RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This *Accepted Manuscript* will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical quidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Novel Synthesis of Thiazolo/thienoazepine-5,8-diones from Dihalo Cyclic 1,3-Diketones and Mercaptonitrile Salts

Laichun Luo, Lanlan Meng, Qi Sun,* Zemei Ge, Runtao Li*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX ⁵**DOI: 10.1039/b000000x**

An efficient approach to thiazolo[4,5-*b***]azepine-5,8-diones and thieno[3,2-***b***]azepine-5,8-diones has been developed** *via* **a domino synthesis of multifunctionalized thiazoles/thiophenes and further intramolecular cyclization. This transformation** ¹⁰**proceeded rapidly under mild conditions without use of metal catalyst.**

Fused azepinediones, such as DGAT1 inhibitor 1^1 and antitumor agents 2^2 , have drawn much attention due to their various biological activities (Fig 1). Moreover, they are important ¹⁵synthetic intermediates of numerous biologically active fused heterocycles in drug discoveries³⁻⁷, such as $\alpha V\beta$ 3 antagonists 3^3 , CDK and GSK-3 inhibitors 4 (Paullones)⁴. Thus, tremendous efforts have been devoted to the development of versatile methods for constructing these fused cyclic cores. $8-12$ However, ²⁰very few research focused on the construction of heterocyclic

- fused azepinediones due to difficulty of synthesis, though they may possess potential biological activities. To the best of our knowledge, there was no report on the preparation of thiazolo[4,5-b]azepine-5,8-diones, while the synthesis of thieno- 25 $[3,2-b]$ azepine-5,8-diones were only limited to Kunick's¹³ and
- Kirsch's¹⁴ reports *via* 3-aminothiophene-2-carboxylic acid alkyl esters through many steps. Meanwhile, high reaction temperature, prolonged reaction time and tedious procedures were also required.13-14 Thus, it is necessary to develop a more mild and 30 straightforward approach to construct novel thiazolo/thienoazepine-5,8-diones.

Figure 1. Representative active fused azepinediones and their derivatives. Recently, we developed a sequential one-pot synthesis of ³⁵multifunctionalized thiazoles/thiophenes **7** from mercaptonitrile salts **5** and *in situ* generated monohalo acyclic 1,3-dicarbonyl compounds **6**. This transformation involved a regio-selective elimination of a $-COR₄$ group (Scheme 1a).¹⁵ Inspired by this work, we envisaged that keto esters **10** would be obtained if ⁴⁰replacing **6** with monohalo cyclic 1,3-diketones **8** (Scheme 1b). In this case, the reaction of salts **5** and cyclic 1,3-diketones **8** would provide valuable intermediates **10**, which could undergo the intramolecular cyclization to form the novel thiazolo/thieno-

fused heterocycles **11** (Scheme 1c). However, preliminary ⁴⁵experiments disclosed that the reaction of **5** with **8** did not afford the expected thiazoles/thiophenes **10**. ¹⁶ Fortunately, when dihalo cyclic 1,3-diketones **9** were used, key intermediates **10** were smoothly isolated (Scheme 1d).

Table 1. Optimization of reaction conditions^a

55^a Reaction conditions: **9a** (0.5 mmol, 1.0 equiv.), **5a**, base (0.5 mmol, 1.0 equiv.) in EtOH (2 mL) at rt for 2 h.^b Isolated yields. ^{*c*} 0.5 equiv. of Et₃N was used. ^{*d*} 2.0 equiv. of Et₃N was used. ^{*e*} Reaction occurred at 0 °C. *^f* Reaction occurred at 50 °C.*^g* 2,2-Dichloroindane-1,3-dione **9a'** was used instead of **9a**.

a Reaction conditions: **5** (1 mmol, 2.0 equiv.), **9** (0.5 mmol, 1.0 equiv.), 5 Et₃N (0.5 mmol, 1.0 equiv.) in EtOH (2 mL) at rt for 2 h.^b Isolated yields.

Encouraged by above results, we selected the reaction of potassium methyl N-cyanodithioimidocarbonate **5a** with 2,2 dibromoindane-1,3-dione **9a** as model to optimize the reaction conditions. An equimolar mixture of **5a** and **9a** was stirred for 2 h_0 hours at room temperature in the presence of Et_3N in ethanol, affording **10a** in 35% yield (entry 1, Table 1). Increasing the amount of **5a** from 1.0 equiv. to 2.0 equiv., the yield was significantly increased up to 75% (entry 2 *vs.* entry 3, Table 1).

However, more than 2.0 equiv. of **5a** did not improve the yield ¹⁵further (entry 3 *vs.* entry 4, Table 1). Among the screened bases, including no base, inorganic and organic bases (entries 3 and 5– 10, Table 1), Et_3N was the best one (entry 3, Table 1). Increasing or decreasing the amount of Et_3N slightly influenced the yield (entries 11–12, Table 1). When the reaction was conducted at 20 0 °C or 50 °C, the yield was not improved either (entries $14-15$, Table 1). Finally, 2,2-dichloroindene-1,3-dione **9a'** was used instead of **9a**, leading to a slightly lower yield (entry 3 *vs.* entry 15, Table 1).

 Subsequently, the reaction scope was explored under the ²⁵optimized reaction conditions (entry 3, Table 1). Various dihalo cyclic 1,3-diketones, including five-membered rings **9a**–**c** and six-membered rings **9d**–**f**, were reacted with **5a** affording the corresponding thiazole derivatives **10a**–**f** in moderate to good yields (entries 1–6, Table 2). Dihalo cyclic 1,3-diketones fused ³⁰aromatic ring **9a**–**b** led to superior yields compared to **9c**–**f**. As expected, asymmetric substrate **9b** formed two isomers (**10b** and **10b'**) without significant selectivity (entry 2, Table 2). Considering the significance of 2-aminothiazoles in drug design, **10g** containing a phenylamino group was also prepared from **5b** ³⁵and **9a** in 43% yield (entry 7, Table 2). Furthermore, the reaction was expanded to the synthesis of poly-substituted thiophenes. Reactions of potassium (2,2-dicyano-1-methylthioethen-1-yl) thiolate **5c** with **9a** and **9c**–**f** provided the corresponding thiophene derivatives **10h**–**l** in 55-82% yields, respectively. **Table 3.** Synthesis of thiazolo/thienoazepine-5,8-diones **11**a,b

a Reaction conditions: **10** (0.2 mmol, 1.0 equiv.), NaOEt (0.4 mmol, 2.0 equiv.) in EtOH (2 mL) at rt for 0.5 h.^b Isolated yields.

 With a series of functionazed thiazoles and thiophenes **10** in hand, we turned our attention to their intramolecular cyclizations. Optimization studies¹⁷ revealed that the cyclization of 10c could proceed efficiently in the presence of NaOEt in ethanol for 0.5 h ⁵⁰at room temperature. Under above conditions, a series of thiazolo[4,5-*b*]azepine-5,8-diones (**11a**–**d**) and thieno[3,2 *b*]azepine-5,8-diones (**11e**–**f**) were prepared from precursors **10** in

excellent yields (Table 3). And the structure of compound **11c** was unambiguously confirmed by X-ray diffraction study (Fig 2). However, the cyclization of **10d**–**f** and **10j**–**k** failed to afford fused eight-membered lactam rings, which could be attributed to $\frac{1}{5}$ the instability of the products in the presence of nucleophiles.¹⁸

- In order to demonstrate the synthetic utility of this novel synthetic method, **11c** was treated with phenylhydrazine hydrochloride under Fischer indole synthetic conditions¹², affording thiazoloazepino-indol-5-one **13** in 53% yield (Scheme
- ¹⁰2). Compound **13** is under research for potential biological activities due to its structural similarity to Paullones **4**, which are potent CDK and GSK-3 inhibitors as showed in Fig 1.

Scheme 2. Synthesis of thiazole analogue of Paullone **13**.

- ¹⁵A possible domino reaction pathway for the construction of thiazoles/thiophenes was proposed and illustrated in Scheme 3. Dihalo cyclic 1,3-diketone **9** was first attacked by **5** affording intermediate **14**, which was converted to **15** *via* retro Claisen condensation¹⁹ in the presence of base. Then anion 15 underwent
- ²⁰Thorpe–Ziegler cyclization to furnish intermediate **16**. Subsequently, the halogen of **16** was attacked by thiolate anion **5** *via* halophilic reaction²⁰, followed by proton transfer from the alcohol, affording the desired product **10**. This accounted for the fact that the reaction required two equivalents of **5** (entries 1–4, ²⁵Table 1).

Scheme 3. Possible domino reaction pathway.

Conclusions

In summary, we have developed a mild and efficient strategy 30 for the synthesis of thiazolo^{[4},5-*b*]azepine-5,8-diones and thieno-[3,2-*b*]azepine-5,8-diones from dihalo cyclic 1,3-diketones and mercaptonitrile salts *via* domino S_N2 substitution/retro Claisen condensation/Thorpe–Ziegler cyclization/halophilic reaction and further cyclization. This method has been successfully applied in

³⁵the rapid synthesis of a thiazole analogue of Paullone and the

further extention will be disclosed in due course.

 We are grateful for financial support from the National Natural Science Foundation of China (No. 21272009).

Notes and references

- *a* ⁴⁰*State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. Fax: 86 10 82716956; Tel: 86 82801504; E-mail: sunqi@bjmu.edu.cn (Qi Sun); lirt@bjmu.edu.cn (Runtao Li).*
- † Electronic Supplementary Information (ESI) available: [Detailed ⁴⁵experimental procedures and spectral data for all new compounds;
	- crystallographic data of **11c** in CIF format]. See DOI: 10.1039/b000000x/ 1 O. Okamoto, Y.Sasaki, H. Watanabe, H. Jona and K. D. Dykstra, *PCT Int. Appl.* (2010), WO2010056496A1.
- 2 C. Kunick, C. Bleeker, C. Pruehs, F. Totzke, C. Schaechtele, M. H. G.
- ⁵⁰Kubbutat and A. Link, *Bioorg. Med. Chem. Lett.,* 2006, **16**, 2148– 2153.
- 3 A. Kling, G. Backfisch, J. Delzer, H. Geneste, C. Graef, W. Hornberger, U. E. W. Lange, A. Lauterbach, W. Seitz and T. Subkowski, *Bioorg. Med. Chem.,* 2003, **11**, 1319–1341.
- ⁵⁵4 N. Tolle and C. Kunick, *Curr. Top. Med. Chem.,* 2011, **11**, 1320–1332 (and references cited therein).
- 5 A.-M. Egert-Schmidt, J. Dreher, U. Dunkel, S. Kohfeld, L. Preu, H. Weber, J. E. Ehlert, B. Mutschler, F. Totzke, C. Schaechtele, M. H. G. Kubbutat, K. Baumann and C. Kunick, *J. Med. Chem.,* 2010, **53**, ⁶⁰2433–2442.
- 6 M. Bigioni, A. Ettorre, P. Felicetti, S. Mauro, C. Rossi, C. A. Maggi, E. Marastoni, M. Binaschi, M. Parlani and D. Fattori, *Bioorg. Med. Chem. Lett.,* 2012, **22**, 5360–5362.
- 7 G. K. Mittapalli, D. Vellucci, J. Yang, M. Toussaint, S. P. Brothers, C. ⁶⁵Wahlestedt and E. Roberts, *Bioorg. Med. Chem. Lett.,* 2012, **22**, 3916–3920.
- 8 K. M. Allan, C. D. Gilmore and B. M. Stoltz, *Angew. Chem., Int. Ed.,* 2011, **50**, 4488–4491.
- 9 B. K. Dinda, A. K. Jana and D. Mal, *Chem. Commun.* (Cambridge, U. ⁷⁰K.), 2012, **48**, 3999–4001.
- 10 H. Morita, M. Yamashita, S.-P. Shi, T. Wakimoto, S. Kondo, R. Kato, S. Sugio, T. Kohno and I. Abe, *Proc. Natl. Acad. Sci. U. S. A.,* 2011, **108**, 13504–13509.
- 11 J. Zhang and C.-W. T. Chang, *J. Org. Chem.,* 2009, **74**, 685–695.
- ⁷⁵12 H. Stukenbrock, R. Mussmann, M. Geese, Y. Ferandin, O. Lozach, T. Lemcke, S. Kegel, A. Lomow, U. Burk, C. Dohrmann, L. Meijer, M. Austen and C. Kunick, *J. Med. Chem.,* 2008, **51**, 2196–2207.
- 13 C. Kunick, *Arch. Pharm. (Weinheim, Ger.),* 1991, **324**, 579–581.
- 14 (a) E. Migianu and G. Kirsch, *Synthesis,* 2002, 1096–1100; (b) L. ⁸⁰Brault, E. Migianu, A. Neguesque, E. Battaglia, D. Bagrel and G. Kirsch, *Eur. J. Med. Chem.,* 2005, **40**, 757–763.
- 15 L.-C. Luo, L.-L. Meng, Q. Sun, Z.-M. Ge and R.-T. Li, *Tetrahedron Lett.*, 2014, **55**, 259–263.
- 16 An equimolar mixture of **5a** and **8**, such as 2-chlorocyclopentane-1,3- 85 dione and 2-bromo-5,5-dimethylcyclohexane-1,3-dione, was stirred in
- the presence of $Et₃N$ in ethanol at rt for 2 h. 17 Reaction temperature, solvents and bases including NaH, NaOEt, KOH, K₂CO₃ and Et₃N were screened.
- 18 (a) B. Witkop, J. B. Patrick and M. Rosenblum, *J. Am. Chem. Soc.,* ⁹⁰1951, **73**, 2641–2647; (b) F. Sigaut and J. Levy, *Tetrahedron Lett.,*
- 1989, **30**, 2937–2940. 19 (a) M. Jukic, D. Sterk and Z. Casar, *Curr. Org. Synth.,* 2012, **9**, 488– 512; (b) S. K. Gupta, *J. Org. Chem.,* 1973, **38**, 4081–4082.
- 20 (a) N. S. Zefirov and D. I. Makhon'kov, *Chem. Rev.,* 1982, **82**, 615– ⁹⁵624; (b) P. K. Sazonov, G. A. Artamkina and I. P. Beletskaya, *Russ. Chem. Rev.,* 2012, **81**, 317–335; (c) J. Tatar, M. Baranac-Stojanovic, M. Stojanovic and R. Markovic, *Tetrahedron Lett.,* 2009, **50**, 700–703; (d) Z. Chen, J. Zhu, H. Xie, S. Li, Y. Wu and Y. Gong, *Org. Biomol. Chem.,* 2011, **9**, 3878–3885; (e) R. F. Langler and J. A. Pincock, *Can.*
- ¹⁰⁰*J. Chem.,* 1977, **55**, 2316–2322; (f) J. S. Grossert, P. K. Dubey and T. Elwood, *Can. J. Chem.,* 1985, **63**, 1263–1267.

RSC Advances Accepted Manuscript

SC Advances Accepted Manuscri