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Fluorescent chlorophyll catabolites (FCCs) are fleeting intermediates of chlorophyll breakdown, 
which is seen as an enzyme controlled detoxification process of the chlorophylls in plants. 
However, some plants accumulate large amounts of persistent FCCs, such as in senescent leaves 10 

and in peels of yellow bananas. The photophysical properties of such a persistent FCC (Me-sFCC) 
were investigated in detail. FCCs absorb in the near UV spectral region and show blue 
fluorescence (max at 437 nm). The Me-sFCC fluorescence had a quantum yield of 0.21 (lifetime 
1.6 ns). Photoexcited Me-sFCC intersystem crosses into the triplet state (quantum yield 0.6) and 
generates efficiently singlet oxygen (quantum yield 0.59).  The efficient generation of singlet 15 

oxygen makes fluorescent chlorophyll catabolites phototoxic, but might also be useful as (stress) 
signal and for defense of the plant tissue against infection by pathogens.  

Introduction 
 Breakdown of chlorophyll is a colorful process 
accompanying leaf senescence and fruit ripening.1-4 Basic 20 

features of this metabolically controlled degradation of the 
green plant pigment appear to be largely established.4,5 
Chlorophylls (a and b) are broken down in higher plants to 
colorless linear tetrapyrroles, most notably to the 
nonfluorescent chlorophyll catabolites (NCCs).6,7  A key 25 

intermediate, still formed in the chloroplast in this process, is 
the ‘primary’ fluorescent catabolite (pFCC, Scheme 1).8 
FCCs, such as pFCC, exhibit a characteristic blue 
luminescence.8,9 However, in most plants, FCCs exist only 
fleetingly, since they are imported into the vacuole,1,3 where 30 

they undergo acid-catalyzed isomerization to NCCs.10 The 

rapid degradation of the photoactive, colored chlorophylls to 
the colorless and basically photo-inactive NCCs shows the 
molecular features of a metabolic detoxification program.11 
Thus, the typical rapid disappearance of most FCCs 10 has also 35 

been suggested to serve the purpose of eliminating such still 
photoactive chlorophyll-derived pigments.4  
 Strikingly, in yellow banana peels FCCs accumulate, so 
that such bananas show blue fluorescence under UV 
illumination, observable by eye.9,12 A characteristic of the 40 

FCCs in banana peels is their propionic acid ester function. 
Esterification of FCCs inhibits their isomerization to NCCs 
and makes such ‘hypermodified’ FCCs (hmFCCs) 
persistent.9,13 Thus, the intriguing accumulation of hmFCCs in 
banana peels and in a variety of senescent leaves,14-16 could be 45 

explained by their chemical persistence.  

Scheme 1. Outline of chlorophyll breakdown in higher plants with structural formulas and names of key compounds (see refs.5,7,18 for more details). 
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On the other hand, NCCs and FCCs are candidates for 
biological roles,5,9,16-18 and the physiological impact of the 
puzzling accumulation of FCCs remains to be 
investigated.5,9 Relevant clues in this respect are to be 
expected from their largely unexplored photochemical 5 

properties. Thus, as reported here, we prepared Me-sFCC 
(Scheme 1), the artificial persistent methyl ester analog of 
natural hmFCCs from bananas,17 and studied its 
photochemistry. 

Results and Discussion 10 

 Me-sFCC, the methyl ester of the ‘secondary’ FCC 
(sFCC) from banana peels is a persistent hmFCC, identified 
in extracts from banana peels (as Mc-FCC-71).17 In these 
extracts Me-sFCC was formed from spontaneous, slow 
trans-esterification of natural hmFCCs with the solvent 15 

methanol.17 In the present work, Me-sFCC was prepared by 
deliberate methanolysis of two anomeric hmFCCs (named 
Ma-FCC-63 and Ma-FCC-64), which are abundant in 
senescent leaves of the banana plant (Musa acuminata).16  
 The absorption spectrum of Me-sFCC in ethanol (EtOH) 20 

solution is shown in Fig. 1. In contrast to chlorophyll, Me-
sFCC does not absorb light in the visible spectral region, 
since the conjugated chromophore of the chlorophylls is 
disrupted at three key positions. Two main chromophores of 
Me-sFCC are highlighted, which both absorb in the UV 25 

spectral region (see Fig. 1). 
 

 
Fig. 1 Absorption spectrum of Me-sFCC in EtOH at room temperature.  
The band at 360 nm was assigned to the chromophore of a conjugated 30 

system (marked in red) extending over the two rings (C and D) in the 
‘southern’ moiety.8,19 The absorption band at 318 nm was assigned to 
the α-formyl-pyrrole chromophore (ring B, marked in blue).6,8   

 Photo-excitation of an ethanolic solution of Me-sFCC at 
360 nm led to blue fluorescence with a maximum at 437 nm 35 

(Fig. 2b, solid line).  The excitation spectrum for this 
fluorescence (Fig. 2a) matched largely (but not completely) 
the absorption spectrum (see Fig.1 and Fig. 2b, dashed line). 
The absorbance at 318 nm is due to the non-luminescent α-
formyl-pyrrole moiety (ring B): photonic excitation of ring 40 

B of Me-sFCC appears to contribute significantly less at 
room temperature, than at 77 K, to the observed 
fluorescence emission of Me-sFCC, indicating incomplete 
transfer of electronic excitation to the luminophore of Me-

sFCC. The fluorescence excitation and absorption spectra of 45 

Me-sFCC in frozen matrix match well (Fig. 2c) which 
suggests efficient energy transfer from the α-formyl-pyrrole 
ring to the main chromophore at low temperature. In frozen 
solution, at 77 K, the vibrational bands of the fluorescence 
of Me-sFCC became observable (Fig. 2c,d).  The singlet 50 

excited state energy of Me-sFCC was estimated as 
amounting to 308 kJ/mol, from the interception of the low 
temperature fluorescence and excitation spectra. Using 9,10-
diphenylanthracene as standard,20 the quantum yield of 
room temperature fluorescence was determined (Φf = 0.21).  55 

The remaining fraction of the singlet excited state (0.79) 
would undergo radiation-less deactivation to the ground 
state, photochemical reactions, such as double-bond cis-
trans isomerization (not documented, so far, for an FCC), or 
intersystem cross into the triplet state. 60 

 
Fig. 2  Fluorescence excitation (blue; a, c) and emission (red; b, d) 
spectra of Me-sFFC in EtOH at room temperature (a, b) and EtOH 
glass at 77 K (c, d).  λex = 360 nm. The absorption spectra of 1 at room 
temperature (a) and at 77 K (c) are shown as black dashed lines. 65 

 When frozen in a solid matrix (77 K) radiation-less 
deactivation and cis-trans isomerization would be inhibited 
by the rigid matrix and become insignificant.  Therefore, 
deactivation of the excited singlet state of Me-sFCC at 77 K 
would be dominated by fluorescence and intersystem 70 

crossing.  Accurate fluorescence quantum yields are 
technically difficult to measure at 77 K.  However, we were 
able to measure changes in fluorescence lifetimes from 
room temperature to 77 K which could be used to estimate 
the fractions of decay pathways of the singlet excited state.  75 

At room temperature (and in both, EtOH and perdeuterated 
ethanol) the fluorescence decayed mono-exponentially with 
a lifetime of τf = 1.6 ns whereas at 77 K the lifetime 
increased to 3.1 ns.  From this increase of the lifetime, the 
fluorescence quantum yield can be estimated to be about 0.4 80 

at 77 K.  Thus, the quantum yield of intersystem crossing 
from the singlet excited state to the triplet state is estimated 
to be as high as 0.6.    
 We note that the fluorescence lifetime of 1.6 ns is too 
short to be efficiently quenched by molecular oxygen in air 85 
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saturated solutions.  However, triplet states are generally 
long-lived and are efficiently quenched by atmospheric 
oxygen, providing an effective path for the generation of 
1O2.21 
 The persistent Me-sFCC turned out to be a very effective 5 
1O2 sensitizer. At room temperature, the characteristic 
emission of 1O2 was directly observed at 1270 nm (Fig. 3).  
Excitation of Me-sFCC in oxygen saturated perdeuterated 
ethanol solution produced the emission spectrum shown in 
Fig. 3 (left).  There is only negligible emission when 10 

oxygen is removed from the solution by purging with argon. 
Based on these results we conclude that a long-lived triplet 
of Me-sFCC is produced by intersystem crossing at room 
temperature, which then sensitizes the formation of a 
significant amount of 1O2.  To quantify the amount of 1O2 15 

generated, the quantum yield was determined.  With pulsed 
laser excitation at 355 nm and using phenalone (Φref = 0.98) 
as standard22 a 1O2 quantum yield of 0.59 was obtained for 
Me-sFCC from the phosphorescence intensity monitored at 
1270 nm at the end of the laser pulse. Thus, the quantum 20 

yields of 1O2 formation (Φ1O2 = 0.59) and of intersystem 
crossing from the singlet excited state to the triplet state 
(Φisc = 0.6) are estimated to match quantitatively. 
 

 25 

Fig. 3  Left: Phosphorescence of 1O2 generated by photo-excitation of 
Me-sFCC in oxygen saturated (red) and deoxygenated (black) 
perdeuterated ethanol solution under steady-state excitation at 360 nm.  
Right: decay trace of 1O2 monitored at 1270 nm after pulsed laser 
excitation at 355 nm. 30 

 As reported here, the blue fluorescent catabolite Me-
sFCC exhibits a high quantum yield of fluorescence, and is 
an efficient sensitizer of the formation of 1O2, as well. The 
first finding justifies, indeed, the qualification of Me-sFCC 
as a ‘fluorescent’ chlorophyll catabolite (FCC).8,17 The 35 

remarkable bright ‘blue glow’ of yellow bananas was shown 
to have a natural endogenous basis, and to be due, largely, 
to the strongly blue fluorescent hmFCCs.9 This striking 
visual effect was suggested to be relevant as optical feature 
of the fruit, visible in the near UV-range, that may help to 40 

specifically attract certain frugivors.9,12  
 As also shown here, Me-sFCC exhibits a remarkable 
capacity for photosensitization of the formation of 1O2 in 
oxygenated solution: 1O2 is estimated to be formed with 
nearly 100% quantum yield from the triplet excited state of 45 

Me-sFCC. This chemical feature raises several questions in 
the context of biological issues of chlorophyll breakdown. 
The “cell poison” 1O2 leads to degradation of vital 
constituents in plant cells, and induces stress.23-25  As 
photosensitizers of the formation of 1O2, natural FCCs 50 

would be phototoxic, and have thus harmful effects for the 
vitality of a plant cell. FCCs are indeed generally eliminated 
rapidly in senescent leaves by isomerization to NCCs, which 
is seen as the ‘last’ stage of the important ‘detoxification’ 
path of chlorophyll breakdown.1,3 Along these lines, the 55 

accumulation in defective mutants of Arabidopsis thaliana 
of red chlorophyll catabolite (RCC),26 the direct natural 
precursor of pFCC,5,8 was associated with the presumed 
related phototoxic properties of RCC.27 Clearly, in contrast 
to RCC and the known phototoxic green tetrapyrroles, such 60 

as chlorophyll a and pheophorbide a,28 which generate 
singlet oxygen with quantum yields of Φ1O2 = 0.24 and Φ1O2 
= 0.59, respectively,29,30 the colorless FCCs absorb only a 
minor fraction of solar irradiation.  
 In striking opposition, apparently, to the postulated basic 65 

role of chlorophyll breakdown in the ‘detoxification’ of the 
green plant pigments,1,3,28 large amounts of persistent 
hmFCCs are found e.g. in banana fruit9 and in some 
senescent leaves (such as of bananas14,16 and of the Peace 
Lily, a tropical evergreen15). Efficient formation of 1O2 is to 70 

be expected with near UV-light as an important 
consequence of hmFCC-accumulation in living plant cells. 
This aspect raises questions as to the intracellular location 
of hmFCCs and their eventual binding and possible 
protection by macromolecules. Indeed, while hmFCCs are 75 

presumably biosynthesized in the cytosol of the aging plant 
cells, their intracellular transport and further location still 
are elusive.5 Interestingly, the aggressive chemical 1O2 is 
not only a general “cell poison” in the plant cell. 1O2 is also 
useful for defense against infection by pathogens,31,32 and it 80 

is also a noted diffusible, yet only fleetingly existent 
molecular signal in plants.23,24,33 Thus, the discovery of the 
efficient FCC-sensitized generation of 1O2 in oxygenated 
solution induces basic questions on the fate and biological 
roles of colorless chlorophyll catabolites, and invites studies 85 

of in-vivo effects of FCCs in plant tissue. 
 

Experimental  
Spectroscopy and measurements: UV/vis-spectra: Agilent 
8453 or Hitachi U 3000 spectrometers. CD-spectra JASCO 90 

J715 spectrometer.  Nuclear magnetic resonance (1H-NMR) 
spectra: Bruker 300 spectrometer at 300 K. For absorbance 
measurements in frozen matrix at 77 K, a liquid-N2 cooled 
Oxford cryostat was used. Steady-state luminescence 
spectra were recorded on a Fluorolog-3 fluorometer 95 

(HORIBA Jobin Yvon).  Fluorescence lifetimes were 
measured by time correlated single photon counting on an 
OB920 spectrometer (Edinburgh Analytical Instruments).  
All absorbance and fluorescence measurements were 
performed in 1×1 cm quartz cells. Singlet oxygen 100 

phosphorescence measurements were performed on a 
modified Fluorolog-2 spectrometer (HORIBA Jobin Yvon) 
in conjunction with a NIR sensitive photomultiplier tube 
(H9170-45, Hamamatsu).34 A 450-W Xe was use for steady-
state excitation to record singlet oxygen phosphorescence 105 

spectra and a Spectra Physics GCR-150-30 Nd:YAG laser 
(355 nm, ca. 5 mJ/pulse, 5 ns) was used for pulsed 
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excitation to collect phosphorescence decay kinetics at 1270 
nm. 
Materials: Me-sFCC was obtained from partial synthesis. 
All other materials were purchased from commercial 
sources and used as received. 5 

Preparation of Me-sFCC: a lyophilized sample of the 
epimeric Ma-FCC-63 and Ma-FCC-64 (obtained in roughly 
equal amounts by HPLC-purification of a banana leaf 
extract) was dissolved in 5 mL of MeOH (HPLC grade, 
stored over Å molecular sieves), then left to stir under 10 

protection from light at room temperature. The light yellow 
solution turned to orange color overnight, and accumulated 
two non-polar FCCs according to HPLC analysis (using an 
RP-18 column). After a reaction time of 15.5 h, the mixture 
was frozen using liquid nitrogen and dried by lyophilization 15 

under high vacuum. The raw reaction mixture was purified 
by HPLC (solvent composition: solvent A = 20 mM 
NEt3.H3PO4 (pH 7.0); solvent B = MeOH; A/B = 50/50 
from 0 to 15 min; from 15 to 45 min: constant gradient from 
A/B = 50/50 to 40/60; followed by washing steps). Two 20 

major non-polar fractions with retention times (tR) of 40.1 
and 46.4 min were isolated by semi-preparative HPLC. The 
two FCC fractions were isolated and identified as isomeric 
FCC methyl esters by mass spectrometry and NMR-
spectroscopy. Me-sFCC, the less polar fraction (tR = 46.4 25 

min), was identified with Mc-FCC-61 from extract of 
banana peels (by UV/Vis-, CD-, 1H-NMR- and mass-
spectra),17 and was used for the photochemical study 
reported here.  
 30 
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