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A simple and sustainable tetrabutylammonium 

fluoride–catalyzed synthesis of azaarene–

substituted 3–hydroxy–2–oxindoles through sp
3
 

C–H functionalization 

Kumkum Kumari, Bharat Kumar Allam and Krishna Nand Singh*  

A green, practical, and metal–free protocol for direct addition of α–and γ–alkylazaarenes to 

isatins has been developed via sp3 C–H functionalization in water under controlled microwave. 

This methodology provides a mild and fast access to biologically important azaarene–

substituted 3–hydroxy–2–oxindoles in good to excellent yields. 

 

 

Introduction 

The concept of atom economy has driven chemists to develop 

more efficient and sustainable methodologies for new bond 

forming reactions. In this perspective, the direct 

functionalization of C–H bonds in organic compounds has 

emerged as a powerful and ideal method for the construction of 

carbon–carbon and carbon–heteroatom bonds.1 The C–H 

functionalization logic provides step, atom, and redox economy 

to advance the organic synthesis.2 The Lewis acid catalyzed 

activation of the sp3 C–H bond of α–alkylazaarenes has become 

a focal point of the current research.3 It is well-established that 

the benzylic C–H bonds of α–alkylpyridines react with 

electrophiles to form carbon–carbon bonds in nucleophilic 

fashion.4 However, the substrate scope reported so far is limited 

to highly reactive polar electrophiles.5 Despite its synthetic 

utility, only sporadic examples are reported and the 

functionalization of the sp3 C–H bond in α–alkylquinolines 

remains less investigated.6 Isatin as a core structure has inspired 

the development of useful catalytic strategies to give access to 

interesting molecular architectures with wide biological 

activities.7 Interest in 3-substituted-3-hydroxy-2-oxindoles has 

increased rapidly as this core structure is present in a number of 

potential drug candidates for the treatment of proliferative 

diseases.8 The direct addition of benzylic C–H bonds of α-

alkylazaarenes to isatins for the synthesis of azaarene-

substituted 3-hydroxy-2-oxindoles represents the most simple 

and straightforward method to construct such motifs.9 

 Water is the nature's most amazing gift.10 The use of water 

as a solvent in organic synthesis is environmentally benign and 

safe.11 Organocatalysis has emerged and applied rapidly 

because of its unique advantages.12 The exploitation of 

organocatalysts that are compatible in aqueous media will 

provide attractive practical applications.13 However, the use of 

water as a solvent is still challenging because of the highly 

insoluble nature of organic molecules in water and the possible 

reaction of their functional groups with water. Additionally 

water may weaken the catalytic activity and stereocontrol 

through interference of the hydrogen bonds and other polar 

interactions involving catalysts and substrates. Microwave 

(MW)-assisted synthesis has enriched the rapidly evolving 

landscape of C–H bond functionalization,14 and results in 

dramatic rate accelerations, enhanced yields, and cleaner 

reactions. Therefore, from the point of sustainability and green 

chemistry, the development of new organocatalytic approaches 

for reactions in water using controlled MW is highly welcome. 

 Quaternary ammonium salts are readily available phase 

transfer catalysts.15,16 Among them, tetraalkylammonium 

fluorides have been used as a source of naked fluoride ion.17 

The nucleophilic affinity of fluoride ion enables the generation 

of nucleophiles through a deprotonation process.18 

Tetrabutylammonium fluoride (TBAF) has been recently 

explored as a readily available, efficient and water compatible 

organocatalyst and additive for various organic 

transformations.19 

 

Scheme 1.  Functionalization of α–and γ–alkyl azaarenes 
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 In light of the above specifics and as a part of our ongoing 

research interest,20 we report herein the TBAF–catalyzed sp3 

C–H functionalization of α/γ–alkylpyridines and α–

alkylquinolines in water under controlled MW (Scheme 1). To 

the best of our knowledge, the findings involve the first time 

sp3 C–H bond functionalization of α–alkylquinolines for the 

construction of quinoline–substituted 3–hydroxy–2-oxindoles. 

 

Results and discussion 

 The optimization of the reaction conditions was carried out 

by using α-methylquinoline (1b) and N-methylisatin (2a) as 

model substrates in the presence of TBAF·3H2O as a catalyst 

under various conditions (Table 1). The screening was initiated 

using 5 mol% of TBAF·3H2O as a catalyst in pure water at 80 

°C, 80 W for 5 min. Gratifyingly, the reaction proceeded to 

afford selectively the target 3-hydroxy-1-methyl-3-(quinolin-2-

ylmethyl)indolin-2-one (3c) in 55% isolated yield (entry 1). 

Increase of the catalyst concentration to 10 mol% delivered the 

product in 78% yield under the same conditions (entry 2). 

Table 1 Evaluation of conditions for the model reactiona 

Entry 
Catalyst 
(mol %) 

Solvent 
T 

(°C) 
Yieldb 
(%)b 

1. TBAF·3H2O (5) H2O 80 55 

2. TBAF·3H2O (10) H2O 80 78 

3. TBAF·3H2O (10) H2O 100 90 
4. TBAF·3H2O (15) H2O 100 89 

5. TBAF·3H2O (10) H2O 120 85 

6. TBAF·3H2O (10) – 100 80 
7. TBAF·3H2O (10) EtOH 100 47 

8. TBAF·3H2O (10) 1,2-dichloroethane 100 39 

9. TBAF·3H2O (10) 1,4-dioxane 100 60 
10. TBAF·3H2O (10) THF 100 80 

11. TBAF·3H2O (10) DMSO 100 29 
12. TBAF·3H2O (10) Toluene 100 20 

13. TBAB (10) H2O 100 69 

14. TBAI (10) H2O 100 70 
15. KF (20) H2O 100 85 

16. [Bmim]BF4 (10) H2O 100 30 

17. – H2O 100 20c 

aReaction conditions: 1b (2 mmol), 2a (2 mmol), 80 W (MW), 5 min; 
bIsolated yield; cReaction conducted for 20 min. 

 In order to further advance the yield, reaction temperature 

was raised to 100 °C, which provided the optimum yield (90%, 

entry 3). Further increase in the catalyst concentration, and 

temperature did not enhance the yield again (entries 4, 5). 

Various organic solvents like EtOH, 1,2-dichloroethane, 1,4-

dioxane, THF, DMSO, and toluene were also probed for their 

effect on the reaction yield but did not help (entries 7–12). 

When the reaction was conducted under solvent-free 

conditions, a decrease in the product yield was noticed probably 

due to decomposition of the product (entry 6). To ascertain the 

role of fluoride ion, tetrabutylammonium salts with different 

counter ions such as bromide and iodide were also checked, but 

ended with much lower yields (entries 13–14). When potassium 

fluoride (20 mol%) was applied as a catalyst under the same set 

of reaction conditions, it gave rise to 85% product yield (entry 

15). The use of neutral ionic liquid [Bmim]BF4 proved rather 

less effective to deliver the product (entry 16). A control 

experiment without using TBAF·3H2O, however, delivered the 

product in 20% yield after 20 min (entry 17). 

 The scope of the optimized procedure was subsequently 

studied for the reactions of various α/γ–alkylazaarenes with 

isatins. A number of α/γ–alkylazaarenes viz. α-methylpyridine 

(1a), α-methylquinoline (1b), γ-methylpyridine (1c), and α,α'–

lutidine (1d) were successfully activated and made to react with 

different isatins such as N–methylisatin (2a), isatin (2b), N–

propargylisatin (2c), N–allylisatin (2d), N–benzylisatin (2e), N–

ethylisatin (2f), 5-bromoisatin (2g), 5,7-dibromoisatin (2h), and 

5–nitroisatin (2i) to provide a diverse range of products 3a–3x 

in good to excellent yields (Table 2). All the reactions 

underwent easily with specific product selectivity. Isatins with 

different substitution patterns participated well in the reaction 

to deliver the corresponding products. An increase in the yield 

was noticed for N-substituted isatins in comparison to 

unsubstituted one. Isatins containing halogen in the aromatic 

ring also participated well in the reaction. The present catalytic 

system was also found to be effective in activating the sp3 C–H 

bond of α–methylquinoline, affording 3-hydroxy-3-(quinolin-2-

ylmethyl)indolin-2-ones (3c-3k), although the formation of 

rather bis(quinolin-2-ylmethyl)indolin-2-one is described in the 

literature.9a No side products were observed under the present 

conditions. Interestingly in the case of α,α'-lutidine, only one α–

methyl group participated in the functionalization and the 

corresponding products were isolated exclusively. To confirm 

the effectiveness of catalytic activity of TBAF·3H2O and to find 

out the origin of high reaction rates, a model reaction was 

carried out by using α-methylquinoline (1b) and N-methylisatin 

(2a) under conventional heating conditions instead of 

microwave irradiation using the same set of optimized reaction 

conditions (10 mol% TBAF·3H2O, 100 °C, H2O). To our 

delight, the reaction went smoothly to deliver the product 3c in 

83% yield within 3 h, which clearly demonstrates the efficient 

catalytic role of TBAF·3H2O in this methodology. However, 

we may not completely rule out the effect of MW irradiation to 

help further accelerate the reaction. The product structure of a 

representative product 1-allyl-3-hydroxy-3-(pyridin-4-

ylmethyl)-indolin-2-one (3n) was conclusively confirmed by its 

single crystal X-ray determination (Fig. 1).   

 

 

Fig. 1 ORTEP diagram of Product "3n" showing atomic numbering scheme with 

ellipsoid of 50% probability 
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Table 2 Substrate scope for the construction of azaarene-substituted 3-hydroxy-2-oxindolesa 

 

      

      

      

      

aReaction conditions: α/ γ–Alkylazaarene (2 mmol), isatin (2 mmol), TBAF·3H2O (10 mol%), MW (80 W), 100 °C, 5 min; bIsolated yield; cYields without catalyst. 

Experimental 

General experimental procedure: 

 

 In a sealed pressure regulation 10-mL pressurized vial were 

placed α/γ–alkyl azaarene (2 mmol), TBAF·3H2O (10 mol%, 

0.2 mmol, 62 mg), isatin (2 mmol), H2O (2 mL), and a teflon 

coated magnetic stir bar. The vial was closed with a snap on 

cap, stirred at room temperature for 1 min and then placed into 

the MW cavity. Microwave irradiation of 80 W at a set 

temperature of 100 °C was used and the reaction was held 

under these conditions for 5 min. After completion of the 

reaction (monitored through TLC), the mixture was cooled to 

room temperature, poured to a vessel containing distilled water 

and then extracted with ethyl acetate (2 x 10 mL). The 

combined organic phase was dried over anhydrous Na2SO4, 

filtered and concentrated under rotary vacuum evaporator. The 

resulting crude product was purified using preparative TLC. 

 

Conclusions 
 

 In conclusion, the work demonstrates a highly efficient, 

practical, and environmentally benign approach for the sp3 C–H 

functionalization of α–and γ–alkyl azaarenes catalyzed by a 

simple water compatible organocatalyst in aqueous media 

under controlled MW. This study will open a new 

organocatalytic way for the functionalization of sp3 C–H bonds. 

The application of this protocol for the functionalization of α–

methyl benzothiazoles and α-methyl-1H-benzo[d]imidazoles is 

presently underway in our laboratory.  
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A simple and sustainable tetrabutylammonium fluoride (TBAF)–catalyzed synthesis of 

azaarene-substituted 3–hydroxy–2–oxindoles through sp
3
 C–H functionalization† 

Kumkum Kumari, Bharat Kumar Allam and Krishna Nand Singh* 

Department of Chemistry, Centre of Advanced Study, Faculty of Science, Banaras Hindu University, 

Varanasi, India 221005 

 

A green, practical, and metal–free protocol for direct addition of α–and γ–alkylazaarenes to isatins 

has been developed via sp
3
 C–H functionalization in water under controlled microwave. This 

methodology provides a mild and fast access to biologically important azaarene–substituted 3–

hydroxy–2–oxindoles in good to excellent yields. 
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