RSC Advances

c

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

First total synthesis of Fuzanins C, D and their analogues as anticancer agents

S. Naveen Kumar, ${ }^{\text {a }}$ CH. N. S. Sai Pavan Kumar, ${ }^{a}$ E. Srihari, ${ }^{\text {a }}$ Sravani Kancharla, ${ }^{\text {b }}$ Kolupula Srinivas, ${ }^{\text {b,* }}$ Swetha Srivastwa, ${ }^{\text {b }}$ V. G. M. Naidu, ${ }^{\text {b }}$ * and V. Jayathirtha Rao ${ }^{\text {a,b,c* }}$
${ }^{a}$ Crop Protection Chemicals Division, Indian Institute of Chemical Technology, Uppal Road Tarnaka, Hyderabad 500007, India; ${ }^{b}$ National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500 037, India; ${ }^{\circ}$ AcSIR-Indian Institute of Chemical Technology, Uppal Road Tarnaka, Hyderabad-500007

Corresponding author: jrao@iict.res.in

Total synthesis of fuzanins C, D and their quinoline analogues has been accomplished from readily available starting materials. Synthesis of fuzanin D described here also serves to establish its absolute configuration. All compounds were screened for anticancer activity on four cancer cell lines. Quinoline nucleus containing analogs $\mathbf{4 d}, \mathbf{4 c}, \mathbf{3 c}$ are relatively more potent.

First total synthesis of Fuzanins C, D and their analogues as anticancer agents

S. Naveen Kumar, ${ }^{\text {a }}$ CH. N. S. Sai Pavan Kumar, ${ }^{\text {a }}$ E. Srihari, ${ }^{\text {a }}$ Sravani Kancharla, ${ }^{\text {b }}$ Kolupula Srinivas, ${ }^{\mathbf{b}, *}$ Shweta Shrivastava, ${ }^{\mathbf{b}}$ V. G. M. Naidu, ${ }^{\text {b }}{ }^{\mathbf{b} * *}$ and V. Jayathirtha Rao ${ }^{\text {a,b,c,,* }}$ ${ }^{a}$ Crop Protection Chemicals Division, Indian Institute of Chemical Technology, Hyderabad500007, India; ${ }^{b}$ National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad-500037, India; ${ }^{\text {c AcSIR- Indian Institute of Chemical Technology, Uppal }}$ Road Tarnaka, Hyderabad- 500007, India.

Corresponding author: jrao@,iict.res.in

Abstract

The first total synthesis of fuzanins C and D , isolated from the culture supernatant of Kitasatospora sp. IFM10917, is described. Key features of this synthetic strategy involve use of Sharpless asymmetric epoxidation, dihydroxylation, Mitsunobu reaction and Julia-Kocienski olefination. The total synthesis reported herein also confirmed the absolute configuration of fuzanin D. The optical rotations of synthesized fuzanin D and natural product were opposite in sign, leading to a revision of the reported structure as its enantiomer which is further confirmed by molecular modeling studies. In addition, we also synthesized the analogues of fuzanins C, D containing quinoline nucleus. All the synthesized compounds were screened for anticancer activity on four cell lines and found to be potent against HT29 colon cancer cell lines, whereas less potent against cervical and breast cancer cell lines.

Keywords: Total synthesis, Natural products, fuzanin C, fuzanin D, Optical rotation, Molecular modeling, Anti cancer activity.

Introduction

Organic synthesis is the art of building organic molecules through chemical reactions. The synthesis of natural products is one of the most fascinating and challenging areas of research in chemistry. Further, most of the natural products have been at the spearhead of melding the fields of organic chemistry and biology, and the fields will only continue to come together in the future. Nitrogen containing heterocycles such as pyridine, quinoline derivatives are among the most omnipresent azaheterocycles found in many natural products and have been claimed to be
the most prevalent heterocycles in pharmaceutically active compounds. ${ }^{1,2}$ Micrococcin P1, Streptonigrin and Nemerelline, Etoricoxib, Rosuvastatin and Imatinib are few examples of commercialized drugs bearing pyridine motif. The pyridine ring is also ubiquitous in agrochemicals. ${ }^{3}$ Quinine, Chloroquine, Pamaquine, Tafenoquine, Bulaquine are some of the active pharmaceuticals containing quinoline nucleus. Quinoline derivatives exhibit broad range of biological activities such as antimalarial, ${ }^{4}$ antimicrobial, ${ }^{5}$ anticancer, ${ }^{6}$ antifungal, ${ }^{7}$ antileishmanial, ${ }^{8}$ anti-inflammatory, ${ }^{9,10}$ and analgesic activity. ${ }^{10}$

Recently, new carbamate or pyridine containing natural products, fuzanins A (1), B (2), C (3a), and D (4a) were isolated by Ishibashi et al. ${ }^{11}$ from the culture supernatant of Kitasatospora sp. IFM10917 (active strain from 323 actinomycete strains) obtained from a soil sample collected at Toyama city, Japan (Figure 1). In addition, they have also evaluated cytotoxicity against human colon carcinoma DLD-1 cells, and inhibition of Wnt signal transcription for the four compounds.

Figure 1

As part of our continuing synthetic efforts towards synthesis of biologically and pharmaceutically favored heterocycles and natural products, ${ }^{12}$ now we became interested in synthesis of biologically active fuzanin D and its stereo isomer fuzanin C . In this regard, we report the first total synthesis of fuzanin C (3a), D (4a) along with their analogues and also confirmed the absolute configuration of fuzanin D. Some compounds are selectively potent against HT29 colon cancer cell line.

Results and discussion

Fuzanins C (3a) and D(4a) are stereoisomers and differ in stereochemistry at $11^{\text {th }}$ position. The compounds are similar with scaffolds, hence similar synthetic strategies were applied to synthesize them. Retrosynthesis for fuzanins C (3a), D (4a) is depicted in Scheme 1. The analysis revealed that $\mathbf{3 a}$ and $\mathbf{4 a}$ could be prepared efficiently by a Julia-Kocienski olefination protocol using aldehyde 5a with sulfone $\mathbf{6}$ and 7 respectively, The intermediate 5a could be prepared from 2, 3-dimethyl pyridine and compounds $\mathbf{6}, 7$ from ethyl sorbate (8).

Scheme 1

The synthetic strategy for fuzanin $\mathrm{C} \mathbf{(3 a)}$ is described in Scheme 2. The commercially available starting material ethyl sorbate $\mathbf{8}$, was subjected to Sharpless dihydroxylation conditions
using osmium tetraoxide as oxidant and (DHQD) $)_{2}$ PHAL as chiral ligand, giving the diol 9. ${ }^{13,12 a}$ Diol 9 was protected as acetonide and the ester functionality was reduced using DIBAL-H to obtain alcohol $\mathbf{1 0}$. Mitsunobu reaction of $\mathbf{1 0}$ with 1-phenyl-1H-tetrazole-5-thiol to get sulfide, and subsequent oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$ in presence of a molybdenum(VI) catalyst furnished the desired sulfone $\mathbf{6}$ in 82% yield. The vital coupling reaction of $\mathbf{6}$ and $\mathbf{5 a}$ (5a prepared from SeO_{2} oxidation of 2,3-dimethyl pyridine ${ }^{14}$) was performed by the Julia-Kocienski olefination protocol ${ }^{15}$ using KHMDS as base to afford $\mathbf{1 1}$ as mixture of E and Z isomers.

The geometrical isomers i.e., E and Z isomers ($7: 3$ ratio by ${ }^{1} \mathrm{H}$ NMR) were inseparable at this stage. However, final acetonide deprotection of $\mathbf{1 1}$ with p-TSA afforded fuzanin C (3a) and its Z-isomer 3b respectively (Scheme 2). All characterization data for synthesized fuzanin C (3a) (Figs. S2, ESI \dagger) were in good agreement with those reported by Ishibashi et al. ${ }^{11}$

Scheme 2

Synthetic strategy for fuzanin D (4a) is described in Scheme 3. This synthesis begins with selective protection of $\mathrm{C}(5)-\mathrm{OH}$ group of 9 with TBS-Cl in presence of triethylamine and DMAP, provided the desired ether 12. ${ }^{16}$ Mitsunobu inversion of hydroxyl group in $\mathbf{1 2}$ with formic acid in the presence of PPh_{3}, DEAD and subsequent hydrolysis of formyl ester using diluted $\mathrm{NH}_{4} \mathrm{OH} / \mathrm{MeOH}$ afforded compound $\mathbf{1 3}$ in 55% overall yield. ${ }^{17}$ TBS deprotection of $\mathbf{1 3}$ in presence of tetrabutylammoniumfluoride (TBAF) results trans-1,2-diol 14. Trans-1,2-diol $\mathbf{1 4}$ is protected as acetonide, DIBAL-H reduction of ester functionality, Julia-Kocienski olefination protocol, and hydrolysis or deprotection (The same synthetic sequence was followed as in scheme 2) provided fuzanin $\mathrm{D}(\mathbf{4 a})$ and its Z-isomer $\mathbf{4 b}$ in 6:4 ratio (Scheme 3).

Scheme 3

Characterization data for the synthesized fuzanin D (4a) (Figs. S6, ESI \dagger) were in good agreement with those reported by Ishibashi et al. except optical rotation. The $[\alpha]_{\mathrm{D}}$ of the natural product is $-32.9\left(\mathrm{CHCl}_{3}\right)$, and synthesized fuzanin $\mathrm{D}(\mathbf{4 a})$ has +29.47 . The original work by Ishibashi et al. ${ }^{11}$ mentioned that fuzanin D as a stereoisomer to fuzanin C and further there was no attempt made to substantiate the stereochemistry of fuzanin D. The fuzanin D synthesized in this work exhibited optical rotation +29.47 , whereas the sign of optical rotation is found to be opposite to the natural product reported by Ishibashi et al. In order to investigate the absolute configuration of fuzanin D, we further synthesized the other enantiomer of fuzanin D as given in scheme 5.

The retrosynthesis of other enantiomer fuzanin D i.e., $(11 R, 12 S)$-fuzanin $\mathrm{D}[(\mathbf{1 1 R}, \mathbf{1 2 S})$ 4a] is depicted in Scheme 4. We envisioned the two stereocenters in (11R, 12S)-4a and this could be constructed by the Sharpless asymmetric epoxidation. In this regard, the synthesis was started from 2-buten-1-ol, which was subjected to Sharpless epoxidation to afford the epoxy alcohol 18 (Scheme 5). ${ }^{18}$

Scheme 4

Swern oxidation of epoxy alcohol $\mathbf{1 8}$ and C2-Wittig homologation with [(ethoxycarbonyl)methylene]triphenyl-phosphorane, afforded requisite epoxy ester 19. ${ }^{19}$ The trans regioselective opening of epoxide of 19 was accomplished with benzyl alcohol in presence of $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ as lewis acid catalyst to get benzyl ether $\mathbf{2 0},{ }^{20}$ which was deprotected using AlCl_{3} to get diol 21. ${ }^{20,21}$ Acetonide protection of 21, DIBAL-H reduction, Julia-Kocienski olefination protocol, and hydrolysis or deprotection (The same synthetic sequence was followed as in Scheme 2) provided ($\mathbf{1 1 R}, \mathbf{1 2 S}$)-4a and its Z-isomer $(\mathbf{1 1 R}, \mathbf{1 2 S})-\mathbf{4 b}$ in 6:4 ratio (Scheme 5) (Figs. S11, ESI \dagger).

Scheme 5

The optical rotation of $(\mathbf{1 1 R}, \mathbf{1 2 S})-\mathbf{4 a}-26.9$, which is in good accordance with isolated fuzanin D . This lead unambiguously to the conclusion that the natural product isolated has opposite configuration to that of reported fuzanin D (Figure 2).

Figure 2

This observation was further corroborated by computational study. Optical rotations (at 589.3 nm) of fuzanin $\mathrm{C}(\mathbf{3 a})$, fuzanin $\mathrm{D}(\mathbf{4 a})$ and $(11 R, 12 S)$-fuzanin $\mathrm{D}[(\mathbf{1 1 R}, \mathbf{1 2 S})-4 a]$ were computed using B3LYP/Aug-CC-pVDZ method for geometries obtained at B3LYP/6-31G(d) basis set (Figure 3). ${ }^{22}$ Calculated $[\alpha]_{\mathrm{D}}$ for (3a), (4a) and (11R, $\mathbf{1 2 S}$)-4a are $+66.5,+22.4$ and -8.5 degrees $\left[\mathrm{dm}\left(\mathrm{g} / \mathrm{cm}^{3}\right)\right]^{-1}$ respectively (Table 1). Optical rotations of computationally calculated fuzanins and synthesized fuzanins were having same sign (Table 1). The comparison of experimental and calculated optical rotations allows us to define the stereochemistry fuzanin D reported by Ishibashi et al. as ($11 R, 12 S$)-fuzanin D (figure 2).

Table 1

Figure 3

Intrigued by this, we also synthesized different analogues ($\mathbf{3 c}, \mathbf{3 d}, \mathbf{4 c}$ and $\mathbf{4 d}$) using substituted 2-chloroquinoline-3-carboxaldehydes ($\mathbf{5 b}$ and $\mathbf{5 c})^{23}$ by same synthetic strategy of Julia-Kocienski olefination protocol, and hydrolysis (Scheme 6) (Figs. S4-S5, S8-S9, ESI \dagger).

Scheme 6

Furthermore, all the synthesized compounds were subjected to anticancer activity on various cell lines such as HT29 (Colon cancer), ME-180 (Cervical cancer), MCF-7 and MDA-MB-453 (Breast cancer) by employing MTT assay (details of bio assay are presented in experimental section). For comparison purpose, the cytotoxicity of salinomycin was evaluated under the same experimental conditions. The compounds that exhibiting $\geq 50 \%$ cell inhibition at $100 \mu \mathrm{M}$ were considered for determination of IC_{50} value, which was calculated from the $\%$ cell viability (from control) versus concentration curves obtained after 24 h drug treatment from MTT assay, are shown in the Table 2.

Table 2

Figure 4

All compounds were found to be relatively potent against colon cancer cell line and less potent against cervical and breast cancer cell lines. Among all the compounds, quinoline derivatives of fuzanin $\mathrm{D}(\mathbf{4 c}, \mathbf{4 d})$ were found to be potent with an IC_{50} value of 35.3 ± 0.83, $27.4 \pm 0.12 \mu \mathrm{M}$ respectively. Compound 3c has exhibited moderate activity. Remaining compounds were found to be less potent against HT-29 cell lines. The reference compound salinomycin has IC_{50} value of $20.5 \pm 1.26 \mu \mathrm{M}$.

Conclusion

In conclusion, we have unveiled the first stereoselective total synthesis of fuzanins C, D and their analogues. Synthesis of fuzanin D described here also serves to establish its absolute configuration. Specific optical rotations of synthesized compound and reported fuzanin D indicated opposite signs. This was confirmed by total synthesis of its enantiomer ($\mathbf{1 1 R , 1 2 S)} \mathbf{- 4 a}$. Stereochemistry of reported fuzanin D (4a) should be $11 R$, $12 S$ instead of $11 S, 12 R$ configuration. Molecular modeling studies also supported this observation. Further, fuzanins C, D and their analogues were screened for anticancer activity in four cancer cell lines. The compounds were found to exert cytotoxicity selectively on HT29 cancer cell lines. Quinoline nucleus containing analogues $\mathbf{3 c}, \mathbf{4 c}$ and $\mathbf{4 d}$ are relatively more potent.

Experimental Section

All reactions were carried out under an inert atmosphere unless mentioned otherwise, and standard syringe-septa techniques were followed. Solvents were freshly dried and purified by conventional methods prior to use. The progress of all reactions were monitored by TLC, using TLC aluminium backed sheets precoated with silicagel $60 \mathrm{~F}_{254}$ to a thickness of 0.25 mm (Merck). Column chromatography was performed on silica gel (60-120 mesh and 100-200 mesh), and EtoAc, hexane were used as eluents. Optical rotation values were measured with a Perkin-Elmer P241 polarimeter and a JASCO DIP-360 digital polarimeter, and IR spectra were recorded with a Perkin-Elmer FT-IR spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with Varian Gemini 200 MHz , Bruker Avance 300 MHz , Varian Unity 400 MHz or Varian Inova 500 MHz spectrophotometers. TMS was used as an internal standard in CDCl_{3}. Mass spectra were recorded with a VG micromass 7070H (EI), QSTAR XL high-resolution mass spectrophotometer, a Thermo Finnigan ESI Ion trap Mass spectrophotometer.

(4R,5R,E)-ethyl 4,5-dihydroxyhex-2-enoate (9)

To a mixture of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(28.22 \mathrm{~g}, 85.71 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(11.80 \mathrm{~g}, 85.71 \mathrm{mmol})$, and (DHQD) ${ }_{2}$ PHAL ($0.41 \mathrm{~g}, 0.57 \mathrm{mmol}$) in 45 mL of $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1)$, was added $\mathrm{OsO}_{4}(70.56$ $\mathrm{mg}, 0.28 \mathrm{mmol})$ followed by methane sulfonamide $(2.71 \mathrm{~g}, 28.57 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 15 min at $0{ }^{\circ} \mathrm{C}$, ethyl sorbate $\mathbf{8}(4 \mathrm{~g}, 28.57 \mathrm{mmol})$ was added and stirred vigorously at $0{ }^{\circ} \mathrm{C}$ for 12 h , and then quenched with sat. sodium sulfite (35 mL). The reaction mixture was extracted with ethyl acetate ($3 \times 40 \mathrm{~mL}$). The organic layer washed with $2 \mathrm{~N} \mathrm{KOH}(20 \mathrm{~mL})$, brine solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent removed under vacuo. The crude residue was purified by silica gel column chromatography (EtOAc:Hexane, 7:3) to afford diol 9 ($3.97 \mathrm{~g}, 84 \%$) as light yellow oil; $[\alpha]_{\mathrm{D}}{ }^{25}+50.21$ (c 0.1, EtOH); IR (Neat): 3396, 2924, 1704, 1371, 1281, $1036 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.89$ (dd, $\left.1 \mathrm{H}, J=15.5,5.2 \mathrm{~Hz}\right), 6.10(\mathrm{dd}, 1 \mathrm{H}, J=15.5,1.5 \mathrm{~Hz}), 4.17$ (q, $2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 4.02(\mathrm{brt}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 3.75-3.63(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.20(\mathrm{~d}$, $3 \mathrm{H}, J=6.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 166.5,146.6,122.4,75.6,70.2,60.7,19.0,14.1 ;$ Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{4}$ (174.19): C, 55.16; H, 8.10. Found: C, 55.15; H, 8.17.
(E)-3-((4R,5R)-2,2,5-trimethyl-1,3-dioxolan-4-yl)prop-2-en-1-ol (10)

To the solution of $9(3 \mathrm{~g}, 17.24 \mathrm{mmol})$ in $30 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 2,2-dimethoxypropane ($5.37 \mathrm{~g}, 51.72$ mmol), catalytic amount of p-TSA were added and stirred for 15 min at rt . The reaction mixture was washed with saturated aqueous NaHCO_{3} solution (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuo. The crude residue was purified by silica gel column chromatography
(EtOAc:Hexane, 1:9) to afford cyclic acetonide ($3.46 \mathrm{~g}, 94 \%$) as colour less oil. To the solution cyclic acetonide ($3.2 \mathrm{~g}, 14.9 \mathrm{mmol}$) in 30 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$, DIBAL- $\mathrm{H}(21.01 \mathrm{~mL}, 37.25$ $\mathrm{mmol}, 25 \%$ solution in THF) was added, and stirred for 1 h at rt . The reaction mixture was quenched by slow addition of aq. sodiumpotassiumtartate and stirred for 2 h . Organic layer was separated and aqueous layer was extracted by chloroform (20 mL), combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, solvent removed under vacuo. The crude residue was purified by silica gel column chromatography (EtOAc:Hexane, 6:4) to afford $10(2.4 \mathrm{~g}, 81 \%)$ as light yellow, viscous oil; $[\alpha]_{\mathrm{D}}{ }^{24}+46.01$ (c 0.1, CHCl_{3}); IR (Neat): 3395, 2923, 2851, 1449, 1259, $998 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 5.99$ (dtd, $\left.1 \mathrm{H}, J=15.5,5.1,0.7 \mathrm{~Hz}\right), 5.70(\mathrm{tdd}, 1 \mathrm{H}, J=15.5,7.5,1.5 \mathrm{~Hz})$, $4.19(\mathrm{~d}, 2 \mathrm{H}, J=5.1 \mathrm{~Hz}), 3.9(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 3.84-3.75(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$, $1.26(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 134.2,127.0,108.2,83.1,76.5,62.3$, 27.2, 26.8, 16.3; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3}$ (172.10): C, 62.77; H, 9.36. Found: C, 62.58; H, 9.57.

1-phenyl-5-(((E)-3-((4R,5R)-2,2,5-trimethyl-1,3-dioxolan-4-yl)allyl)sulfonyl)-1H-tetrazole

 (6)To a solution of alcohol $10(0.6 \mathrm{~g}, 3.48 \mathrm{mmol})$ and 1-phenyl-1 H-tetrazole- 5 -thiol $(0.74 \mathrm{~g}, 4.15$ $\mathrm{mmol})$ in 20 mL THF at $0{ }^{\circ} \mathrm{C}$, DIAD ($0.82 \mathrm{~mL}, 4.16 \mathrm{mmol}$) and triphenyl phosphine (0.84 g , 4.15 mmol) were added, and stirred for 1 h at same temperature. The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted with ethyl acetate ($2 \times 20 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuo. The crude residue was purified by silica gel column chromatography (EtOAc:Hexane, 3:7) to afford sulphide ($1.0 \mathrm{~g}, 90 \%$) as colour less, viscous oil; $[\alpha]_{\mathrm{D}}{ }^{24}-24.80\left(c\right.$ 0.1, CHCl_{3}); IR (Neat): 2923, 1679, 1618, 1185, 1001, $741 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.61-7.55(\mathrm{~m}, 5 \mathrm{H}), 6.05-5.95(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{dd}, 1 \mathrm{H}, J=15.1,6.7 \mathrm{~Hz})$, 4.13-3.97 (m, 2H), $3.90(\mathrm{t}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 3.79-3.70(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}$, $3 \mathrm{H}, J=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 153.3,133.4,132.2,130.0,129.6,127.5,123.6$, 108.4, 82.5, 76.4, 34.4, 27.1, 26.7, 16.2; MS (ESI): $m / z 355(\mathrm{M}+\mathrm{Na})^{+}$; HRMS (ESI): m / z $355.1200(\mathrm{M}+\mathrm{Na})^{+}$(calcd for $\left.\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S} 355.1199\right)$.

To a solution of sulphide ($0.50 \mathrm{~g}, 1.50 \mathrm{mmol}$) and ammonium heptamolybdate tetrahydrate (0.55 $\mathrm{g}, 0.45 \mathrm{mmol})$ in 12 mL of ethanol at $0{ }^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}_{2}(30 \%$ solution in water, $2.04 \mathrm{~mL}, 18.07 \mathrm{mmol})$ was added and stirred for 8 h at rt . The reaction mixture was poured in to saturated aqueous NaHCO_{3} solution (40 mL) and extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuo. The crude residue was purified by silica gel column chromatography (EtOAc:Hexane, 3:7) to afford sulphone $4(0.5 \mathrm{~g}, 92 \%)$ as colour less, viscous oil; $[\alpha]_{D}{ }^{24}-28.70$ (c 0.1, CHCl_{3}); IR (Neat): 2922, 1679, 1618, 1222, $741 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$
7.68-7.59 (m, 5H), 5.98 (dd, 1H, $J=15.8,6.0 \mathrm{~Hz}$), 5.93-5.83 (m, 1H), 4.45 (m, 2H), 3.93 (dd, $1 \mathrm{H}, J=8.3,6.0 \mathrm{~Hz}), 3.77-3.68(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 152.8,140.0,132.8,131.4,129.5,125.0,116.6,108.9,82.1,76.4$, 59.0, 27.1, 26.6, 16.3; MS (ESI): $m / z 365(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI): $m / z 387.1093(\mathrm{M}+\mathrm{Na})^{+}($calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{NaS} 387.1097$).

3-methyl-2-((3E)-4-((4R,5R)-2,2,5-trimethyl-1,3-dioxolan-4-yl)buta-1,3-dien-1-yl)pyridine

 (11)To a solution of sulphone $6(0.40 \mathrm{~g}, 1.09 \mathrm{mmol})$ in 10 mL THF at $-78{ }^{\circ} \mathrm{C}$, Potassium bis(trimethylsilyl)amide (0.5 M in THF solution, $2.85 \mathrm{~mL}, 1.42 \mathrm{mmol}$) was added. After 30 min of stirring at same temperature, the solution of aldehyde $\mathbf{5 a}(0.14 \mathrm{~g}, 1.19 \mathrm{mmol})$ in 2 mL THF was added. The reaction mixture was stirred for further 1.5 h at $-78{ }^{\circ} \mathrm{C}$, the reaction allowed to warm to rt and was stirred for additional 2 h . Brine solution was added to the reaction mixture and extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuo. The crude residue was purified by silica gel column chromatography (EtOAc:Hexane, 1:4) to afford 11 ($0.23 \mathrm{~g}, 81 \%$) (inseparable cis, trans mixture, $3: 7$) as viscous, light yellow oil; IR (Neat): 2984, 2932, 1581, 1498, 1380, 1028, $858 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta 8.45$ (d, $0.3 \mathrm{H}, J$ $=4.7 \mathrm{~Hz}), 8.40(\mathrm{~d}, 0.7 \mathrm{H}, J=4.1 \mathrm{~Hz}), 7.45-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~d}, 0.7 \mathrm{H}, J=$ $15.1 \mathrm{~Hz}), 6.60-6.65(\mathrm{~m}, 1.5 \mathrm{H}), 5.92-5.76(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{brt}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 3.84-3.75(\mathrm{~m}$, $1.5 \mathrm{H}), 2.36(\mathrm{~s}, 2.1 \mathrm{H}), 2.31(\mathrm{~s}, 0.9 \mathrm{H}), 1.44(\mathrm{~s}, 4.2 \mathrm{H}), 1.41(\mathrm{~s}, 1.8 \mathrm{H}), 1.29-1.26(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 155.0,153.4,147.3,146.8,138.3,137.8,133.7,132.8,132.3,131.7,130.9$, 129.1, 127.0, 122.3, 122.0, 116.8, 108.7, 108.5, 83.7, 77.7, 77.0, 27.5, 27.1, 19.3, 18.9, 16.8, 16.7; MS (ESI): $m / z 260(M+H)^{+}$; HRMS (ESI): $m / z 260.1641(M+H)^{+}\left(\right.$calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N}$ 260.1645).

(2R,3R,4E,6E)-7-(3-methylpyridin-2-yl)hepta-4,6-diene-2,3-diol (3a)

To a solution of $11(0.10 \mathrm{~g}, 0.38 \mathrm{mmol})$ in 10 mL methanol, was added p-toluenesulphonic acid $(1.32 \mathrm{~g}, 0.77 \mathrm{mmol})$ and the reaction mixture stirred for 12 h at rt , and solvent removed under vacuo. The crude residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated aqueous NaHCO_{3} solution and the solvent removed under vacuo. The crude compound was purified by silica gel column chromatography (EtOAc:Hexane, 1:1) to afford fuzanin C (3a) (0.05 g) as viscous, colour less oil, and cis isomer $\mathbf{3 b}\left(0.02 \mathrm{~g}\right.$) as viscous, colour less oil, (total yield 82%); $[\alpha]_{\mathrm{D}}{ }^{24}$ +39.89 (c 0.055, CHCl_{3}); IR (Neat): 3395, 2923, 1679, 1618, $772 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 8.39(\mathrm{~d}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz}), 7.42(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.37(\mathrm{dd}, 1 \mathrm{H}, J=15.0,11.0 \mathrm{~Hz}), 7.04$ (dd, $1 \mathrm{H}, J=7.7,4.7 \mathrm{~Hz}), 6.78(\mathrm{~d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 6.54(\mathrm{dd}, 1 \mathrm{H}, J=15.3,11.0 \mathrm{~Hz}), 5.94(\mathrm{dd}$,
$1 \mathrm{H}, J=15.3,6.9 \mathrm{~Hz}), 3.95(\mathrm{t}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.68(\mathrm{q}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~d}, 3 \mathrm{H}$, $J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 153.2,146.8,138.2,135.7,133.3,132.1,130.8$, 128.0, 122.0, 77.1, 70.7, 18.8, 18.6; MS (ESI): $m / z 220(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI): $m / z 242.1148$ $(\mathrm{M}+\mathrm{Na})^{+}\left(\right.$calcd for $\left.\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{NNa} 242.1151\right)$.

(2R,3R,4E,6Z)-7-(3-methylpyridin-2-yl)hepta-4,6-diene-2,3-diol (3b)

Yield: $0.02 \mathrm{~g} ;[\alpha]_{\mathrm{D}}{ }^{24}+82.23$ (c 0.051, CHCl_{3}); IR (Neat): 3421, 2924, 1619, 1449, $772 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.42(\mathrm{~d}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz}), 7.45(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.29(\mathrm{dd}, 1 \mathrm{H}, J=$ $15.2,11.5 \mathrm{~Hz}), 7.06(\mathrm{dd}, 1 \mathrm{H}, J=7.3,4.7 \mathrm{~Hz}), 6.46(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 6.38(\mathrm{t}, 1 \mathrm{H}, J=11.5$ Hz), $5.87(\mathrm{dd}, 1 \mathrm{H}, J=15.2,6.6 \mathrm{~Hz}$), $3.93(\mathrm{t}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}$), 3.66 (quin, $1 \mathrm{H}, J=6.2 \mathrm{~Hz}$), $2.31(\mathrm{~s}$, $3 \mathrm{H}), 1.17(\mathrm{~d}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 154.5,146.2,137.8,136.9,132.9$, 131.9, 129.2, 126.0, 121.8, 76.7, 70.4, 19.0, 18.8; MS (ESI): $m / z 220(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI): $m / z 220.1329(\mathrm{M}+\mathrm{H})^{+}\left(\right.$calcd for $\left.\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N} 220.1332\right)$.

(2R,3R,4E,6E)-7-(2-chloro-6-isopropylquinolin-3-yl)hepta-4,6-diene-2,3-diol (3c)

According to the procedure 3a, the sulphone $\mathbf{6}(0.10 \mathrm{~g}, 0.27 \mathrm{mmol})$ and aldehyde $\mathbf{5 b}(0.07 \mathrm{~g}, 0.32$ mmol), gave cyclic acetonide (inseparable cis, trans mixture, 6:94 by NMR) as light yellow oil. Cyclic acetonide dissolved in 10 mL of methanol, catalytic amount of p-TSA was added and stirred for 30 min at rt , and solvent removed under vacuo. The crude residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated aqueous NaHCO_{3} solution and the solvent removed under vacuo. The crude compound was purified by silica gel column chromatography (EtOAc:Hexane, $1: 1)$ to afford compound $\mathbf{3 c}\left(0.06 \mathrm{~g}, 70 \%\right.$, for two steps) as white solid; mp $120-122{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{24}$ -89.56 (c $0.022, \mathrm{CHCl}_{3}$); IR (KBr): 3409, 2963, 2926, 1584, 1047, $768 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}): \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.60-7.56(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz})$, $6.83(\mathrm{dd}, 1 \mathrm{H}, J=15.9,10.9 \mathrm{~Hz}), 6.59(\mathrm{dd}, 1 \mathrm{H}, J=14.9,10.9 \mathrm{~Hz}), 5.91(\mathrm{dd}, 1 \mathrm{H}, J=14.9,5.9$ Hz), 4.01 (t, 1H, $J=5.9 \mathrm{~Hz}$), 3.73 (quin, $1 \mathrm{H}, J=5.9 \mathrm{~Hz}$), 3.07 (sep, $1 \mathrm{H}, J=6.9 \mathrm{~Hz}$), 1.33 (d, 6H, $J=6.9 \mathrm{~Hz}), 1.24(\mathrm{~d}, 3 \mathrm{H}, J=5.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 149.0,148.0,145.5,134.7$, $133.3,132.3,131.9,130.3,129.5,127.8,127.6,127.3,123.5,77.0,70.8,34.0,23.6,19.0$; MS (ESI): $m / z 332[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): $m / z 332.1410(\mathrm{M}+\mathrm{H})^{+}\left(\right.$calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{NCl}$ 332.1411).
(2R,3R,4E,6E)-7-(2-chloro-7-methylquinolin-3-yl)hepta-4,6-diene-2,3-diol (3d)
According to the procedure $\mathbf{3 c}$, the sulphone $\mathbf{6}(0.10 \mathrm{~g}, 0.27 \mathrm{mmol})$ and requisite aldehyde $\mathbf{5 c}$ $(0.07 \mathrm{~g}, 0.35 \mathrm{mmol})$ gave the compound $\mathbf{3 d}(0.06 \mathrm{~g}, 71 \%$, for two steps) as white solid; mp 130$131{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{24}-91.18$ (c 0.024, CHCl_{3}); IR (KBr): 3397, 2925, 1623, 1049, $756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.73$ (br s, 1 H), 7.68 (d, $\left.1 \mathrm{H}, J=8.3, \mathrm{~Hz}\right), 7.37$ (dd, $1 \mathrm{H}, J=$ $8.3,1.13 \mathrm{~Hz}), 6.99(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}), 6.83(\mathrm{dd}, 1 \mathrm{H}, J=15.5,10.3 \mathrm{~Hz}), 6.60(\mathrm{dd}, 1 \mathrm{H}, J=15.3$, 10.3 Hz), $5.91(\mathrm{dd}, 1 \mathrm{H}, J=15.3,6.8 \mathrm{~Hz}$), $4.01(\mathrm{t}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}$), 3.73 (quin, $1 \mathrm{H}, J=6.4 \mathrm{~Hz}$), $2.54(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz})$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 149.8,146.9,141.0$, $134.5,133.3,132.4,131.7,129.5,128.8,127.8,127.2,127.1,125.4,77.1,70.8,21.9,19.0$; MS (ESI): $m / z 304(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): $m / z 304.1096[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{NCl}$ 304.1098).

(4R,5R,E)-ethyl 5-((tert-butyldimethylsilyl)oxy)-4-hydroxyhex-2-enoate (12)

To a solution of the diol $9(3.0 \mathrm{~g}, 17.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}(4.1 \mathrm{~mL}, 29.8$ mmol), DMAP ($1.06 \mathrm{~g}, 0.88 \mathrm{mmol}$) and $\mathrm{TBSCl}(3.96 \mathrm{~g}, 26.3 \mathrm{mmol})$ were added simultaneously, and the mixture was stirred for 24 h at rt . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, successively washed with 10% aq. HCl and sat. NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The resulting oil was purified by silicagel column chromatography (EtOAc:Hexane, 1:4) to afford the TBS ether (12) $(3.29 \mathrm{~g}, 65 \%)$ as a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{25}-0.71$ (c 0.051, EtOH); IR (Neat): 3475, 2932, 2858, 1721, 1257, $838 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ MHz): $\delta 6.88$ (dd, $1 \mathrm{H}, J=15.8,4.5 \mathrm{~Hz}$), $6.10(\mathrm{dd}, 1 \mathrm{H}, J=15.8,1.8 \mathrm{~Hz}), 4.19(\mathrm{q}, 2 \mathrm{H}, J=7.1$ $\mathrm{Hz}), 4.02-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.71(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{brs}, 1 \mathrm{H}), 1.29(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.20(\mathrm{~d}, 3 \mathrm{H}, J$ $=6.0 \mathrm{~Hz}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 166.2,147.2$, 121.9, 75.2, 71.0, 60.3, 25.7, 20.1, 17.9, 14.2, -4.3, -4.9; MS (ESI): m/z $289(\mathrm{M}+\mathrm{H})^{+}$.
(4S,5R,E)-ethyl 5-((tert-butyldimethylsilyl)oxy)-4-hydroxyhex-2-enoate (13)
Under inert atmosphere, to a solution of $\mathrm{PPh}_{3}(0.62 \mathrm{~g}, 2.38 \mathrm{mmol})$ in 5 mL benzene at $0{ }^{\circ} \mathrm{C}$,
 2.85 mmol) were added simultaneously and the mixture was stirred for 2 h at rt . The solvent was evaporated in vacuo, and the crude residue was dissolved in $\mathrm{NH}_{4} \mathrm{OH} / \mathrm{MeOH}(1: 1,3.0 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ and stirred for 3 h at rt . This reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, successively washed with $10 \% \mathrm{HCl}$ solution and sat. NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resulting oil was purified by silica gel column chromatography (EtOAc:Hexane, 1:4) to afford alcohol $13(0.15 \mathrm{~g}, 55 \%)$ as a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{25}-27.1$ (c 0.051, EtOH); IR (Neat): 3466, 2930, 2857, 1720, 1259, $836 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta 6.87$ (dd, $1 \mathrm{H}, J=15.6,4.6 \mathrm{~Hz}$), 6.08 (dd, $1 \mathrm{H}, J=15.6,2.3 \mathrm{~Hz}), 4.24-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.93-3.88(\mathrm{~m}, 1 \mathrm{H}), 2.43$ (brs, 1 H), $1.28(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.08(\mathrm{~d}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}, 70 \mathrm{MHz}\right): \delta 166.3,145.5,121.7,74.8,70.7,60.3,25.7,17.9,17.7,14.2,-4.4,-4.9$; MS (ESI): $m / z 289(\mathrm{M}+\mathrm{H})^{+}$.
(4S,5R,E)-ethyl 4,5-dihydroxyhex-2-enoate (14)
To a solution of $\mathbf{1 3}(0.5 \mathrm{~g}, 1.73 \mathrm{mmol})$ in 10 mL THF at $0^{\circ} \mathrm{C}$, was added TBAF $(1.0 \mathrm{M}, 5.2 \mathrm{~mL}$, 5.19 mmol) and the resulting mixture was stirred for 1 h . The reaction was quenched with water (25 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 25 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo. The crude reside was purified by silica gel column chromatography to yield Diol $14(0.25 \mathrm{~g}, 85 \%) ;[\alpha]_{\mathrm{D}}{ }^{24}-9.15$ (c 0.047, CHCl $_{3}$); IR (Neat): 3429, 2981, 2931, 1714, 1659, 1278, $984 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.94$ (dd, $1 \mathrm{H}, J=15.1$, $4.5 \mathrm{~Hz}), 6.11(\mathrm{~d}, 1 \mathrm{H}, J=15.1 \mathrm{~Hz}), 4.30(\mathrm{brs}, 1 \mathrm{H}), 4.20(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.99-3.91(\mathrm{~m}, 1 \mathrm{H})$, $1.28(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.16(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 166.6,145.8$, 122.37, 74.5, 69.9, 60.6, 17.4, 14.1; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{4}$ (174.19): C, 55.16; H, 8.10. Found: C, 55.19; H, 8.14.

(E)-3-((4S,5R)-2,2,5-trimethyl-1,3-dioxolan-4-yl)prop-2-en-1-ol (15)

According to the procedure 10, compound $\mathbf{1 4}(2.4 \mathrm{~g}, 13.79 \mathrm{mmol})$ gave alcohol $\mathbf{1 5}(1.90 \mathrm{~g}$, 80%); $[\alpha]_{\mathrm{D}}{ }^{24}-15.1$ (c 0.1, CHCl_{3}); IR (Neat): 3431, 2984, 1380, 1219, $772 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 5.90(\mathrm{td}, 1 \mathrm{H}, J=15.4,5.1 \mathrm{~Hz}), 5.68(\mathrm{tdd}, 1 \mathrm{H}, J=15.4,7.7,1.5 \mathrm{~Hz}), 4.52$ (brt, $1 \mathrm{H}, J=7.7 \mathrm{~Hz}$), 4.32 (quin, $1 \mathrm{H}, J=6.4 \mathrm{~Hz}$), $4.17(\mathrm{dd}, 2 \mathrm{H}, J=5.1,1.5 \mathrm{~Hz}$), $1.47(\mathrm{~s}, 3 \mathrm{H})$, $1.35(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 133.5,127.1,108.0,79.0$, 74.0, 62.8, 28.2, 25.5, 16.1; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3}$ (172.10): C, 62.77; H, 9.36. Found: C, 62.61; H, 9.59.

1-phenyl-5-(((E)-3-((4S,5R)-2,2,5-trimethyl-1,3-dioxolan-4-yl)allyl)sulfonyl)-1H-tetrazole

 (7)According to the procedure 6, the alcohol $\mathbf{1 5}(0.5 \mathrm{~g}, 2.9 \mathrm{mmol})$ gave sulphone $7(0.86 \mathrm{~g}, 82 \%)$; $[\alpha]_{\mathrm{D}}{ }^{24}-3.14\left(c 0.05, \mathrm{CHCl}_{3}\right)$; IR (Neat): 2922, 1679, 1618, 1524, 1347, $741 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.68-7.56(\mathrm{~m}, 5 \mathrm{H}), 5.96(\mathrm{dd}, 1 \mathrm{H}, J=15.8,6.8 \mathrm{~Hz}), 5.86-5.76(\mathrm{~m}, 1 \mathrm{H})$, 4.54-4.38 (m, 3H), $4.32(\mathrm{dd}, 1 \mathrm{H}, J=12.8,6.7 \mathrm{~Hz}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~d}, 3 \mathrm{H}, J=6.7$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 152.9,140.3,132.9,131.4,129.6,125.1,116.1,108.5,78.1$, 73.8, 59.0, 28.0, 25.3, 15.8; MS (ESI): $m / z 365(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+} 387.1094$ $(\mathrm{M}+\mathrm{Na})^{+}$(calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{NaS}$ 387.1097).

3-methyl-2-((3E)-4-((4S,5R)-2,2,5-trimethyl-1,3-dioxolan-4-yl)buta-1,3-dien-1-yl)pyridine (16)

According to the procedure 11, the sulphone $\mathbf{6}(0.38 \mathrm{~g}, 1.04 \mathrm{mmol})$ and $\mathbf{5 a}(0.13 \mathrm{~g}, 1.14 \mathrm{mmol})$, gave 16 ($0.22 \mathrm{~g}, 81 \%$) (inseparable cis, trans mixture, 4:6) as colourless, viscous oil; IR (Neat): 2923, 2851, 1667, 1382, 1048, $771 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta 8.45(\mathrm{~d}, 0.4 \mathrm{H}, J=4.5$ $\mathrm{Hz}), 8.42(\mathrm{~d}, 0.6 \mathrm{H}, J=4.5 \mathrm{~Hz}), 7.48-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~d}, 0.6 \mathrm{H}, J=15.1 \mathrm{~Hz})$ 6.56-6.39 (m, 1.6H), 5.96-5.81 (m, 1H), 4.65-4.59 (m, 1H), 4.41-4.30 (m, 1H), $2.36(\mathrm{~s}, 1.8 \mathrm{H})$, $2.30(\mathrm{~s}, 1.2 \mathrm{H}), 1.53(\mathrm{~s}, 1.8 \mathrm{H}), 1.50(\mathrm{~s}, 1.2 \mathrm{H}), 1.39(\mathrm{~s}, 1.8 \mathrm{H}), 1.36(\mathrm{~s}, 1.2 \mathrm{H}), 1.16(\mathrm{t}, 3 \mathrm{H}, J=6.0$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 154.7,153.2,146.9,146.4,138.1,137.6,133.3,132.8,132.6$, $132.3,130.9,128.3,126.3,122.0,121.7,108.0,107.9,79.4,79.1,74.37,74.32,28.2,25.4,19.0$, 18.7, 16.17; MS (ESI): $m / z 260(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI): $m / z 260.1640(\mathrm{M}+\mathrm{H})^{+}$(calcd for $\left.\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N} 260.1645\right)$.

(2R,3S,4E,6E)-7-(3-methylpyridin-2-yl)hepta-4,6-diene-2,3-diol (4a)

According to the procedure 3a, compound $\mathbf{1 6}(0.1 \mathrm{~g}, 0.38 \mathrm{mmol})$ gave fuzanin $\mathrm{D}(\mathbf{4 a})(0.05 \mathrm{~g})$ as viscous, colour less oil, and cis isomer $\mathbf{4 b}(0.02 \mathrm{~g})$ as viscous, colour less oil, (total yield 82%); $[\alpha]_{\mathrm{D}}{ }^{24}+29.47\left(c 0.045, \mathrm{CHCl}_{3}\right)$; IR (Neat): $3424,2924,2854,1621,1458,1078,771 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.40(\mathrm{~d}, 1 \mathrm{H}, J=4.1 \mathrm{~Hz}), 7.45-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{dd}, 1 \mathrm{H}, J=7.2$, $4.1 \mathrm{~Hz}), 6.79(\mathrm{~d}, 1 \mathrm{H}, J=14.5 \mathrm{~Hz}), 6.54(\mathrm{dd}, 1 \mathrm{H}, J=14.5,10.4 \mathrm{~Hz}), 6.01(\mathrm{dd}, 1 \mathrm{H}, J=14.5,6.2$ Hz), 4.20 (dd, 1H, $J=6.2,4.1 \mathrm{~Hz}$), $3.90(\mathrm{dd}, 1 \mathrm{H}, J=6.2,4.1 \mathrm{~Hz}$), $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, 1 \mathrm{H}, J=$ $6.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 153.3,146.9,138.2,134.6,133.2,132.3,130.7,128.1$, 122.0, 75.9, 70.3, 18.7, 17.6; MS (ESI): $m / z 242(\mathrm{M}+\mathrm{Na})^{+}$; HRMS (ESI): $m / z 242.1148(\mathrm{M}+$ $\mathrm{Na})^{+}\left(\right.$calcd for $\left.\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{NNa} 242.1151\right)$.

(2R,3S,4E,6Z)-7-(3-methylpyridin-2-yl)hepta-4,6-diene-2,3-diol (4b)

Yield: ($0.02 \mathrm{~g}, 90 \%$ overall yield); $[\alpha]_{\mathrm{D}}{ }^{24}+59.15$ (c $0.04, \mathrm{CHCl}_{3}$); IR (Neat): 3405, 2924, 1449, $995 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.45(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.46(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.39$ (dd, $1 \mathrm{H}, J=15.6,11.4 \mathrm{~Hz}), 7.07(\mathrm{dd}, 1 \mathrm{H}, J=7.2,5.2 \mathrm{~Hz}), 6.52(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 6.44(\mathrm{t}, 1 \mathrm{H}$, $J=11.4 \mathrm{~Hz}$), 5.97 (dd, $1 \mathrm{H}, J=15.6,7.2 \mathrm{~Hz}$), 4.18 (dd, $1 \mathrm{H}, J=7.27,4.1 \mathrm{~Hz}), 3.9$ (dd, $1 \mathrm{H}, J=$ $6.2,4.1 \mathrm{~Hz}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 154.5,146.2$, 138.0, 135.7, 133.1, 132.0, 129.9, 125.9, 121.9, 75.9, 70.1, 19.0, 17.7; MS (ESI): m/z 220 (M+ H^{+}; HRMS (ESI): $m / z 220.1329(\mathrm{M}+\mathrm{H})^{+}\left(\right.$Calcd for $\left.\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N} 220.1332\right)$.

(2R,3S,4E,6E)-7-(2-chloro-6-isopropylquinolin-3-yl)hepta-4,6-diene-2,3-diol (4c)

According to the procedure $\mathbf{3 c}$, the sulphone $7(0.10 \mathrm{~g}, 0.27 \mathrm{mmol})$ and aldehyde $\mathbf{5 b}(0.07 \mathrm{~g}, 0.32$ mmol), gave compound $4 \mathbf{c}\left(0.07 \mathrm{~g}, 70 \%\right.$ overall yield); mp 121-122 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{24}-24.0(c 0.03$, CHCl_{3}); IR (KBr): $3423,2962,2924,1585,1046,757 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 8.22$ $(\mathrm{S}, 1 \mathrm{H}), 7.90(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.60-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}), 6.87(\mathrm{dd}, 1 \mathrm{H}, J=$ $15.9,6.9 \mathrm{~Hz}), 6.59(\mathrm{dd}, 1 \mathrm{H}, J=15.9,9.8 \mathrm{~Hz}), 5.99(\mathrm{dd}, 1 \mathrm{H}, J=15.9,6.7 \mathrm{~Hz}), 4.24(\mathrm{dd}, 1 \mathrm{H}, J=$ $6.7,4.5 \mathrm{~Hz}), 3.98-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{sep}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.34(\mathrm{~d}, 6 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.20(\mathrm{~d}, 3 \mathrm{H}$, $J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 149.1,148.0,145.6,133.4,133.3,132.6,132.0$, 130.3, 129.6, 128.0, 127.8, 127.4, 123.5, 75.9, 70.3, 34.0, 23.7, 17.7; MS (ESI): m/z 332 (M+ $\mathrm{H}^{+} ;$HRMS (ESI): $m / z 332.1409(\mathrm{M}+\mathrm{H})^{+}\left(\right.$calcd for $\left.\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{NCl} 332.1411\right)$.
(2R,3S,4E,6E)-7-(2-chloro-7-methylquinolin-3-yl)hepta-4,6-diene-2,3-diol (4d)
According to the procedure $\mathbf{3 c}$, the sulphone $7(0.10 \mathrm{~g}, 0.27 \mathrm{mmol})$ and aldehyde $\mathbf{5 c}(0.06 \mathrm{~g}, 0.32$ $\mathrm{mmol})$ gave compound $4 \mathrm{~d}\left(0.07 \mathrm{~g}, 70 \%\right.$ overall yield); mp $134-136{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{24}-75.14(c 0.03$, CHCl_{3}); IR (Neat): 3418, 2922, 1622, 1337, $986 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.20(\mathrm{~s}$, $1 \mathrm{H}), 7.73(\mathrm{brs}, 1 \mathrm{H}), 7.68(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.36(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 6.99(\mathrm{~d}, 1 \mathrm{H}, J=15.1 \mathrm{~Hz})$, $6.84(\mathrm{dd}, 1 \mathrm{H}, J=15.1,10.5 \mathrm{~Hz}), 6.57(\mathrm{dd}, 1 \mathrm{H}, J=15.1,10.5 \mathrm{~Hz}), 5.98(\mathrm{dd}, 1 \mathrm{H}, J=15.1,6.7$ $\mathrm{Hz}), 4.24(\mathrm{dd}, 1 \mathrm{H}, J=6.7,3.0 \mathrm{~Hz}), 4.01-3.92(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 149.9,147.0,141.0,133.3,132.6,131.8,129.5,128.8,127.8$, 127.7, 127.2, 127.1, 126.0, 75.9, 70.3, 21.9, 17.7; MS (ESI): $m / z 304$ (M+H) ${ }^{+}$; HRMS (ESI): m / z $304.1097(\mathrm{M}+\mathrm{H})^{+}$(calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{6} 304.1098$).

(E)-ethyl 3-((2S,3S)-3-methyloxiran-2-yl)acrylate (19)

To a solution of oxalyl chloride ($0.87 \mathrm{~mL}, 9.96 \mathrm{mmol}$) in 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$, DMSO $(1.41 \mathrm{~mL}, 19.92 \mathrm{mmol})$ was added dropwise. The solution was stirred for 10 min and a solution of epoxy alcohol $\mathbf{1 8}(0.73 \mathrm{mg}, 8.3 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. After 20 min at same temperature, triethylamine ($3.47 \mathrm{~mL}, 24.7 \mathrm{mmol}$) was added. After 5 min , the reaction mixture of was allowed to warm to rt during 30 min . A solution of (carbethoxymethylene) triphenylphosphorane ($7.63 \mathrm{~g}, 20.8 \mathrm{mmol}$) in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the reaction mixture was stirred for 24 h . Reaction mixture was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, crude residue was purified by silica gel column chromatography (EtOAc:Hexane, 1:4) to afford epoxide 19 (0.55 g, 56%); $[\alpha]_{\mathrm{D}}{ }^{24}-15.54$ (c 0.04, CHCl_{3}); IR (Neat): 2927, 1721, 1455, 1272, 1178, $772 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.67(\mathrm{dd}, 1 \mathrm{H}, J=15.6,7.0 \mathrm{~Hz}), 6.12(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.20(\mathrm{q}$,
$2 \mathrm{H}, J=7.17 \mathrm{~Hz}), 3.18(\mathrm{dd}, 1 \mathrm{H}, J=8.7,7.0 \mathrm{~Hz}), 2.97(\mathrm{qd}, 1 \mathrm{H}, J=5.1,2.07 \mathrm{~Hz}), 1.39(\mathrm{~d}, 3 \mathrm{H}, J=$ $5.1 \mathrm{~Hz}), 1.28(\mathrm{t}, 3 \mathrm{H}, J=7.17 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 165.5,144.5,123.5,60.4,57.2$, 57.1, 17.3, 14.0; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3}$ (156.07): C, 61.52; H, 7.74. Found: C, 61.62; H, 7.82.
(4R,5S,E)-ethyl 4-(benzyloxy)-5-hydroxyhex-2-enoate (20)
To a solution of epoxide ester $19(3.14 \mathrm{~g}, 20.15 \mathrm{mmol})$, benzyl alcohol ($4.19 \mathrm{~mL}, 40.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ at $-20^{\circ} \mathrm{C}, \mathrm{BF}_{3} . \mathrm{OEt}_{2}(2.5 \mathrm{~mL}, 40.3 \mathrm{mmol})$ was added and whole mixture was stirred at rt for 1 h , then diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with ether. The ether layer was washed with saturated brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was concentrated under vacuo. Crude residue was purified by silica gel column chromatography (EtOAc:Hexane, 3:2) to afford $20(3.03 \mathrm{~g}, 60 \%)$ as colorless oil; $[\alpha]_{\mathrm{D}}{ }^{25}-51.51$ (c 1.0, CHCl_{3}); IR (Neat): 3508, 2983, 1721, 1264, $836 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.40-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.91$ (dd, $1 \mathrm{H}, J=15.8,6.8$ $\mathrm{Hz}), 6.08(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 4.66(\mathrm{~d}, 1 \mathrm{H}, J=11.3 \mathrm{~Hz}), 4.42(\mathrm{~d}, 1 \mathrm{H}, J=11.3), 4.23(\mathrm{q}, 2 \mathrm{H}, J=$ $7.5 \mathrm{~Hz}), 4.01-3.90(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.16(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}): \delta 165.7,143.8,137.6,128.4,127.8,127.7,124.7,81.9,71.3,69.2,60.6,17.9,14.2$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$ (264.13): C, 68.16; H, 7.63. Found: C, 68.22; H, 7.69.

(4R,5S,E)-ethyl 4,5-dihydroxyhex-2-enoate (21)

To a well-stirred solution of $\mathrm{AlCl}_{3}(0.99 \mathrm{~g}, 7.5 \mathrm{mmol})$ in $10 \mathrm{mLCH} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of $\mathbf{2 0}(0.40 \mathrm{~g}, 1.5 \mathrm{mmol})$ in 5 mL m-xylene and the reaction mixture was stirred for 15 min at the same temperature. The reaction mixture was poured in ice cold water and extracted with ether. The ether layer was washed with saturated NaCl solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The ether layer was concentrated under vacuo. Crude residue was purified by silica gel column chromatography (EtOAc:Hexane, 2:1) to give $21(0.29 \mathrm{~g}, 76 \%)$ as a colorless viscous oil; $[\alpha]_{\mathrm{D}}{ }^{25}$ +9.01 (c 0.09, CHCl_{3}); IR (Neat): 3417, 2981, 1706, $1276 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta$ $6.94(\mathrm{dd}, 1 \mathrm{H}, J=15.6,5.0 \mathrm{~Hz}), 6.11(\mathrm{dd}, 1 \mathrm{H}, J=15.6,1.5 \mathrm{~Hz}), 4.31-4.27(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{q}, 2 \mathrm{H}, J$ $=7.1 \mathrm{~Hz}), 3.98-3.90(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 166.5,145.8,122.2,74.5,69.9,60.5,17.2,14.0$; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{4}$ (174.19): C, 55.16; H, 8.10. Found: C, 55.12; H, 8.19.

(E)-3-((4R,5R)-2,2,5-(E)-3-((4R,5S)-2,2,5-trimethyl-1,3-dioxolan-4-yl)prop-2-en-1-ol (22)

According to the procedure 10, Diol $21(0.26 \mathrm{~g}, 1.49 \mathrm{mmol})$) gave alcohol $22(0.21 \mathrm{~g}, 86 \%)$ as colourless, viscous liquid; $[\alpha]_{\mathrm{D}}{ }^{24}+21.20\left(c 0.1, \mathrm{CHCl}_{3}\right)$; IR (Neat): 3422, 2985, 1376, 1217, 772 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 5.92(\mathrm{td}, 1 \mathrm{H}, J=15.4,5.1 \mathrm{~Hz}), 5.70(\mathrm{tdd}, 1 \mathrm{H}, J=15.4,7,7$, $1.3 \mathrm{~Hz}), 4.53(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 4.34(\mathrm{quin}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 4.19(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}$,
$3 \mathrm{H}), 1.15(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 133.5,127.1,108.0,79.0,74.0$, 62.8, 28.2, 25.5, 16.1.

1-phenyl-5-(((E)-3-((4R,5S)-2,2,5-trimethyl-1,3-dioxolan-4-yl)allyl)sulfonyl)-1H-tetrazole

 (17)According to the procedure 6, compound $22(0.1 \mathrm{~g}, 0.58 \mathrm{mmol})$ gave sulphone $\mathbf{1 7}(0.17 \mathrm{~g}, 81 \%)$; $[\alpha]_{\mathrm{D}}{ }^{24}+1.12\left(c 0.1, \mathrm{CHCl}_{3}\right) ;$ IR (Neat): 2984, 1497, 1347, 1153, $763 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}): \delta 7.69-7.56(\mathrm{~m}, 5 \mathrm{H}), 5.95(\mathrm{dd}, 1 \mathrm{H}, J=15.1,6.0 \mathrm{~Hz}), 5.85-5.75(\mathrm{~m}, 1 \mathrm{H}), 4.52-4.42(\mathrm{~m}$, $3 \mathrm{H}), 4.32(\mathrm{t}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~d}, 3 \mathrm{H}, 6.7 \mathrm{~Hz}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, 100 MHz): $\delta 152.9,140.3,131.4,129.6,125.1,116.1,108.5,78.0,73.8,59.0,28.0,25.3,15.8 ;$ MS (ESI): $m / z 364(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI): $m / z 387.1093 \quad[\mathrm{M}+\mathrm{Na}]^{+}$(calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{NaS}$ 387.1097).

(2S,3R,4E,6E)-7-(3-methylpyridin-2-yl)hepta-4,6-diene-2,3-diol (11R, 12S)-4a

According to the procedure 3a, compound $\mathbf{2 3}(0.05 \mathrm{~g}, 0.19 \mathrm{mmol})$ gave ($\mathbf{1 1 R}, \mathbf{1 2 S})-\mathbf{4 a}(0.02 \mathrm{~g})$, and cis isomer $(\mathbf{1 1 R} \boldsymbol{R} \mathbf{1 2 S}) \mathbf{- 4 b}(0.01 \mathrm{~g})$ as viscous, color less oils, (total yield $82 \%)$; $[\alpha]_{\mathrm{D}}{ }^{24}-26.9$ (c 0.04, CHCl_{3}); IR (Neat): $3414,2924,2853,1731,1617,995 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 8.42(\mathrm{~d}, 1 \mathrm{H}, J=4.3 \mathrm{~Hz}), 7.49-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{dd}, 1 \mathrm{H}, J=7.5,4.3 \mathrm{~Hz}), 6.80(\mathrm{~d}, 1 \mathrm{H}$, $J=15.1 \mathrm{~Hz}), 6.56(\mathrm{dd}, 1 \mathrm{H}, J=15.1,11.1 \mathrm{~Hz}), 6.02(\mathrm{dd}, 1 \mathrm{H}, J=15.4,6.2 \mathrm{~Hz}), 4.23(\mathrm{dd}, 1 \mathrm{H}, J=$ $6.2,3.3 \mathrm{~Hz}), 3.93(\mathrm{dd}, 1 \mathrm{H}, J=6.2,3.3 \mathrm{~Hz}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 153.2,146.9,138.2,134.3,133.0,132.4,130.8,128.2,122.1,75.9,70.2$, 18.7, 17.6; MS (ESI): $m / z 220(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI): $m / z 220.1327[\mathrm{M}+\mathrm{H}]^{+}$(calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N} 220.1332$).

(2S,3R,4E,6Z)-7-(3-methylpyridin-2-yl)hepta-4,6-diene-2,3-diol (11R, 12S)-4b

Yield: 0.01 g , as viscous, colour less oil; $[\alpha]_{\mathrm{D}}{ }^{24}-59.6$ (c $0.03, \mathrm{CHCl}_{3}$); IR (Neat): 3419, 2924, 1628, 1457, $762 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 8.43(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}), 7.46(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.1 \mathrm{~Hz}), 7.30(\mathrm{dd}, 1 \mathrm{H}, J=15.3,11.2 \mathrm{~Hz}), 7.07(\mathrm{dd}, 1 \mathrm{H}, J=7.1,4.0 \mathrm{~Hz}), 6.50(\mathrm{~d}, 1 \mathrm{H}, J=11.2$ $\mathrm{Hz}), 6.43(\mathrm{t}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 5.97(\mathrm{dd}, 1 \mathrm{H}, J=7.1,15.3 \mathrm{~Hz}), 4.16(\mathrm{dd}, 1 \mathrm{H}, J=6.1,4.0 \mathrm{~Hz})$, $3.89(\mathrm{dd}, 1 \mathrm{H}, J=4.0,6.1 \mathrm{~Hz}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, 3 \mathrm{H}, J=6.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta 154.6,146.4,137.8,135.3,132.8,130.2,128.5,126.3,121.9,76.0,70.1,19.0,17.8 ;$ Mass (ESI-MS): $m / z 220(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI): $m / z 220.1327(\mathrm{M}+\mathrm{H})^{+}$(calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N} 220.1332$).

Molecular Modeling

The calculations of this investigation have been carried out by following the procedure given below. Fuzanin C (3a), fuzanin D (4a) and (11R, 12S)-4a were considered for computational prediction of optical rotations. Initially, geometry optimization was performed at B3LYP/6-31G (d) basis set and frequency calculations were done for lowest energy conformer in order to ascertain the minima. Optical rotation was calculated at 589.3 nm using B3LYP/Aug-CC-pVDZ method in gas phase for lowest energy conformer of respective molecules. ${ }^{24}$ B3LYP/Aug-CC-pVDZ method was opted based on the literature. ${ }^{22}$ The solvent effect has been omitted for geometry optimizations and optical rotation calculations, since a methodology does not yet exist which predicts the solvent effects with uniform reliability. ${ }^{25}$ All these calculations were performed using Gaussian 09 software. ${ }^{26}$

Biological Activity

Cell culture

HT-29 (Colon cancer) cell line was grown as adherent in RPMI medium, ME-180 (Cervical cancer), MCF-7 (Breast cancer) and MDA-MB-453 (Breast cancer) cell line were grown as adherent in DMEM medium supplemented with 10% fetal bovine serum, $100 \mu \mathrm{~g} / \mathrm{ml}$ penicillin, $200 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin, 2 mM L-glutamine, and culture was maintained in a humidified atmosphere with $5 \% \mathrm{CO}_{2}$. All in vitro experiments were performed during the exponential phase of cell growth.

Preparation of samples for cytotoxicity

20 mM stock solution for compounds was prepared in DMSO, from the above stock various dilutions were made with sterile PBS to get required concentration.

Cytotoxicity screening using MTT assay

MTT assay was performed according to the method of Naidu et al. ${ }^{27}$ MTT assay is a standard colorimetric assay for measuring cellular proliferation. MTT is a tetrazolium salt, which is yellow in color and is photosensitive. MTT [3-(4, 5- dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] is taken by the living cells and reduced by a mitochondrial dehydrogenase enzyme to a purple formazan product that is impermeable to the cell membrane. Solubilisation with solvents like DMSO leads to liberation of product and amount of purple formazan product is directly related to the cell viability. 1×10^{4} Cells (counted by Trypan blue exclusion dye method)) in 96- well plates were incubated with series of concentrations of compounds for 48 h at $37^{\circ} \mathrm{C}$ in DMEM with 10% FBS medium. Then the above media was replaced with $90 \mu \mathrm{l}$ of fresh serum free media and $10 \mu \mathrm{l}$ of MTT reagent ($5 \mathrm{mg} / \mathrm{ml}$) and plates were incubated at $37^{\circ} \mathrm{C}$ for 4 h , there after the above media was replaced with $200 \mu \mathrm{l}$ of DMSO and incubated at $37^{\circ} \mathrm{C}$ for 10 min. The absorbance at 570 nm was measured on a spectrophotometer (spectra max, Molecular devices). IC_{50} values were determined from plot: \% cell viability (from control) versus concentration.

Acknowledgements

The authors thank the Director CSIR-IICT and Project Director NIPER-Hyderabad for support. VJR thank ORIGIN-0108 for funding. SNK, CH.N.S.S.P.K, E.S thank CSIR-New Delhi, for the fellowships. This is main lab project (MLP) of IICT.

Supporting Information

${ }^{1} \mathrm{H}$ NMR spectra and ${ }^{13} \mathrm{C}$ NMR spectra for all final compounds, Molecular Modeling studies, Cartesian Coordinates of fuzanins $\mathrm{C}, \mathrm{D},(11 R, 12 S)$-fuzanin D .

References:

(a) L.-C. Campeau, K. Fagnou, Chem. Soc. Rev., 2007, 36, 1058; (b) M. C. Bagley, C. Glover, E. A. Merritt, Synlett, 2007, 2459; (c) T. Laird, Org. Process Res. Dev., 2006, 10, 851; (d) G. D. Henry, Tetrahedron, 2004, 60, 6043; (e) J. P. Michael, Nat. Prod. Rep., 2005, 22, 627.
(a) Pharmaceutical Chemistry. Drug Synthesis, H. J. Roth, A. Kleemann, Eds, Prentice Hall Europe, London, 1988, 1, 407; (b) MDDR: MDL Drug Data Registry, by MDL Informations Systems, Inc; San Leandro, California, USA.
(a) C. C. Musonda, V. Yardley, R. C. Carvalho de Souza, K. Ncokazi, T. J. Egan, K. Chibale, Org. Biomol. Chem., 2008, 6, 4446; (b) E. Srihari, G. S. Kumar, CH. N. S. S. Pavan kumar, R. K. Seth, S. Biswas, B. Sridhar, V. Jayathirtha Rao, Heterocycl. Commun., 2011, $17,111$.
(a) N. C. Desai, V. V. Joshi, K. M. Rajpara, Med. Chem. Res., 2013, 22, 3663; (b) P. Narendar, U. Srinivas, M. Ravinder, B. Anand Rao, Ch. Ramesh, K. Harakishore, B. Gangadasu, U. S. N. Murthy, V. Jayathirtha Rao, Bioorg. Med. Chem., 2006, 14, 4600.
(a) V. R. Soloman, H. Lee, Curr. Med. Chem., 2011, 18, 1488; (b) C. H. Tseng, Y. L. Chen, K. Y. Chung, C. H. Wang, S. I. Peng, C. M. Cheng, C. C. Tzeng, Org. Biomol. Chem., 2011, 9, 3205.

7 R. Musiol, M. Serda, S. Hensel-Bielowka, J. Polanski, Curr. Med. Chem., 2010, 17, 1960.
8 S. N. Suryawanshi , C. Naveen, P. Kumar, P. Jyoti, G. Suman, Eur. J. Med. Chem., 2008, 43, 2473.
9 S. Mukherjee, M. Pal, Drug Discov. Today, 2013, 18, 389.
10 R. E. Khidre, B. F. Abdel-Wahab, F. B. Abdel-Rehem, Lett. in Drug Des. Discov., 2011, 8, 640.
11 W. Aida, T. Ohtsuki, X. Li, M. Ishibashi, Tetrahedron, 2009, 65, 369.
12 (a) CH. Srinivas, CH. N. S. S. Pavan kumar, B. China Raju, V. Jayathirtha Rao, V. G. M. Naidu, S. Ramakrishna, P. V. Diwan, Bioorg. Med. Lett. 2009, 19, 5915; (b) M. Ravinder, P. S. Sadhu, P. Narender, G. Y. S. K. Swamy, K. Ravi Kumar, V. Jayathirtha Rao, Synthesis, 2010, 573; (c) P. A. Kumar, D. Raman, U. S. N. Murthy, V. Jayathirtha Rao, Bioorg. Chem., 2009, 37, 46; (d) P. A. Kumar, D. Raman, U. S. N. Murthy, V. Jayathirtha Rao, Synth. Commun., 2010, 40, 686; (e) CH. Srinivas, CH. N. S. S. Pavan Kumar, B. China Raju, V. Jayathirtha Rao, Helv. Chim. Acta., 2011,

94, 669.
13 (a) D. Xu, G. A. Crispino, K. B. Sharpless, J. Am. Chem. Soc., 1992, 114, 7570; (b) S. D. Garaas, T. J. Hunter, G. A. O’Doherty, J. Org. Chem., 2002, 67, 2682.

14 A. D. Dunn, Org. Prep. Proced. Int., 1999, 31, 120.
5 (a) J. J. Peter, R. C. Liam, J. Org. Chem., 2008, 73, 7616; (b) D. Takano, T. Nagamitsu, H. Ui, K. Shiomi, Y. Yamaguchi, R. Masuma, I. Kuwajima, S. Ōmura, Org. Lett., 2001, 3, 2289.

16 (a) K. Sugimoto, Y. Kobayashi, A. Hori, T. Kondo, N. Toyooka, H. Nemoto, Y. Matsuya, Tetrahedron, 2011, 67, 7681; (b) K. B. Sharpless, W. Amberg, Y. Bennani, G. A. Crispino, J. Hartung, K. S. Jeong, H. L. Kwong, K. Morikawa, Z. M. Wang, J. Org. Chem., 1992, 57, 2768.
17 (a) O. Mitsunobu, Synthesis, 1981, 1; (b) T. Sunazuka, T. Hirose, N. Chikaraishi, Y. Harigaya, M. Hayashi, K. Komiyama, P. A. Sprengeler, A. B. Smith, S. Ōmura, Tetrahedron, 2005, 61, 3789; (c) S. Hanessian, S. P. Sahoo, M. Botta, Tetrahedron Lett., 1987, 28, 1143.
(a) Y. Gao, R. M. Hanson, J. M. Klunder, S. Y. Ko, H. Masamune, K. B. Sharpless, J. Am. Chem. Soc., 1987, 109, 5765; (b) H. Okamura, S. Kuroda, K. Tomita, S. Ikegami, Y. Sugimoto, S. Sakaguchi, T. Katsuki, M. Yamaguchi, Tetrahedron Lett., 1991, 32, 5137.
19 P. Wipf, P. C. Fritch, J. Org. Chem., 1994, 59, 4875.
20 M. Ono, C. Saotome, H. Akita, Tetrahedron: Asymmetry, 1996, 7, 2595.
21 C. Saotome, M. Ono, H. Akita, Tetrahedron: Asymmetry, 2000, 11, 4137.
22 (a) C. O. da Silva, B. Mennucci, T. Vreven, J. Org. Chem., 2004, 69, 8161; (b) P. J. Stephens, D. M. Mccann, J. R. Cheeseman, M. J. Frisch, Chirality, 2005, 17, S52; (c) J. R. Cheeseman, M. J. Frisch, F. J. Delvin, P. J. Stephens, J. Phys. Chem., A, 2000, 104, 1039; (d) P. J. Stephens, F. J Delvin, J. R. Cheeseman, M. J. Frisch, J. Phys. Chem., A, 2001, 105, 5356.

23 B. Gangadas, P. Narendar, S. Bharat Kumar, M. Ravindar, B. Anand Rao, Ch. Ramesh, B. China Raju, V. Jayathirtha Rao, Tetrahedron, 2006, 62, 8398.
24 a) P. L. Polavarapu, Mol. Phys., 1997, 91, 551; b) P. J. Stephens, F. J. Delvin, J. R. Cheeseman, M. J. Frisch, B. Mennucci, J. Tomasi, Tetrahedron: Asymmetry, 2000, 11, 2443; (c) P. L. Polavarpu Chirality, 2002, 14, 768; (d) P. L. Polavarapu, Chirality, 2012, 24, 909.

25 (a) B. Mennucci, J. Tomasi, R. Cammi, J. R. Cheeseman, M. J. Frisch, F. J. Devlin, S. Gabriel, P. J. Stephens, J. Phys. Chem., A, 2002, 106, 6102; b) A. Lattanzi, A. Russo, P. Rizzo, G. Monaco, R. Zanasi, Chirality, 2010, 22, E130.
26 Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell,
J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford, CT, 2010

27 V. G. M. Naidu, U. M. Bandari, A. K. Giddam, K. R. D. Babu, J. Ding, K. S. Babu, B. Ramesh, R. R. Pragada, P. Gopalakrishnakone, Asian Pac. J. Trop. Med., 2013, 6, 337.

First total synthesis of Fuzanins C, D and their analogues as anticancer agents

S. Naveen Kumar, ${ }^{\text {a }}$ CH. N. S. Sai Pavan Kumar, ${ }^{\text {a }}$ E. Srihari, ${ }^{\text {a }}$ Sravani Kancharla, ${ }^{\text {b }}$ Kolupula Srinivas, ${ }^{\mathbf{b}, *}$ Swetha Srivastwa, ${ }^{\text {b }}{ }^{\mathbf{b}}$ V. G. M. Naidu, ${ }^{\text {b }}{ }^{*}$, and V. Jayathirtha Rao ${ }^{\text {a,b,c,** }}$
${ }^{a}$ Crop Protection Chemicals Division, Indian Institute of Chemical Technology, Hyderabad500007, India; ${ }^{b}$ National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad-500037, India; ${ }^{c}$ AcSIR- Indian Institute of Chemical Technology, Uppal Road Tarnaka, Hyderabad-500007, India.
Corresponding author: jrao@iict.res.in

Figure captions

Figure 1. Fuzanins A, B, C and D
Figure 2. Revised structure of Fuzanin D
Figure 3. Energy minimized geometries of fuzanin $D(\mathbf{4 a}) \&(\mathbf{1 1 R}, \mathbf{1 2 S})-\mathbf{4 a}$
Figure 4. Dose response of fuzanin compounds against HT-29 cancer cell line

Scheme captions

Scheme 1. Retrosynthetic analysis of 3a, 4a
Scheme 2. Synthesis of fuzanin C (3a)
Scheme 3. Synthesis of fuzanin D (4a)
Scheme 4. Retrosynthetic analysis of (11R,12S)-4a
Scheme 5. Synthesis of (11R,12S)-4a
Scheme 6. Analogues of fuzanins C, D

Fuzanin A
1

Fuzanin C
3a

Fuzanin B
2

Fuzanin D
4a

Figure 1. Fuzanins A, B, C, and D

(11S, 12R)-Fuzanin-D 4a
Proposed

(11R, 12S)-Fuzanin-D
(11R, 12S)-4a
Revised

Figure 2. Revised Structure of Fuzanin D

Fuzanin D (4a)
(11R, 12S)-4a
Figure 3. Energy minimized geometries of fuzanin $D(\mathbf{4 a}) \&(\mathbf{1 1 R}, \mathbf{1 2 S})-\mathbf{4 a}$

Figure 4. Dose response of fuzanin compounds against HT-29 cancer cell line

Scheme 1. Retrosynthetic analysis of 3a, 4a

Scheme 2 Reagents and conditions: (a) (DHQD) ${ }_{2} \mathrm{PHAL}, \mathrm{OsO}_{4}, \mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{NH}_{2}, \mathrm{~K} 3 \mathrm{Fe}(\mathrm{CN})_{6}, \mathrm{~K}_{2} \mathrm{CO}_{3}, t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1)$, $0{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 84 \%$; (b) (i) 2,2-Dimethoxypropane, p-TSA (cat), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 15 \mathrm{~min}$; (ii) DIBAL- $\mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, 81% (for two steps); (c) (i) 1-phenyl-1H-tetrazole-5-thiol, PPh_{3}, DIAD, THF, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 90 \%$; (ii) $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{EtOH}, 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, rt, $8 \mathrm{~h}, 92 \%$; (d) 5a, KHMDS, THF, $-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 81 \%$; (e) p-TSA, $\mathrm{MeOH}, \mathrm{rt}, 12 \mathrm{~h}, 82 \%$ (total yield).

Scheme 3 Reagents and conditions: (a) TBS-Cl, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 24 \mathrm{~h}, 65 \%$; (b) (i) $\mathrm{PPh}_{3}, \mathrm{DEAD}, \mathrm{HCOOH}, \mathrm{rt}$, 2 h ; (ii) dil. $\mathrm{NH}_{4} \mathrm{OH} / \mathrm{MeOH}, 3 \mathrm{~h}, 55 \%$ (for two steps); (c) TBAF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 85 \%$; (d) (i) 2,2-Dimethoxypropane, p-TSA (cat), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 15 min ; (ii) DIBAL- $\mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 80 \%$ (for two steps); (e) (i) 1-phenyl-1H-tetrazole-5thiol, PPh_{3}, DIAD, THF, $0{ }^{\circ} \mathrm{C}$, 1 h ; (ii) $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{EtOH}, 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, rt, $8 \mathrm{~h}, 82 \%$ (for two steps); (f) 5a, KHMDS, THF, $-78^{\circ} \mathrm{C}, 2 \mathrm{~h}, 81 \%$; (g) p-TSA, $\mathrm{MeOH}, \mathrm{rt}, 12 \mathrm{~h}, 82 \%$ (total yield).

Scheme 4. Retrosynthetic analysis of (11R,12S)-4a

Scheme 5 Reagents and conditions: (a) $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4},(+)$-DIPT, anhydrous $\mathrm{TBHP}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (b) (i) DMSO, $(\mathrm{COCl})_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$. (ii) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCOOEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 24 \mathrm{~h}, 56 \%$ (for two steps); (c) $\mathrm{BnOH}, \mathrm{BF}_{3} . \mathrm{OEt}_{2}, \mathrm{DCM},-20^{\circ} \mathrm{C}, 1 \mathrm{~h}, 60 \%$; d) AlCl_{3}, m-xylene, $0^{\circ} \mathrm{C}, 15 \mathrm{~min}, 76 \%$; (e) (i) 2,2-Dimethoxypropane, p-TSA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 15 min . (ii) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 86 \%$ (for two steps); (f) (i) 1-phenyl-1H-tetrazole-5thiol, PPh_{3}, DIAD, THF, $0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$. (ii) $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}, 30 \% \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{rt}, 81 \%$ (for two steps); g) 5a, KHMDS, THF, $-78^{\circ} \mathrm{C}, 2 \mathrm{~h}, 80 \%$; h) p-TSA, $\mathrm{MeOH}, \mathrm{rt}, 12 \mathrm{~h}, 82 \%$ (total yield).

4c

Scheme 6. Analogues of fuzanins C, D

First total synthesis of Fuzanins C, D and their analogues as anticancer agents

S. Naveen Kumar, ${ }^{\text {a }}$ CH. N. S. Sai Pavan Kumar, ${ }^{\text {a }}$ E. Srihari, ${ }^{\text {a }}$ Sravani Kancharla, ${ }^{\text {b }}$ Kolupula Srinivas, ${ }^{\mathbf{b}, *}$ Swetha Srivastwa, ${ }^{\mathbf{b}}$ V. G. M. Naidu, ${ }^{\mathbf{b}}{ }^{\boldsymbol{*}}$ and V. Jayathirtha Rao ${ }^{\mathbf{a}, \mathrm{b}, \mathbf{c}_{\boldsymbol{*}}}$
${ }^{a}$ Crop Protection Chemicals Division, Indian Institute of Chemical Technology, Uppal Road Tarnaka, Hyderabad 500007, India; ${ }^{b}$ National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500 037, India; ${ }^{c}$ AcSIR-Indian Institute of Chemical Technology, Uppal Road Tarnaka, Hyderabad-500007

Corresponding author: jrao@iict.res.in

Table 1. Experimental and calculated specific rotations of selected compounds

Compounds	$[\alpha]_{\mathrm{D}}\left(\right.$ in $\left.{ }^{\circ} \mathrm{dm}^{-1} \mathrm{~g}^{-1} \mathrm{~cm}^{3}\right)$		
	Isolation paper ${ }^{\text {a }}$	Synthesized compounds	Calculated ${ }^{\text {b }}$
Fuzanin C (3a)	$[\alpha]_{\mathrm{D}}{ }^{15}=+34.5$	$[\alpha]_{\mathrm{D}}{ }^{24}=+39.89$	+66.5
Fuzanin D (4a)	$[\alpha]_{\mathrm{D}}{ }^{15}=-32.9$	$[\alpha]_{\mathrm{D}}{ }^{24}=+29.47$	+22.4
$(11 R, 12 S)-4 \mathrm{a}$	-	$[\alpha]_{\mathrm{D}}{ }^{24}=-26.9$	-8.5

Table 2. IC_{50} values $(\mu \mathrm{M})$ of fuzanin compounds and Salinomycin against HT29 human colon cancer cell lines

Compound	$\mathrm{IC}_{50} / \mu \mathrm{g} \mathrm{mL}^{-1}$
	HT-29 (Colon cancer)
$\mathbf{3 a}$	96.2 ± 2.65
$\mathbf{3 b}$	85.3 ± 4.72
3c	48.5 ± 2.56
3d	76.2 ± 2.45
4a	77.9 ± 2.95
$\mathbf{4 b}$	98.5 ± 1.88
$\mathbf{4 c}$	35.3 ± 0.83
$\mathbf{4 d}$	27.4 ± 0.12
$\mathbf{(1 1 R , \mathbf { 1 2 S }) \mathbf { 4 a }}$	>100
$\mathbf{(1 1 R , \mathbf { 1 2 S }) \mathbf { 4 b }}$	>100
Salinomycin	20.5 ± 1.26

