

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Real-Time Release Monitoring for Water Content and Mean Particle Size of Granules in
2	Lab-Sized Fluid-Bed Granulator by Near-Infrared Spectroscopy
3	
4	Makoto Otsuka, Akira Koyama, and Yusuke Hattori
5	
6	Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino
7	University, 1-1-20 Shinmachi, Nishi-Tokyo, Tokyo 202-8585, Japan.
8	E-mail: motsuka@musashino-u.ac.jp
9	
10	
	Address correspondence to:
	Makoto Otsuka, Ph.D.,
	Research Institute of Pharmaceutical Sciences,
	Faculty of Pharmacy, Musashino University,
	Shinmachi 1-1-20, Nishi-Tokyo 202-8585, Japan
	Phone & Fax: 81-424-68-8658
11	

RSC Advances Accepted Manuscript

12

13 Abstract

Simultaneous real-time monitoring of water content and mean particle size in 14the powder bed of a fluidized-bed granulator was performed by near-infrared (NIR) 15spectroscopy through a window, and the findings were used to evaluate the granular 16properties. A powder mixture containing acetaminophen bulk and additive powders was 1718granulated by spraying with 10, 8.5 and 7.5% binder solutions in a lab-size fluid-bed granulator. Change of water content and mean particle size of the granules during 1920fluid-bed granulation were evaluated by weight loss and sieving of the removed granule samples, respectively. The NIR spectra were recorded during the granulation processes, 2122and calibration models to evaluate water content and mean particle size of the granules 23were developed based on NIR spectra using the partial least squares regression method. The best calibration models to predict water content and mean particle size were 2425obtained by multiplicative scatter correction treatment. The validation results based on 26external validation NIR spectra also had sufficiently linear relationships. In the 27predicted water content-time profiles during the granulation processes, the water content increased in the granulation process, and it decreased in the drying process; the 28predicted values fitted very well to the actual values in all processes. The maximum 29water content in the processes using 8.5 and 7.5% binder solutions was around 6-7%, 30

31	but that using 10% binder solution was around 3%. In terms of the predicted mean
32	particle size-time profiles, they increased during the granulation process, remained
33	constant during the drying process; the predicted profile fitted very well to the actual
34	values in all processes.
35	
36	Keywords: Real-time monitoring; process analytical technology; water content; mean
37	particle size; reflectance near-infrared spectroscopy; fluidized-bed granulator;
38	chemometrics
39	
40	
41	
42	
43	
44	

45 Introduction

Since controlling of wetting and drying of pharmaceutical powder solids is 46conventional and frequent operation in the practical manufacturing processes, 47solid-water interaction is one of the fundamental issues in pharmaceutical technology.¹ 48The state of water in solid dosage forms may be characterized using X-ray diffraction, 4950microscopic methods, thermal analysis, vibrational spectroscopy and nuclear magnetic resonance spectroscopy.² In the pharmaceutical industry, wet granulation is generally 51carried out with water to improve the physical properties of raw powdered materials, 52such as the powder flow, compression properties, increasing the density, ensuring 53mixture uniformity and reducing the dust.³ Additionally, the water content during 54granulation processes affects the pharmaceutical properties of final products, such as 55polymorphic crystalline stability, drug degradation rate and drug release rate. 5657Fluid-bed granulation is a popular wet granulation technique for producing granules in the pharmaceutical industry by spraying a binder solution onto a fluidized powder. 58

- 59 The control of fluidized-bed granulation has been carried out by on indirect 60 measurements of the amount of air, moisture content, amount of powder solids, their
- 61 temperature and their mass-balance calculation.⁴⁻⁶

62	On the other hand, regulatory authorities such as the US Food and Drug
63	Administration and the International Conference on Harmonization have promoted and
64	requested real-time control of drug product quality and the application of
65	quality-by-design principles using in-line analytical tools, as process analytical
66	technology (PAT). ⁷⁻⁸ Since the introduction of FDA guidelines for PAT, in-line
67	real-time analysis as a tool to monitor and control manufacturing processes has become
68	increasingly accepted in the pharmaceutical industry.9-10
69	The nondestructive character of vibrational spectroscopy techniques, such as
70	near-infrared spectroscopy (NIR), makes them a novel tool for in-line quality assurance
71	as PAT, ¹¹⁻¹³ since the development of PAT will provide an in-line window on the
72	physicochemical phenomena occurring during pharmaceutical manufacture. NIR can
73	be applied for both quantitative analysis of water ¹⁴⁻¹⁵ and determining the state of water
74	in solid materials ¹⁶⁻¹⁷ during granulation. This enables us to understand the molecular
75	level phenomena during manufacture of pharmaceutics. Further more, NIR has been
76	applied to study the nature of water-solid interactions within various materials. ¹⁸
77	Several authors have reported the monitoring of moisture levels using NIR in a fluid
78	bed. ¹⁹ Rantanen et al. described ²⁰⁻²¹ the real-time monitoring of moisture using of
79	NIR for process monitoring and control during fluid-bed granulation and drying.

80	Peinado et al. ²¹ developed a calibration model to predict water content, and validated
81	and transferred an NIR model to determine the end-point for commercial production
82	batches of an FDA-approved solid oral product. Rantanen et al. ²³⁻²⁴ have
83	demonstrated the use of multivariate NIR chemometric models coupled with
84	temperature and humidity data recorded by the data loggers to develop models for better
85	understanding of the fluid-bed granulation process. However, there is no report on a
86	simultaneous real-time release monitoring pharmaceutical properties, such as water
87	content and mean particle size, of granules during fluidized bed granulator by using
88	NIR.
89	This is the first study of simultaneous prediction of the water content and the
90	mean particle size of conventional granules in a lab-sized fluid-bed granulator by in-line
91	NIR monitoring. Pharmaceutical properties of the granules depended on the binder
92	solution concentration and changes of water content and mean particle size of the
93	granules obtained using different binder solutions were evaluated using a chemometric
94	method.
95	
96	Materials and Methods

97 Materials

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

RSC Advances

Bulk powder of acetaminophen (Lot No. 90197) was obtained from Iwaki Pharm. Co.	
Ltd. Diluents, α -lactose monohydrate (Pharmatose 200M, Lot 30330-2175), was	
obtained from DFE Pharm (Amsterdam, Holland). A binder, hydroxyl-propyl-cellulose	
(Nisso HPC-L, Lot No. NHB-4811), was obtained from Nippon Soda Co. Ltd. (Tokyo,	
Japan). A lubricant, magnesium stearate (Lot No. SDF1110, derived from a natural	
plant), was obtained from Wako Chemical Co. Ltd. (Tokyo, Japan).	2
Preparation of granules	
The powder mixture consisted of bulk powders of acetaminophen (30.8 g), crystalline	
α -lactose monohydrate (188.4 g), and microcrystalline cellulose (80.8 g), as shown in	
Table 1. Figure 1 shows the lab-sized fluid-bed granulator (Okada Seiko, Ltd., Tokyo,	
Japan) with a chamber (160 mm in diameter and 6.0 L in volume) made of glass used to	
prepare granules. A sampling port was equipped at 3-cm from the bottom of a	
chamber of the granulator, and granular samples was withdrawn by a plastic sampling	
bar in diameter 15 mm. The granulator was loaded with a reflectance NIR	
spectrometer, and NIR light focused on at 3 cm from the bottom and center of the	7
chamber to measure granular properties during granulation. The binder solutions (10,	
8.5 and 7.5%) of hydroxypropyl cellulose (7.9 g) were prepared to be dissolved in	

different amounts of water (71.1 g, 85.1 g and 97.1 g). Fluid-bed operation conditions 115

116	were fixed during all processes as follows: warming up time was 20 min at 35°C, rotor
117	speed was 360 rpm and spray down occurred at 200 mm height from the bottom mesh
118	screen with an air spray presser, at 0.1 MPa. The spray speeds for 10, 8.5 and 7.5%
119	binder solutions were at 3.95, 4.64 and 5.26 g/min, respectively, as shown in Table 2.
120	The powder mixture (307.9 g) containing the bulk and additives powders was agitated
121	and mixed at 35±2°C in the chamber for 5 min, and then the binder solutions were
122	sprayed into the powder mixture at $35\pm2^{\circ}C$ for 20 min, which was then dried at $60\pm2^{\circ}C$
123	for 10 min. The wet-granular powder samples (1.0 g) were withdrawn from the
124	chamber at predetermined intervals (every 3 minutes), with 12 granular samples
125	obtained in each experiment (the binder solutions, 10, 8.5 and 7.5%), and the total was
126	36 samples.
127	Granular properties of the samples
128	The sample granules in glass containers were dried in a hot air oven at 70±2°C for 24
129	hours, and then, the loss due to drying was measured using their weight. The dried
130	granular samples were passed through six kinds of mesh sieve screen (75, 106, 150, 355,
131	500 and 850 μ m), and the weights of sieved granular sample fractions were measured

- 132 to evaluate mean particle sizes. The mean particle size (D50) was evaluated as median
- 133 particle size by 50% cumulative weight of the sieved fractions.

150

135	Microscopic observation of the granular samples was performed by digital microscopy
136	(Type VHX-100, Keyence Co. Ltd., Tokyo, Japan) and scanning electron microscopy
137	(SEM) (JSM-6510LV, Jeol Co. Ltd., Tokyo, Japan), respectively.
138	NIR spectroscopic measurements
139	The NIR reflectance spectra for raw powder materials were recorded over the range of
140	12000-4000 cm ⁻¹ (32 scans with 8 cm ⁻¹ resolution) using an NIR spectrometer (MPA,
141	Bruker Optics, Ettlingen, Germany). Another NIR spectrometer (MATRIX-F, Bruker
142	Optics, Ettlingen, Germany) was set in front of the fluid bed with a focal length of 250
143	mm. NIR reflectance spectra were measured through a glass wall, and recorded 10 times
144	every minute with scan time, 10 scans/spectrum; resolution, 64 cm ⁻¹ and wavelength
145	range, 12000-4000 cm ⁻¹ during all granulation processes. In order to measure accurate
146	spectra during granulation, the wall of the fluid-bed granulator was periodically
147	percussed using a rubber spatula for keeping clean glass wall.
148	Partial Least Squares (PLS) Model: The water content and D50 of the standard
149	granule samples for calibration models were estimated with a PLS model. The

151 7.5% HPC) for 35 minutes, the NIR spectra were measured six times at every sample

granulation experiments were performed with three kinds of binder solution (10, 8.5 and

152	collect on time (12 samples x 3 kinds of the solution), and a total of 216 spectra were
153	measured. Then, 108 NIR spectra were randomly selected to prepare the calibration
154	models to predict water content and D50. The other 108 spectra were used as an
155	external validation data set for validation testing. The best calibration model was
156	determined to minimize the standard error of cross-validation (SEV) by the
157	leave-one-out method in PLS regression software, after the spectral data were
158	transformed by various functions, such as non-treatment (NON), area normalized
159	(NOR), second derivative (2 nd), standard normal variate (SNV) and multiplicative
160	scatter correction (MSC). Cumulative percent variance (CV), Prediction Residual Error
161	Sum of Squares (PRESS) and the r-values for calibration and validation (r-Cal and r-Val)
162	were evaluated as shown below, and the calculated chemometric parameters are
163	summarized in Table 3.

164 When cross-validation was applied during PLS, a regression model for a 165 validation sample x_v was evaluated based on k factor regression vector $\beta_{k.}^{25}$

166
$$\hat{y}_{\nu} = x_{\nu}\beta_{\nu} \tag{1}$$

167 Then, the prediction residual can be generated

- - -

168
$$\hat{f} = y_{v-}\hat{y}_{v},$$
 (2)

169 where y_v is the "true" value for the dependent variable of the validation sample.

170To keep the notation simple, hatted symbols indicate a k factor estimate of a quantity.171For a set of n_v validation samples, a Prediction Residual Error Sum of Squares172(PRESS) can be calculated for the y block:173 $PRESS = f^T f$.174Related to the PRESS is the Standard Error of Prediction (SEP), which takes175into account the number of samples and has the same units as the y variable.176

177
$$SEP = \sqrt{\frac{PRESS}{n_v}}$$
(4)

The most naive version of validation predicts on the basis of training set samples. This
type of SEP is termed a Standard Error of Calibration (SEC). The SEC must be
corrected for the number of factors k in the model:

181
$$SEC = \sqrt{\frac{PRESS}{n_v - k}},$$
 (5)

On the other hand, the other 108 spectra of the external validation data set were used to validate the best fitted calibration models for water content and D50. The validated chemometric parameters of the best calibration models are summarized in Table 4. The analysis was performed using the chemometric software Pirouette version 3.11 (InfoMetrix, Inc., Bothel, WA, USA).

187	All granulation processes in a fluid-bed granulator were monitored for 35 min by
188	reflectance NIR spectroscopy and 245 NIR spectra were obtained. The granular
189	samples were obtained with three kinds of binder concentration solution, and the water
190	content and D50 of the granules were predicted based on 735 spectra by the best
191	calibration models.
192	
193	Results and Discussion
194	Change of NIR spectra of acetaminophen granular formulation during fluid-bed
195	granulation process
196	Figure 2 shows NIR spectra for raw powder materials. The NIR spectral
197	peaks of the raw materials were identified based on a reported database ²⁶ as follows:
198	The NIR spectrum of acetaminophen bulk powder had specific peaks at 4069 cm ⁻¹ due
199	to CH stretching (st) and CC st, 4335 cm ⁻¹ due to NH st and C=O st in a CONH group,
200	at 4667 cm ⁻¹ due to CH st and deformation (DF) in a CH_2 subscript group, at 4944 cm ⁻¹
201	due to C=O st 2 nd overtone (OT) in a CONH group, at 6013 cm ⁻¹ due to CH st 1st OT in
202	an aromatic ring and 8836 cm ⁻¹ due to CH st 2^{nd} OT in an aromatic ring. The spectrum
203	of MCC had specific peaks at 4775 cm ⁻¹ due to 2^{nd} OT and DF of CH st in a CH ₂ group,
204	5218 cm ⁻¹ due to 1^{st} OT of OH st and 6700-6800 cm ⁻¹ due to 1^{st} OT of OH st. The

Page 13 of 42

RSC Advances

205	spectrum of α -lactose monohydrate had specific peaks at 4775 cm ⁻¹ due to 2 nd OT and
206	DF of CH st in a CH ₂ group, 5218 cm ⁻¹ due to 1^{st} OT of OH st and 6300-6700 cm ⁻¹ due
207	to 1^{st} OT of OH st. The spectrum of HPC had specific peaks at 4775 cm ⁻¹ due to 2^{nd}
208	OT and DF of CH st in a CH ₂ group, 5218 cm ⁻¹ due to 1^{st} OT of OH st, 5843 cm ⁻¹ due to
209	1^{st} OT of CH st of CH ₃ in a propyl group, 6700-7000 cm ⁻¹ due to 1^{st} OT of OH st and at
210	8500-8600 cm ⁻¹ due to 2^{nd} OT CH st of CH ₃ in a propyl group.
211	Figure 3 shows the change of MSC-corrected NIR spectra of the powder sample with
212	10% HPC binder solution during the fluid-bed granulation process. In the mixing
213	process for 5 min, NIR spectra were not significantly changed as determined by visual
214	observation. In the granulation process for 5-25 min, the whole NIR spectral intensity
215	increased with an increase of the sprayed binder solution amount, meaning that the
216	granular size increased with an increase of the binder solution amount. In the final
217	drying process for 25-35 min, the absorption peak at around 5200 cm ⁻¹ due to free water
218	decreased over time due to drying of water in the granules.
010	

219

220 Development of calibration models to predict water content and D50 of the granules

Pharmaceutical properties of fluid-bed granules, such as mean particle size, particle
size distribution, porosity and granular strength, might differ among batches based on

223	granulation conditions, such as binder solution conditions, agitation rate, temperature
224	and amount of air. The calibration models to evaluate water content and D50 of the
225	granules during the granulation process were, therefore, developed based on 108 NIR
226	spectra by using the PLS method involving various pre-treatment functions.
227	Table 3 shows the effect of pre-treatments on chemometric parameters to predict
228	water content and D50 of the granules obtained by fluid-bed granulation with various
229	binder concentration solutions. The result indicated that the minimum SEV value by
230	the leave-one-out method could thus be realized by using the best calibration model for
231	the analysis of NIR spectra after suitable pre-treatment. The orders of SEV for
232	calibration models to predict water content and D50 were MSC <snv<2<sup>nd<nor<non< td=""></nor<non<></snv<2<sup>
233	and MSC <nor<2<sup>nd<snv<non, best="" calibration="" models="" predict<="" respectively.="" td="" the="" to=""></snv<non,></nor<2<sup>
234	water content and D50 were by MSC treatment, and consisted of 5 and 8 principal
235	components involving 98 and 99% cumulative variance, respectively. Additionally,
236	the results of r-Val and PRESS-Val evaluated by the leave-one-out method also
237	supported the assertion that the best calibration models were by MSC.
238	Finally, the orders of SEC for the calibration models to predict water content

240 PRESS-Cal had almost the same tendency. The r-Cal of the models to predict water

239

and D50 were MSC<SNV<2nd<NOR<NON and MSC<NOR<2nd<SNV<NON, and the

241	content and D50 were 0.9903 and 0.9613, respectively, indicating that the best
242	calibration models for water content and D50 were by MSC.
243	
244	Validation of the best fitted calibration models
245	To validate the created PLS calibration models to predict water content and
246	D50 of the granules, the other 108 NIR spectra as an external validation set were
247	applied to each calibration model. The PRESS and SEP of the calibration models were
248	calculated based on the external validation data sets and are summarized in Table 4.
249	The SEP values for water content and D50 of the granules obtained by MSC
250	pretreatments were sufficiently small.
251	Figure 4 shows the relationships between predicted and actual water content
252	and D50 of the granules based on validation NIR spectral data sets by the best
253	calibration model. The plots for water content and D50 gave a straight line (r-Val were
254	0.9903 and 0.9613) with slopes of 0.9807 and 0.9241 and Y-intercepts of 0.046% and
255	13.61 μ m, indicating that the best calibration models by MSC had a significantly linear
256	relationship with high repeatability.
257	

258 Science background of PLS calibration models to predict pharmaceutical properties of

259 <u>the granules</u>

260	PLS regression is effective in extraction of feature and regularity, and modeling of
261	the large numerical data. However, the disadvantages of PLS regression are the
262	difficulty of interpretation of the factors, and that it is necessary to determine the
263	number of factors to be used. Therefore, in order to prove the validity of the PLS
264	models to predict the water content and D50, were examined for evidence of the
265	regression vectors, respectively.
266	Figure 5-(a) shows that the regression vector for water content had positive peaks at
267	4998 cm ⁻¹ due to OH st bonded, at 5276 cm ⁻¹ due to OH st free water, at 7004 cm ⁻¹ due
268	to OH st 1 st OT, and at 11,500 cm ⁻¹ due to CH st 3 rd OT. In contrast, the negative peaks
269	were at 4289 cm ⁻¹ due to CH st and CH df and at 4690 cm ⁻¹ due to NH st 2^{nd} OT. All
270	positive peaks were related to hydrophilic groups such as OH group or free water, since
271	the water interacted with hydrophilic functional groups, so it seemed that the peak
272	intensity of hydrophobic groups was comparatively decreased.
273	On the other hand, Figure 5-(b) shows that the regression vector for D50 had positive
274	peaks at 4350 cm ⁻¹ due to NH st, at 6788 cm ⁻¹ due to NH st 1 st OT and at 8824 cm ⁻¹ due

to CH st 2^{nd} OT. The negative peaks were at 4227 cm⁻¹ due to CH df 2^{nd} OT, at 4998

The vector for D50 indicated that both positive and negative peaks were not significantly related to the peaks due to an OH group. The peaks in the vector did not match the peaks in the actual NIR profiles, meaning that the peaks in the vector were related to the baseline shifting. It is well known that physical information of particle size reflects the NIR baseline, and there is a linear relationship between height of the baseline and particle size.²⁷

Figure 6 shows the loading vectors of calibration models for water content and D50 284of the granules. In the loadings for water content (Figure 6-a), the PC1 had a positive 285peak at 5214 cm⁻¹ due to OH st and free water, and at 7096 cm⁻¹ due to OH st 1st OT, 286but the PC2 had positive peaks at 6017 cm⁻¹ due to CH st of 1st OT and at 8810cm⁻¹ due 287to CH st of 2nd OT, meaning that the PC1 loading was due to free water and the PC2 288was similar to acetaminophen. Since the percent valances for PC1 and PC2 were 76.3 289and 9.42%, respectively, PC1 due to additive water was a major component. 290In contrast, PC2 was due to the other functional chemical groups of acetaminophen, which 291292were a minor component.

RSC Advances Accepted Manuscript

RSC Advances

293	In the loadings for the D50 (Figure 6-b), the PC1 also had positive peaks at 5245
294	cm ⁻¹ due to OH st, and free water, and at 7066 cm ⁻¹ due to OH st 1 st OT, but the PC2
295	had positive peaks at 5986 cm ⁻¹ due to CH st of 1 st OT and at 8810cm ⁻¹ due to CH st of
296	2^{nd} OT, and a negative peak at 5183 cm ⁻¹ due to OH st bonded. Since the percent
297	variances for PC1 and PC2 were 62.2 and 21.8%, respectively, the PC1 and PC2
298	loading might be due to free water and interaction peaks with the other functional
299	chemical groups of acetaminophen, respectively. The particle size of the granules
300	increased in proportion to the additive water amount, but their contribution in the
301	loading vector for the calibration model was not so great, as shown by the percent
302	variance of PC1 and PC2.
303	Figure 7 shows the relationships between PC1 and PC2 for water content and D50 of
304	the granules. In the score plot profiles to predict the water content and D50, PC1 and
305	PC2 indicated the amount of free water and the other chemical functional groups of API,

as shown in the result of loading vectors in Figure 6. The profiles for D50

- 307 significantly depended on the amount of water in binder solutions.
- 308

309 Prediction of water content and D50 of the granules during fluid-bed granulation

310 process

328

processes.

RSC Advances

311	Figure 8-a shows the predicted water content-time profiles during all fluid-bed
312	granulation processes; the water content increased during the granulation process and it
313	decreased during the drying process. The predicted water contents fitted very well to
314	actual values of sampling granules in all processes. The maximum water content in
315	the processes using 8.5 and 7.5% binder solutions was around 6-7%, but that using 10%
316	binder solution was around 3%. Total amount of water added for the 7.5%, 8.5% and
317	10% of binder solutions was approximately 24%, 22% and 19% of the total weight
318	respectively and differ only slightly. However, the water content for 10% of binder
319	solution was almost half and significantly small compared to the other solutions.
320	Drying rate of binder solution was inverse proportion with their concentration, since
321	viscosity of polymer solution was proportional with their concentrations; therefore,
322	drying rate for 10% HPC granulation is slower than the others. This result indicated
323	that the maximum water contents depended on a balance of spraying and drying rates of
324	water in the fluid-bed chamber, and affected the viscosity of the binder solution.
325	Figure 8-b shows the predicted D50-time profiles; the D50 increased during the
326	granulation process and then remained constant during the drying process. The
327	predicted D50 profile fitted very well to the actual values of sampling granules in all

The result indicated that the final D50 of granules increased with

329	decreasing binder concentration and/or increasing of spray speed. Total amount of
330	water added for the 7.5%, 8.5% and 10% is approximately 24%, 22% and 19% of the
331	total weight respectively and differ only slightly. However, the water content for 10%
332	binder concentration is significantly small (almost half) compared to the other
333	concentrations. Can the authors elaborate on the possible reason/explanation for this
334	finding.
335	Figure 9 shows visual observation of the powder samples during granulation using
336	10% HPC solution. In the sample for 5 min, powder particles of less than 20 μm in
337	diameter were observed, and the powder was aggregated and formed wet-granules of
338	50-200 μm in diameter for 16 min, and then the samples for 35 min were granules of
339	100-250 μm in diameter.
340	Figure 10 shows the SEM observations of the granules obtained with 7.5, 8.5 and
341	10% HPC solutions. The granules obtained using 10% HPC solution had more
342	irregular surfaces and particle shapes with a wide particle size distribution, while
343	those using 7.5 and 8.5% HPC solutions (water- rich solutions) had smooth surfaces
344	and a narrow particle size distribution.
345	
346	Conclusion

347	The present study demonstrated the possibility of using NIR spectroscopy to
348	predict the water content and D50 of acetaminophen formulation granules during
349	mixing, granulation and drying processes in a laboratory-sized fluid-bed granulator.
350	Binder solution concentration might be used to control the size of the granules.
351	Accurate calibration models to predict water content and D50 were established, and
352	their chemometric parameters exhibited chemical interaction between additive water
353	and powder solids. Since this technique provides better understanding and monitoring
354	of fluid-bed granulation, real-time release monitoring of fluid-bed granulation by NIR
355	very important for product quality.
356	
357	Acknowledgement
358	The authors wish to thank Mr. Takashi Sato, CAMO Software Japan Co. Ltd. for
359	technical advice on the chemometrics.
360	
361	Declaration of interest: Supported by Grants from Musashino Joshi-Gakuin.

362

363

364 References

- 365 1. G. Zografi States of water associated with solids. *Drug Dev Ind Pharm.* 1988, 14,
 366 1905-1926.
- 367 2. H. Brittain, Methods for the characterization of polymorphs and solvates. In: H.
- Brittain, ed. Polymorphism in pharmaceutical solids. 1st ed. New York: Marcel Dekker
 Inc, 1999, 227-278.
- 370 3. S.L. Cantor, L.L. Augsburger, S.W. Hoag, A.H. Gerhardt, Wet Granulation. In: Hoag,
- 371 S.W., Augsburger, L.L. (Eds.), Pharmaceutical Dosage Forms: Tablets Volume I., Third
- Edn., 2008, Informa Healthcare, New York.
- 4. T. Schaefer, O. Wørt, Control of fluidized bed granulation III. Effect of inlet air
- temperature and liquid flow rate on granule size and size distribution, Control of
- moisture content of granules in the drying phase. *Arch Pharm Chem Sci.* 1978, 6, 1-13.
- 376 5. T. Abberger, J. Raneburger, H. Egermann, Instrumentation of laboratory-scale
- 377 fluid-bed granulator for critical moisture content and of free moisture. Sci Pharm. 1996,
- 378 64, 255-262.
- 379 6. K. Wöstheinrich, P. Schmidt, Evaluation and validation of a fully instrumented
- 380 Hüttlin HKC 05-TJ laboratory-scale fluidized bed granulator, Drug Dev Ind Pharm.
- 381 2000, 26, 621-633.

382	7.	"Process	Analytical	Technology	(PAT)	Initiative",	U.S. Food	and Drug
				<u> </u>	· · · ·	,		0

383 Administration Center for Drug Evaluation and Research Home Page

384 (http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProducts

- 385 <u>andTobacco/CDER/ucm088828.htm</u>).
- 386 8. "International Conference on Harmonization of Technical Requirements for
- 387 Registration of Pharmaceuticals for Human Use. Pharmaceutical Development Q8
- 388 (R2)". Accessed August 2009, at: <u>http://www.fda.gov/downloads/Drugs/</u>
- 389 GuidanceComplianceRegulatoryinformation/Guidances/ ucm073507.pdf.
- 390 9. L.X. Yu, Pharmaceutical quality by design product and process development,
- 391 understanding and control, *Pharm. Res.* 25 (10), 781–791 (2008).
- 392 10. T. De Beer, A. Burggraeve, M. Fonteyne, L. Saerens, J.P. Remon and C. Vervaet,
- 393 Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical
- 394 production processes, Int. J. Pharm, 2011, 417(1-2), 32–47.
- 395 11. K. R. Beebe , W. W. Blaser, R. A. Bredeweg, J. Paul Chauvel Jr., R. S. Harner, M.
- 396 LaPack, A. Leugers, D. P. Martin, L. G. Wright, E. Deniz Yalvac, Process analytical
- 397 chemistry. Anal Chem. 1993, 65, 199R-216R.
- 398 12. J. Workman, A review of process near infrared spectroscopy: 1980-1994. J Near
- 399 Infrared Spectrosc. 1993, 1, 221-245.

13. T. Axon, R. Brown, S. Hammond, S. Maris, F. Ting, Focusing near infrared

400

spectroscopy on the business objectives of modern pharmaceutical production. J Near 401 Infrared Spectrosc. 1998, 6, A13-A19. 402 14. P. Frake, D. Greenhalgh, S. Grierson, J. Hempenstall, D. Rudd, Process control and 403end-point determination of a fluid bed granulation by application of near infra-red 404405 spectroscopy. Int J Pharm. 1997, 151, 75-80. 15. J. Rantanen, S. Lehtola, P. Rämet, J.P. Mannermaa, J. Yliruusi, On-line monitoring 406of moisture content in an instrumented fluidized bed granulator with a multichannel 407 NIR moisture sensor. Powder Technol. 1998, 99, 163-170. 408 16. P. Luukkonen, J. Rantanen, K. Mäkelä, E. Räsänen, J. Tenhunen, J. Yliruusi, 409 410 Characterization of silicified microcrystalline cellulose and a-lactose monohydrate wet masses using near infrared spectroscopy. Pharm Dev Technol. 2001, 6, 1-9. 411 41217. E. Räsänen, J. Rantanen, A. Jørgensen, M. Karjalainen, T. Paakkari, J. Yliruusi, Novel identification of pseudopolymorphic changes of theophylline during wet 413granulation using near infrared spectroscopy. J Pharm Sci. 2001, 90, 389-396. 414 18. S. Delwiche, R. Pitt, K. Norris, Examination of starch-water and cellulose-water 415416 interactions with near infrared (NIR) diffuse reflectance spectroscopy. Starch/Stärke. 1991, 43, 415-422. 417

119	10 N Heigle	D M Kollera	ΡI	Glasserh	F I Muzzioh	IG	Khinasta	Quantitativa
418	19. N. Heigia.	. D. M. Kollera	. В. J.	Glasserb.	F. J. MUZZIOD.	J. U	. Kninasta.	Ouantitative

- 419 on-line vs. off-line NIR analysis of fluidized bed drying with consideration of the
- 420 spectral background, European Journal of Pharmaceutics and Biopharmaceutics, 2013,
- 421 85(3), Part B, 1064–1074.
- 422 20. J. Rantanen, O. Antikainen, J.P. Mannermaa, J. Yliruusi, Use of the near-infrared
- 423 reflectance method for measurement of moisture content during granulation. Pharm.
- 424 Dev. Technol. 2000a, 5, 209–217, <u>http://dx.doi.org/</u> 10.1081/PDT-100100536.
- 425 21. J. Rantanen, A. Jørgensen, E. Räsänen, P. Luukkonen, S. Airaksinen, J. Raiman, K.
- 426 Hänninen, O. Antikainen, J. Yliruusi, Process analysis of fluidized bed granulation.
- 427 AAPS PharmSciTech 2001, 2, 21, http://dx.doi.org/10.1208/pt020421.
- 428 22. A. Peinado, J. Hammond, A. Scott, Development, validation and transfer of a near
- 429 infrared method to determine in-line the end point of a fluidised drying process for
- 430 commercial production batches of an approved oral solid dose pharmaceutical product.
- 431 J. Pharm. Biomed. Anal. 2011, 54, 13–20, http://dx.doi.org/10.1016/j.jpba.2010.07.036.
- 432 23. J. Rantanen, M. Knskoski, J. Suhonen, J. Tenhunen, S. Lehtonen, T. Rajalahti, J.P.
- 433 Mannermaa, J. Yliruusi, Next generation fluidized bed granulator automation. AAPS
- 434 *PharmSciTech*, 2000b, 1, E10, http://dx.doi.org/10.1208/pt010210.
- 435 24. Rantanen, J., Jørgensen, A., Räsänen, E., Luukkonen, P., Airaksinen, S., Raiman, J.,

- 436 Hänninen, K., Antikainen, O., Yliruusi, J., 2001. Process analysis of fluidized bed
- 437 granulation. AAPS PharmSciTech 2, 21, http://dx.doi.org/10.1208/pt020421.
- 438 25. Software manual for Pirouette Ver. 3.11 (Infometrix Co., Woodenville WA).
- 439 26. M. Iwamoto, S. Kawano, J. Uozumi, Introduction of Near Infrared Spectroscopy,
- 440 Sachi Syobou Co., 1994.
- 441 27. M. Otsuka, Comparative Particle Size Determination of Phenacetin Bulk Powder by
- 442 Using Kubelka-Munk Theory and Principle Component Regression Analysis Based on
- 443 Near-Infrared Spectroscopy, Powder Tech., 2004, 141, 244-250.
- 444

445	Figure captions.
446	Figure 1. Lab-sized fluid-bed granulator equipped with reflectance NIR spectroscopy.
447	
448	Figure 2. NIR spectra of raw powder materials.
449	
450	Figure 3. Change of NIR spectra during granulation processes in fluid-bed granulator.
451	
452	Figure 4. Development of calibration model to predict water content and D50 by PLS.
453	
454	Figure 5. Change of NIR spectra and RV during granulation process.
455	
456	Figure 6. Loadings of PC1 and PC2 of granulation process.
457	
458	Figure 7. Change of PC1 and PC2 scores during granulation.
459	
460	Figure 8. Predicted water content and D50 during granulation processes.
461	
462	Figure 9. Visible observation of fluid-bed granulation process with 10% HPC solution.

463	
464	Figure 10. SEM observation of fluid-bed granules obtained using 7.5, 8.5 and 10% HPC
465	solutions.
466	
467	
468	Table 1. Granular formulation for fluid-bed granulation.
469	
470	Table 2. Spray conditions for fluid-bed granulation.
471	
472	Table 3. Chemometric parameters to predict water content and D50 by PLS in fluid-bed
473	granulation process.
474	
475	Table 4. Validation result for the best calibration models to predict water content and
476	D50 by PLS in fluid-bed granulation process.
477	
478	
479	
400	

Fig. 2.

254x190mm (96 x 96 DPI)

254x190mm (96 x 96 DPI)

254x190mm (96 x 96 DPI)

Fig. 6.

254x190mm (96 x 96 DPI)

254x190mm (96 x 96 DPI)

254x190mm (96 x 96 DPI)

After granulation for 1 min (mixing process).

After for 35 min (drying process).

After for 16 min (granulation process).

Fig. 9.(HPC 10%)

Fig. 10.

Table 1. Lab-sized formulation.

	Composition amount (g)	Composition rate (%)
Acetaminophen (AAP)	30.8	10
Crystalline α -lactose monohydrate (Lactose)) 188.4	61
Microcrystalline cellulose (MCC)	80.8	26
Hydroxypropyl cellulose (HPC)	7.9	3
Total	307.9	100

Table 2. Spray col	Table 2. Spray conditions of granulation.					
	10 %HPC	8.5 %HPC	7.5 %HPC			
Binder solution additives(g)	79	93	105			
HPC additives(g)	7.9	7.9	7.9			
Water additives(g)	71.1	85.1	97.1			
Spray speed(g/min)	3.95	4.64	5.26			
Spray time(min)	20	20	20			

Table 3.

Moist content								
Function	Factors	CV	SEV	Press Val	r Val	SEC	Press Cal	r Cal
Non	3	99.70	0.4412	1.694E+01	0.9774	0.4218	1.476E+01	0.9803
MSC	5	97.92	0.3259	9.242E+00	0.9877	0.2996	7.272E+00	0.9903
2nd	4	99.33	0.4034	1.416E+01	0.9811	0.3756	1.157E+01	0.9846
Nor	3	98.81	0.4260	1.579E+01	0.9789	0.3955	1.298E+01	0.9827
SNV	4	96.32	0.3388	9.987E+00	0.9867	0.3167	8.224E+00	0.9891
D50								
Function	Factors	CV	SEV	Press Val	r Val	SEC	Press Cal	r Cal
Non	1	76.30	72.35	4.554E+05	0.6185	66.71	3.782E+05	0.6820
MSC	8	98.99	32.19	9.016E+04	0.9341	26.22	5.362E+04	0.9613
2nd	7	99.74	34.20	1.018E+05	0.9253	27.66	6.045E+04	0.9563
Nor	8	99.84	37.57	1.228E+05	0.9114	27.64	5.958E+04	0.9569
SNV	7	99.74	34.20	1.018E+05	0.9253	27.66	6.045E+04	0.9563

Table 4.

	Water content	D50
SEP	2.891E-01	2.483E+01
PRESS	7.272E+00	5.362E+04
r	0.9903	0.9613
Factors	5	8
Slope	0.9808	0.9242
Intercept	4.569E-02	1.361E+01
ModelESS	3.750E-02	1.986E-02