}, J=2.22). ¹³C NMR (C₆D₆, δ /ppm): 19.50; 19.82; 22.75; 23.01; 24.11; 24.32; 27.39; 28.02; 29.58; 31.61; 33.82; 35.51; 116.69; 123.43; 124.53; 125.36; 125.86; 129.88; 130.54; 137.79; 139.13; 139.87; 145.13; 150.16;
- 15 165.68 (C=N); 171.68 (C=N). The crystals of **VI** suitable for X-ray were obtained from Et₂O.

Acknowledgements

This work was supported by the Council for Grants of the President of Russian Federation for Support of Leading Scientific

20 Schools (grant no. NSh 271.2014.3), the Russian Foundation for Basic Research (project no. 14-03-31071_mol_a).

Notes and references

^a G.A. Razuvaev Institute of Organometallic Chemistry RAS, Tropinina str. 49, 603950, Nizhny Novgorod, Russia.

25 ^b Lobachevsky State University of Nizhny Novgorod, Gagarin Ave. 23/5, 603950, Nizhny Novgorod, Russia.

E-mail: ee@iomc.ras.ru; Fax: +7 8312 4627497; Tel: +7 8312 4627682

- G. van Koten, K. Vrieze, Advances in Organometallic Chemistry, Eds F. G. A. Stone, R. West, Acad. Press, New York, London, 1982, 21, 152.
- 2. L.F. Lindoy, S.E. Livingstone, Coord. Chem. Rev., 1967, 2, 173.
- 3. P. Preishuber-Pflugl, M. Brookhart, *Macromolecules*, 2002, **35**, 6074.
- 35 4. D. J. Tempel, L.K. Johnson, R. Leigh Huff, P.S. White, M. Brookhart, J. Am. Chem. Soc., 2000, 122, 6686.
- A. Majumder, G. Rosair, A. Mallick, N.Chattopadhyay, S. Mitra, *Polyhedron*, 2006, 25, 1753.
- G. Juhasz, S. Hayami, O. Sato, Y. Maeda, *Chem. Phys. Let.*, 2002,
 364, 164.
- 7. S. Hayami, Y. Maeda, Inorg. Chim. Acta, 1997, 255, 181
- J.R. Dilworth, S.D. Howe, D.J. Hutson, J.R. Miller, J. Silver, R.M. Thompson, M. Harman, M.B. Hursthouse, J. Chem. Soc., Dalton Trans., 1994, 3553.
- 45 9. A. Mukhopadhyay, S. Pal, J. Chem., Crystallogr., 2005, 35, 737.
- N. Reedig, M.U. Triller, D. Purshe, A. Rompel, B. Krebs, Z. Anorg. Allg. Chem., 2002, 628, 2458.
- D.M. Epstein, S. Choudhary, M.R. Churchill, K.M. Keil, A.V. Eliseev, J.R. Morrow, *Inorg. Chem.*, 2001, 40, 1591.
- 50 12. V. Patroniak, A.R. Stefankiewicz, J.-M. Lehn, M. Kubicki, M. Hoffmann, *Chemistry*, 2006, 144.
 - K.S. Min, T. Weyhermulller, E. Bothe, K. Wieghardt, *Inorg. Chem.*, 2004, 43, 2922.
- 14. Vinsova J., Horak V., Buchta V., Kaustova J. *Molecules*, 2005, **10**, 783.
 - J. Jampilek, J. Vinsova, J. Dohnal, Thesis. 10th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-10).
 1-30 November. - 2006. <u>http://www.usc.es/congresos/ecsoc/10/</u> ECSOC10.htm & http://www.mdpi.org/ecsoc-10/
- 60 16. Y.X. Chen, L.F. Qian, W. Zhang, B. Han, Angew. Chem., 2008, 120, 9470.
 - 17. E. Bayer, Angen. Chem. internat. Edit., 1964, 3, 325.

- G. A. Abakumov, V.K. Cherkasov, N. O. Druzhkov, T.N. Kocherova, A. S. Shavyrin, *Rus. Chem. Bull.*, 2011, 60, 112.
- 65 19. A.T.T. Hsieh and K.L. Ooi, J. Inorg. Nucl. Chem., 1976, 38, 604.
 - 20. S.S. Batsanov, J. Inorg. Chem., 1991, 36, 3015.
 - A.L. Johnson, N. Hollingsworth, G. Kociok-Kohn, K.C. Molloy, Inorg. Chem., 2008, 47, 9706.
- 22. I. Biisching, H. Strasdeit, J. Chem. Soc., Chem. Commun., 1994, 2789.
- V.I. Lodyato, I.L. Yurkova, V.L. Sorokin, O.I. Shadyro, V.I. Dolgopalets, M.A. Kisel, *Bioorganic & Medicinal Chemistry Letters*, 2003, 13, 1179.
- 24. D.D. Perrin, W.L.F. Armarego, D.R. Perrin, Purification of Laboratory Chemicals, Pergamon Press, Oxford, 1980.
- Sheldrick, G. M. SHELXTL v.6.12, Structure Determination Software Suite, Bruker AXS, Madison, Wisconsin, USA, 2000.
- 26. Agilent Technologies. CrysAlis Pro; Agilent Technologies Ltd, Yarnton, England, 2011
- 80 27. Sheldrick, G. M. SADABS v.2.01, Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, Wisconsin, USA, 1998.

RSC Advances

The novel benzoxazole **I** undergoes a fast intramolecular decyclization and demonstrates either a neutral or anionic coordination type in cadmium complexes.

