This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Investigation and modelling of surface tension of power-law fluids

K. Muthamizhi\textsuperscript{a}, P. Kalaichelvi\textsuperscript{a, b}, Shubhangi Tukaram Powar\textsuperscript{a} and R. Jaishree\textsuperscript{a}

Thermo-physical properties of power-law fluids are both required for engineering and product design applications in food, drugs, cosmetic and agricultural industries. Surface tension not only determines the quality of many of the products resulting from different industries as noted before, but also affects some important steps in the production process: catalysis, adsorption, distillation and extraction, etc.. This study involved the measurement of surface tension of power-law fluids (Xanthan gum, Carboxymethyl cellulose and Sodium alginate) using Drop weight method for the concentration range of 0.1-0.6 %w/w and temperature range of 293.15-333.15 K. The experimental measurements are often unavailable, expensive and time consuming; hence a model has been developed for predicting the surface tension of power-law fluids. Central composite Rotatable design-Response surface methodology (CCRD-RSM) has been used for model prediction.

It states that the surface tension of a liquid can be given as a function of the liquid- and vapor-phase densities as in equilibrium with its own vapor:

$$\sigma = K(p_1 - p_v)^4$$

where $K$ is a constant and it is characteristic of the liquid below delibration which is independent of temperature\textsuperscript{5}. Surface tension can be used to calculate the thickness of layer of surface for simple liquids using the Kirkwood theory, assuming smooth variation of density between liquid and vapor\textsuperscript{6}.

New expressions have been proposed for surface tension which contains a temperature correction term resulting from statistical mechanics and for corresponding-states to calculate the parameter $P_o$ as a function of molar refraction and normal boiling point temperature\textsuperscript{10}. The study of surface tension for liquid mixtures have been carried out and concluded that the expressions proposed are applicable to multi component mixture\textsuperscript{11}. Surface excess energy and entropy per unit area from the temperature dependency of surface and interfacial tensions have been found. The consequences for model interpretations of surface tension also has been discussed\textsuperscript{12}.

Dynamic surface tension has been explained with a new combined diffusion evaporation model, for up to first 1000s of the experiments with tetrachloroethylene (PCE) dissolved in water and diffuse portion of the new model was only a short time approximation and not applicable for later stages of the experiment\textsuperscript{13}.

New drop weight analysis has been studied for the grit of surface tension of liquids and developed an LCP coefficient method to remove the effect of liquid properties of the drop weight method. The proposed simple semi-empirical equation for liquid surface tension is given by:

$$\sigma = 171.2C_2$$

Where $C_2$ is the second coefficient of a quadratic rapport between the drop weight and tip radius\textsuperscript{14}. Surface tension of liquid ternary...
Cu–Fe–Sb systems have been measured using sessile drop method, also effect of temperature, iron and antimony on the surface tension of Cu–Fe–Sb has been studied and observed that surface tension decreases linearly with the increase of temperature.\textsuperscript{16}

To the best of our knowledge, surface tension values of power law fluids have not yet been sufficiently addressed in the open literature. Hence the aim of the present work was to experimentally determine the surface tension of selected power-law fluids at several concentrations (0.1-0.6 \%w/w) and temperature (293.15-333.15 K) by drop weight method. The other objective was also to propose a suitable model for the prediction of surface tension values of any power law fluids at given concentration and temperature. Advanced Central composite rotatable designs (CCRD-RSM) used for model prediction. General equation has been found to predict the surface tension of all power law fluids with minimum error.

Materials and methods

Materials

Xanthan gum, pure (food grade), CMC & Sodium Alginbate were obtained from LOBA Chemie, Merck & Himedia.

Solution preparation

To measure the surface tension values of selected power law fluids, concentration range of 0.1-0.6\% by weight and temperature range of 293.15-333.15 K were selected in accordance with conventional values used in industry.

The samples were prepared in a 250 ml conical flask with distilled water by mixing power-law fluids in a specific ratio by weight to obtain different concentrations ranging from 0.1-0.6 \%w/w. The samples were stirred continuously until the solute gets completely dissolved.

The mixture of known amount was transferred into burette and the surface tension values were measured.

Methods and Procedure

Various methods have been developed to measure the surface tension of liquids such as the capillary rise method, drop weight method, du Nouy ring method, Wilhelmy plate method, spinning drop method, pendant drop method and sessile drop method. The choice of the method depends on the nature and the data was collected from the surface tension of power law fluids which is swayed by concentration and temperature was used in this study. A two factor, five level central composite rotatable designs (CCRD) were employed due to the benefits of uniform prediction error and extension of the design region. Design-Expert 9 software was used to model equation for surface tension of power-law fluids. The independent variables, i.e. temperature and concentration were coded at five levels between -2 and +2, where the temperature (T) in the range of 293.15 - 333.15 K and concentration in the range of 0.1 - 0.6 \%w/w respectively as shown in table 1. The generated runs of the CCRD investigated in this work consist of 13 experimental runs with two factors. To evaluate the pure error, eight experiments were carried out with five replications at the design center in randomized order.

The experimental data were fitted to the following second-order polynomial model and the regression coefficients (\beta 's) are obtained:

\[ Y = \beta_0 + \sum_{i=1}^{k} \beta_i X_i + \sum_{i=1}^{k} \sum_{j=1}^{k-1} \beta_{ij} X_i X_j + \sum_{i=1}^{k} \beta_{ik} X_i X_k + \epsilon \]  

where \( Y \) is the predicated surface tension and \( X_1, X_2, X_3, X_4, \) and \( X_5 \) are the independent variables affecting the surface tension; \( \beta_0 \) is a constant, \( \beta_i, \beta_{ij}, \) and \( \beta_{ik} \), are the coefficients of linear, quadratic and interacting terms and \( \epsilon \) is the error. The quality of fit of the quadratic model was expressed by the value of the correlation coefficients (R\(^2\)) and the significance was checked using F-test in this program. The prime motive is to determine the second order polynomial equation for the surface tension of power-law fluids.

Results and Discussion

Surface Tension is a fundamental property of liquids which vary with temperature and concentration. The experimental Surface Tension of xanthan gum, CMC and Sodium alginate solution was analyzed and the results are presented as follows:

Influence of temperature and concentration

Temperature and concentration influence on the surface tension of xanthan gum, CMC, and sodium alginate solution have been plotted in Fig.2-4 respectively. It can be inferred from Fig.2-4 that the surface tension of all three power-law fluids under consideration decrease when the temperature is increased for 0.2, 0.4 and 0.6 \%w/w concentration of the respective solution. When temperature of power-law fluid increases kinetic energy of its molecules also increases. Hence there will be a weak cohesive force between the molecules of the solution. Thus, for all the solutions under consideration, surface tension decreases with temperature.
increase for a particular fixed concentration. The same was observed for 0.1, 0.3 and 0.5 %w/w for all three power-law fluids. The minimum and maximum values of surface tension observed from the graphs are presented in table 2.

Fig.2-4 show that surface tension of power-law fluids increases when the concentration increases from 0.2, 0.4 and 0.6 %w/w at 293.15 K - 333.15 K. Power law fluids do not show the surface activities for low concentration and also low concentration of power-law fluids did not affect the water surface tension. This is the reason that increases in concentration of power-law fluids increases the surface tension. The same was observed in 0.1, 0.3 and 0.5%w/w for all three power-law fluids.

Experimental Design

The experimental results obtained were used to determine the model equation for the surface tension of power-law fluids using central composite rotatable design under response surface methodology, which was influenced by independent variables, i.e., temperature and concentration.

The final quadratic model regression equations (6), (7) and (8) in terms of actual factors as obtained by response surface methodology are given below:

For xanthan gum solution, 

$$\sigma = 0.860052 - 0.004737T_c - 0.03529C_C + 0.000015T_sC_s + 0.00000705T_s^2 - 0.00345C_s^2$$

(6) $f$

For CMC solution, 

$$\sigma_C = 0.331914 - 0.0016T_C + 0.049082C_C - 0.00013T_sC_s + 0.00000242T_s^2 - 0.0021C_s^2$$

(7)

For sodium alginate solution, 

$$\sigma_{sa} = 0.311495 - 0.00147T_{sa} + 0.045433C_{sa} - 0.00013T_sC_{sa} - 0.00000222T_{sa}^2 + 0.0018C_{sa}^2$$

(8)

ANOVA table is a collection of statistical model used to determine the significant effects of operating variables. $F$-test was used to analyze the statistical significance of a model equation. $F$ and p-values were used to determine the significance of each coefficient. Any factor or interacting factors with p<0.05 indicates a high significance for the regression model. The validity of predicted model was confirmed by comparison with the experimental values and it was observed that the values lie close to the diagonal line. $R^2$, adjusted-$R^2$ and adequate precision expresses the quality of fit of the quadratic model regression equation. Average deviation analysis (AAD) is a direct method for describing the deviation between predicted and experimental values. The quadratic regression model of surface tension of power-law fluids showed the coefficient of determination $R^2$, adjusted coefficient of determination and AAD as 0.9770, 0.9605 and 0.0108 for xanthan gum, 0.9980, 0.9967 and 0.000156 for CMC and 0.9847, 0.9738 and 0.0017 for sodium alginate respectively.

Combined effect of concentration and temperature on surface Tension of power-law fluids

The response curves for surface tension of power-law fluids were plotted using developed equations 6-8 to study the combined effect of temperature and concentration (Fig. 5 – 7). It is observed that the nature of response surface shows good agreement with experimental results.

The surface tension of xanthan gum was higher compared to surface tension of CMC and sodium alginate. Xanthan gum is a thickener by nature and has a viscosity higher than other solutions involved in the analysis. This could perhaps be the reason for its high surface tension compared to other solutions being considered.

Development of general model equation for all power-law fluids at given temperatures and concentration

There are number of power law fluids having wide applications, but no information is available on surface tension. It is not possible to generate surface tension data experimentally for each power law fluid. Hence, based on present experimental studies and quadratic equation of surface Tension of xanthan gum, CMC and sodium alginate, general quadratic model equation (9) which can be used to calculate the surface tension of any shear thinning fluid was developed.

$$\sigma = 0.501154 - 0.0026T + 0.197942C - 0.000037TC + 0.0000039T^2 - 0.00125C^2$$

(9)

AAD was calculated for 108 experimental data points using equations 6-9 and shown in Fig.8, to find the best fit for surface tension calculation of any power-law fluid. From Fig.8, equation 9 with ADD of 1.05 can be used to estimate the surface tension of any power-law fluid without carrying out experimental work with minimum error.

Conclusion

The surface tension of three power law fluids (xanthan gum, CMC and sodium alginate) was measured at different temperature and concentration using drop weight method. The surface tension of power-law fluids found to increase with concentration and with decrease in temperature, where concentration is having greatest effect than temperature. The predictions of surface tension values by second order polynomial equation (Equation 9) are consistent with the experimental data for studied power law fluids with absolute average deviation of 1.05. Since no correlation exists for surface tension of power law fluids, it can be calculated using the proposed generalized model (Equation 9) with reasonable error.

Acknowledgement

The authors are thankful to the CSIR (Council of Scientific and industrial research) for the financial support (Ref.No. 22/514/10-EMR-II).

Notes and references

16 Wilkinson M C, Extended use of, and comments on, the drop-weight (drop volume) technique for the determination of surface and interfacial Tensions, J. Colloid Interface Sci 40 (1972) 14–26.

Tables

Table 1 Physical and coded values of independent process variables.
Figures

**Fig. 1** A schematic diagram of a surface tension measurement apparatus

**Fig. 2** Concentration and temperature influence on surface Tension of xanthan gum solution
Fig. 3 Concentration and temperature influence on surface Tension of CMC solution

Fig. 4 Concentration and temperature influence on surface tension of sodium alginate solution

Fig. 5 Response Surface plots showing the effect on surface tension of xanthan gum solution
**Fig. 6** Response Surface plots showing the effect on surface tension of CMC solution

**Fig. 7** Response Surface plots showing the effect on surface tension of the sodium alginate solution
Fig. 8 Absolute average deviation of surface tension of power-law fluids following various equations 6-9
Graphical abstract