Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Design and Synthesis of Imidazo[1,2-α][1,8]naphthyridine Derivatives as Anti-HCV Agents via Direct C-H Arylation[†]

Shengdian Huang,^{§a,} Jie Qing,^{§b,c} Shuo Wang,^a Huan Wang,^a Linqi Zhang^{*b} and Yefeng Tang^{*a}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

RO8191 represents a newly identified small-molecule IFN- α substitute that displays potent anti-HCV activity. In this communication, we reported the design and synthesis of two series of imidazo[1,2- α][1,8]naphthyridine derivatives as

- ¹⁰ RO8191's analogues via direct C-H arylation approach. Notably, by adjusting the reaction conditions, we could achieve the two series of analogues via regioselective single- and double-arylations, respectively. The anti-HCV activities of the synthesized compounds were evaluated with the HCV cell culture ¹⁵ system, and the preliminary results showed that some of them
- displayed promising anti-HCV activities.

Since its discovery in 1980s, hepatitis C virus (HCV) infection has evolved into one of the most aggressive diseases in the world.¹ It is estimated that 170 million individuals are infected

- ²⁰ with HCV, and many of them developed into severe live diseases, such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma, which led to significant annul death.² Over the past decades, the combination of pegylated interferon- α (IFN- α) and ribavirin has been used as the standard clinical therapy against
- ²⁵ chronic HCV infection.³ However, the efficiency of this therapy is compromised by several issues, including the modest sustained virological response (SVR), lack of compliance and severe side effects.⁴ Although two recently approved protease inhibitors, telaprevir and boceprevir, significantly improved the cure rates of
- ³⁰ HCV infection,⁵ many patients cannot tolerate the IFN-based therapy and remain untreated. Thus, there exists a high unmet need to develop IFN-free treatment regimens.

Recently, a small molecule named RO8191 (1) was identified by the scientists from Chugai Pharmaceutical Co. Ltd. through

³⁵ high throughput screening, which displays remarkable anti-HCV activity. ⁶ The mode of action study revealed that RO8191 exerted

^aThe Comprehensive AIDS Research Center, and The Department of Pharmacology and Pharmaceutical Sciences, School of Medicine,

40 Tsinghua University, Beijing 100084, China. Fax: +86 10 62797732; Tel:
 +86 10 62798236; E-mail: <u>yefengtang@tsinghua.edu.cn</u>;

^bThe Comprehensive AIDS Research Center, and The Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.

- 45 ^cTsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
 - [§]These authors contributed equally to this work

† Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See 50 DOI: 10.1039/b000000x/

A: RO8191 and reported analogue

B: our designed analogues and their synthetic strategies

Fig.1 A: Structure of RO8191 and reported analogue (2). B: Our designed analogues (3 and 5) and their synthetic strategies.

its anti-viral function by directly interacting with the type 1 IFN ss receptor to drive IFN-stimulated genes (ISG) expression, which then induced the anti-viral response of innate immune system. Therefore, RO8191 could be potentially utilized as IFN substitute in various IFN- α -based anti-viral regimens.

Attracted by its appealing nature, GSK performed a ⁶⁰ preliminary structure-activity relationship (SAR) study on RO8191. Over 100 analogues were reported, among which the structural variants on the A, B, C and D rings of RO8191 were systematically modified.⁷ In parallel with this work, we also launched a program with the long-term objective to develop new ⁶⁵ leads with more potent anti-HCV activity and favourable drug properties than RO8191. For this end, several series of RO8191 analogues were designed and synthesized,⁸ among which, structure **3** was particularly notable, since it bear a hetereocycle moiety on the C1 instead of C2 position of C ring, thus ⁷⁰ representing a new type of RO8191 analogue that has never been explored so far. Herein we report the efficient synthesis of a

arylation approach. Moreover, we also discovered that simply by adjusting the reaction conditions we could achieve another series 75 of RO8191's analogues, as represented by structure **5**, via

library of heterocycles bearing structure 3 via the direct C-H

Organic & Biomolecular Chemistry Accepted Manuscrip

This journal is © The Royal Society of Chemistry [year]

sequential arylations of C1-H and C4-H bonds. The anti-HCV activities of the synthesized compounds were evaluated using HCV cell culture system, which showed that some of them displayed promising results.

- ⁵ Over the past decades, transition metal-catalyzed C-H activation/functionalization has grown into a powerful tool for direct construction of carbon-carbon (C-C) bonds and carbon-heteroatom (C-X) bonds from simple C-H bonds.⁹ It not only shortens the steps of synthetic route, but also revolutionizes the
- ¹⁰ ways by which chemists think about the chemical reactivity and contrive the chemical synthesis, and thus it has found increasing applications in both academy and industry.¹⁰ We envisioned that the key structural element of **3**, featured a heterobiaryl scaffold, represented an ideal platform for implementing the direct C-H
- ¹⁵ arylation strategy. Indeed, both intramolecular and intermolecular biaryl couplings via C-H arylation have been well documented, although the intermolecular versions are usually more challenging, mainly because of the inherent reactivity and selectivity issues. In our scenario, although there are multiple C-
- $_{20}$ H bonds (C1-H, C2-H, C4-H, C5-H and C7-H) could be potentially activated, we envisioned that the favourable electronic nature of substrate 4^{11} as well as the potential chelation effect of N-9¹² might facilitate the C-H arylation to occur selectively at the C1 position.
- ²⁵ To test the above hypothesis, substrate **4** was prepared according to the literature procedure (see Supporting Information).¹¹ With **4** in hands, we initiated our study by performing the reaction with the conditions (PhI, Pd(OAc)₂/Ph₃P, KOAc, DMF, 130 °C, 3 h) employed in previous studies.¹³ To our ³⁰ delight, the desired product **3a** did generate in modest yield (36%,

Table 1. Condition screening of C-H arylation of 4

F ₃ C N	$\frac{F_3}{N} \frac{\text{PhI, P}}{\text{DMF, t}}$	d(OAc) ₂ /Ph ₃ P	R_1	3a : R ₁ = Ph, R ₂ = H 5a : R ₁ = Ph, R ₂ = Ph
Entry ^{a,b}	PhI (equiv.)	Base (equiv.)	Products	Yield ^c (%)
1	1.3	KOAc (1.0)	3a	36
2	1.3	AgOAc (1.0)	3a	30
3	1.3	K ₃ PO ₄ (1.0)	3a	21
4	1.3	Cs ₂ CO ₃ (1.0)	3a	34
5	1.3	K ₂ CO ₃ (1.0)	3a	45
6	1.3	$Ag_2CO_3(1.0)$	3a	85
7	2.0	Ag ₂ CO ₃ (2.0)	3a	60
			5a	24
8	2.0	Ag_2CO_3 (4.0)	5a	89

^a10% Pd(OAc)₂/Ph₃P were used. ^bThe reaction was run with 0.3 mmol of **4** in 1.0 ml DMF. ^cRefers to isolated yield.

entry 1, table 1), whose structure was unambiguously confirmed ⁴⁰ by the X-ray crystallographic study (Fig. 2).¹⁴ Notably, increasing the reaction time and temperature had little influence on the outcomes, leaving substantial amount of 4 recovered. Given that the base usually played a crucial role in such type of transformation,¹⁵ we then evaluated several commonly used bases ⁴⁵ in our case. Gratifyingly, it was shown that while AgOAc, K₃PO₄ and Cs₂CO₃ afforded inferior results (entries 2-4), K₂CO₃ gave a slightly improved yield (45%, entry 5). More strikingly, Ag₂CO₃ displayed superior reactivity to provide 4 in an excellent yield (85%, entry 6). Interestingly, we found that when 2.0 equiv. of 50 PhI and Ag₂CO₃ were employed, a new product (24%) was generated along with 3a (60%), whose structure was assigned to be the double-arylation product 5a (entry 7) based on spectroscopic studies (for details, see Supporting Information) and mechanism rationalization.¹⁶ This outcome, albeit unexpected, 55 stimulated us to explore the possibility of accessing another series of RO8191's analogues via the double C-H arylation approach. To achieve this goal, we turned to identify the conditions that could lead to 5a as the major product. Pleasingly, after several

tries, we found that simply increasing the usage of Ag_2CO_3 to 4.0 equivalents could dramatically improve the yield of **5a** to 89%. These discoveries were particularly notable, since it enabled the divergent synthesis of two different series of analogues of RO8191 from a common precursor, simply by adjusting the usage of the base and aryl iodide in the reaction.

65 Table 2. Scope of single C-H arylation^{a,b}

^aThe reaction was run with 0.164 mmol of **4** in 1.0 ml DMF. ^bRefers to isolated yield.

Biomolecular Chemistry Accepted Manuscrip **Organic &**

Fig. 2: X-ray crystal structure of 3a with ellipsoids set at 50% probability

2 | *Journal Name*, [year], **[vol]**, 00–00

This journal is © The Royal Society of Chemistry [year]

40

With the optimized conditions in hand, we then turned to explore the generality of the above transformations. First of all, the single C-H arylation was examined. As shown in Table 2, various aryl iodides bearing electron–withdrawing or electron-

- ⁵ donating groups could undergo the desired transformations smoothly, affording the corresponding products **3a-g** in good to excellent yields. Generally, the electron-deficient substrates (4-Cl, 4-COCH₃, 4-NO₂ and 4-CO₂CH₃, **3d-g**) provided better results than those electro-rich ones (4-CH₃ and 4-CH₃O, **3b-c**). In
- ¹⁰ addition, it was found that the steric effect had some influences on the results, with the *ortho*-substituted substrate **3i** giving a lower yield than the corresponding *para-* or *meta-*substituted ones (**3b** and **3h**). To further extend the substrate scope, some heterocyclic aryl iodides were also tried in the reaction, including
- 15 2-iodothiophene, 5-iodopyrimidine and 2-iodobenzo[d]oxazole. However, only moderate to low yields of the corresponding products (**3j-1**) were obtained.

Table 3. Scope of double C-H arylation^{a-c}

Condition A: Arl (2.0 equiv.), Pd(OAc)₂/Ph₃P (0.1 equiv.), Ag₂CO₃ (4.0 equiv.), DMF, 130 °C, 6-12 h Condition B: Ar₁I (1.3 equiv.), Pd(OAc)₂/Ph₃P (0.1 equiv.), Ag₂CO₃ (1.0 equiv.), DMF, 130 °C, 3 h; then Ar₂I (2.0 equiv.), Ag₂CO₃ (2.0 equiv.), 6-12 h

20 "The reaction was run with 0.164 mmol of 4 in 1.0 ml DMF. ^bCondition A were employed for synthesis of 5a-d and condition B for 5e-f; "Refers to isolated yield.

With the synthesis of mono-arylation product **3** secured, we next moved to synthesize the second series of analogues **5** via double C-H arylations. As shown in table 3, under the optimal ²⁵ conditions (entry 8, Table 1), several substituted aryl iodides, including 4-CH₃-, 4-CH₃O- and 4-NO₂-iodobenzenes, underwent the double arylations smoothly to afford the corresponding products **5b-d** in good to excellent vields. Notably, this

- transformation could be further extended to the synthesis of those ³⁰ compounds bearing two different aryl moieties on the C-1 and C-4 position. As the proof-of-concept cases, **5e** and **5f** were prepared by employing a slightly modified procedure, in which the two different aryl iodides were sequentially introduced into the reaction mixtures (for details, see Supporting Information).
- ³⁵ Notably, the operationally simple, one-pot double C-H arylations could be potentially applied to the rapid generation of a library of

RO8191's analogues with remarkably structural complexity and diversity, which is very crucial for the further biomedical investigations.^[17]

Fig. 3: The proposed mechanisms of single- and double C-H activation/arylations

On the basis of the aforementioned experimental results, the plausible mechanisms of the titled transformations are proposed, as depicted in the Figure 3. Thus, oxidative addition of Pd(0) with Ar₁I afforded the aryl-palladium halide species **A**, which then underwent the electrophilic palladation with **4** to generate the intermediate **B**. Deprotonation of **B** with the action of base led to the formation to give the single-arylation product **3** and Pd(0) catalyst. Apparently, when the second Ar₂I and excess amounts of base were employed, **3** could further undergo the second C-H arylation on C-4 position to provide **5**, via a similar catalytic cycle as described above.

55 **Table 4.** Anti-viral activity of **3a-l** and **5a-f** against HCV genotype 2a JFH-1 virus

No. of compounds	$EC_{50}\left(\mu M\right)^{a,b}$	No. of compounds	$EC_{50}\left(\mu M\right)^{a,b}$
3a	12.0	3k	>20
3b	9.9	31	>20
3c	10.3	5a	>20
3d	11.1	5b	>20
3e	12.0	5c	4.1
3f	8.2	5d	>20
3g	13.8	5e	>20
3h	2.6	5f	>20
3i	2.8	RO8191	0.18
3j	8.2		

^a Inhibitory concentration that reduced viral replication by 50%. B Each data point represents the average of three replicates in cell culture and the values of EC₅₀ was plotted by the GraphPad Prism 5 software. To determine the inhibitory activities of the two series of RO8191 analogues, we prepared the HCV cell culture system (HCVcc-hRluc-JFH1), HCV genotype 2a JFH-1 virus containing a humanized Rellina luciferase reporter gene (for experimental

- ⁵ details, see Supporting Information).^[18] The anti-HCV activities of the synthesized analogues were then evaluated using the HCV cell culture system, with RO8191 as positive control. The results were summarized in Table 4. As shown, most of the single arylation products (**3a-i**) displayed moderate inhibitory activity
- ¹⁰ against HCV (JFH-1, genotype 2a), with EC₅₀ values ranged from 2.8 to 13.8 μM. Among them, **3h** and **3i**, which bear meta- or otho-substituted aryl moiety, exhibited more potent activities than the para-substituted compounds (**3a-g**). Unexpectedly, **3j-l**, which have heterocyclic moiety on the C1 position, displayed lower or
- ¹⁵ no anti-viral activity. Furthermore, except for **5c**, all of the double arylation products (**5a**, **5b** and **5d-f**) were proved to be inactive at 20 μ M concentration.

Conclusion

In summary, we have developed an efficient approach for the $_{20}$ synthesis of two series of imidazo[1,2-a][1,8]naphthyridine derivatives as the analogues of RO8191, a newly discovered small-molecule IFN- α -substitute. The key element of the approach features a novel Pd-catalyzed regioselective single- or double-arylation. Preliminary biological evaluations revealed that $_{25}$ some of the synthesized compounds displayed promising anti-

HCV activities. Our investigations enrich the structure-activity relationship study on RO8191, and provide informative clue for the design and synthesis of next generation of RO8191's analogues as anti-HCV agents, which is underway in our laboratory and will be reported in due course.

Acknowledgements

This work was financially supported by the National Science of Foundation of China (21102081, 21272133), New Teachers' Fund for Doctor Stations (20110002120011), Scientific Research ³⁵ Foundation for the Returned Overseas Chinese Scholars, Ministry

of Education, and Beijing Natural Science Foundation (2132037).

Notes and references

- (a) S. L. Chen and T. R. Morgan, *Int. J. Med. Sci.*, 2006, **3**, 47-52;
 (b) D. Lavanchy. *Clin. Microbiol. Infect.*, 2011, **17**, 107–115.
- 40 2. (a) N. Hamdi, W. El-Akel, M. El-Serafy, G. Esmat, C. Sarrazin and A. I. Abdelaziz, *Intervirology*, 2012, **55**, 210-218; (b) H. B. El-Serag, *Gastroenterology*, 2012, **142**, 1264–1273; (c) J. F. Perz, G. L. Armstrong, L. A. Farrington, Y. J. Hutin and B. P. Bell, *J. Hepatol.*, 2006, **45**, 529–538.
- ⁴⁵ 3. For representative reviews, see (a) D. L. Ge, J. Fellay, A. J. Thompson, J. S. Simon, K. V. Shianna, T. J. Urban, E. L. Heinzen, P. Qiu, A. H. Bertelsen, A. J. Muir, M. Sulkowski, J. G. McHutchison and D. B. Goldstein, *Nature*, 2009, **461**, 399-401; (b) V. Suppiah, M. Moldovan, G. Ahlenstiel, T. Berg, M. Weltman, M.
- 50 L. Abate, M. Bassendine, U. Spengler, G. J. Dore, E. Powell, S. Riordan, D. Sheridan, A. Smedile, V. Fragomeli, T. Müller, M. Bahlo, G. J. Stewart, D. R. Booth and J. George, *Nat. Genet.*, 2009, **41**, 1100-1114; (c) Y. Tanaka, N. Nishida, M. Sugiyama, M. Kurosaki, K. Matsuura, N. Sakamoto, M. Nakagawa, M. Korenaga,
- 55 K. Hino, S. Hige, Y. Ito, E. Mita, E. Tanaka, S. Mochida, Y. Murawaki, M. Honda, A. Sakai, Y. Hiasa, S. Nishiguchi, A. Koike, I. Sakaida, M. Imamura, K. Ito, K. Yano, N. Masaki, F. Sugauchi, N.

Izumi, K. Tokunaga and M. Mizokami, *Nat. Genet.*, 2009, **41**, 1105-1109.

- 60 4. J. Czepiel, G. Biesiada and T. Mach, Pol. Arch. Med. Wewn., 2008, 118, 734-740.
 - 5. C. Sheridan, Nat. Biotechnol., 2011, 29, 553-554.
- H. Konishi, K. Okamoto, Y. Ohmori, H. Yoshino, H. Ohmori, M. Ashihara, Y. Hirata, A. Ohta, H. Sakamoto, N. Hada, A. Katsume, M. Kohara, K. Morikawa, T. Tsukuda, N. Shimma, G. R. Foster, W.
 - Alazawi, Y. Aoki, M. Arisawa and M. Sudoh, *Sci. Rep.* 2012, 2, 259, doi: 10.1038/srep00259.
 A. L. Banka, J. Botyanszki, E. G. Burroughs, J. G. Catalano, W. H.
 - A. L. Banka, J. Botyanszki, E. G. Burroughs, J. G. Catalano, W. H. Chern, H. D. Dickson, M. J. Gartland, R. Hamatake, H. Hofland, J. D. Keicher, J. B. Shotwell, M. D. Tallant, J.–P. Therrien and S. You, *PCT Int. Appl.*, WO2013059559 A2, 2013.
 - 8. Y. F. Tang, L. Q. Zhang, Y. G. Wang, J. Qing, S. D. Huang, *Faming Zhuanli Shenqing*, CN 103333168 A, 2013
- 9. For representative reviews on C-H activation and functionalization,
- see: (a) R. Giri, B.-F. Shi, K. M. Engle, N. Maugel and J.-Q. Yu, *Chem. Soc. Rev.*, 2009, 38, 3242 –3272; (b) D. A. Colby, R. G. Bergman and J. A. Ellman, *Chem. Rev.*, 2010, 110, 624 –655; (c) I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy and J. F. Hartwig, *Chem. Rev.*, 2010, 110, 890–931; (d) T. W. Lyons and M. S. Sanford, *Chem. Rev.*, 2010, 110, 1147–1169; (e) C.-L. Sun, B.-J. Li and Z.-J. Shi, *Chem. Commun.*, 2010, 46, 677–685; (r) C. S. Yeung and V. M. Dong, *Chem. Rev.*, 2011, 111, 1215–1292; (s) J. Wencel-Delord, T. Drcge, F. Liu and F. Glorius, *Chem. Soc. Rev.*, 2011, 40, 4740–4761.
- ⁸⁵ 10. For leading reviews on the application of C-H activation in synthesis of natural products and pharmaceuticals, see: (a) J. Yamaguchi, A. D. Yamaguchi and K. Itami, *Angew. Chem. Int. Ed.* 2012, **51**, 8960–9009; (b) D.Y.-K. Chen and S. W. Youn, *Chem. Eur. J.*, 2012, **18**, 9452–9474; (c) L. McMurray, F. O'Hara and M. J. Gaunt, *Chem. Soc. Rev.*, 2011, **40**, 1885–1898; (d) J. Wencel-Delord
- and F. Glorius, *Nat. Chem.*, 2013, **5**, 369-375.
- It was documented that the most nucleophilic position of imidazo[1,2-α][1,8]naphthyridine was the C-1 position. For reference, see: A. Gueiffier, H. Viols, Y. Blache, J. P. Chapat, T. Olivier, C. Jean, G. Florence, G. Grassy and G. Dauphin, J. *Heterocyclic. Chem.*, 1997, 34, 765-771.
- 12. P. Daw, T. Ghatak, H. Doucet and J. K. Bera, *Organometallics*, 2013, **32**, 4306–4313.
- a) M. S. Jensen, R. S. Hoerrner, W. Li, D. P. Nelson, G. J. Javadi, P.
 G. Dormer, D. Cai and R. D. Larsen, *J. Org. Chem.*, 2005, **70**, 6034-6039; b) W. Li, D. P. Nelson, M. S. Jensen, R. S. Hoerrner, G. J. Javadi, D. Cai and R. D. Larsen, *Org. Lett.*, 2003, **5**, 4835-4837.
- CCDC 975880 (3a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- For representative examples, see (a) M. Lafrance, N. Blaquiere and K. Fagnou, *Chem. Commun.*, 2004, 24, 2874-2875; (b) T. Harayama, A. Hori, G. Serban, Y. Morikami, T. Matsumoto, H. Abe and Y. Takeuchi, *Tetrahedron*, 2004, 60, 10645-10649; (c) M. Leblane and K. Fagnou, *Org. Lett.*, 2005, 7, 2849-2852; (d) A. L. Bowie, C. C. Hughes and D. Trauner, *Org. Lett.*, 2005, 7, 5207-5209; (e) C. Verrier, T. Martin, C. Hoarau and F. Marsais, *J. Org. Chem.*, 2008, 73, 7383-7386; (f) M. Blanchot, D. A. Candito, F. Larnaud and M. Lautens, *Org. Lett.*, 2011, 13, 1486-1489; (g) A. D. Yamaguchi, D. Mandal, J. Yamaguchi and K. Itami, *Chem. Lett.*, 2011, 40, 555-557.
- 16. From the mechanistic point of view, the C4 position of imidazo[1,2-α][1,8]naphthyridine was the secondary most nucleophilic position (only next to the C-1 position), suggesting that the C4-H bond should be easy to undergo the C-H arylation.
 - V. Gembus, J.-F. Bonfani, O. Querolle, P. Jubault, V. Levacher and C. Hoarau, Org. Lett., 2012, 14, 6012–6015.
- (a) H. K. Cui, J. Qing, Y. Guo, Y. J. Wang, L. J. Cui, T. H. He, L. Q. Zhang and L. Liu, *Bioorg. Med. Chem.*, 2013, **21**, 3547–3554; (b) Y.
 Wu, Q. J. Liao, R. G. Yang, X. W. Chen and X. L. Chen, *Virus Research*, 2011, **155**, 406–414.

4 | *Journal Name*, [year], **[vol]**, 00–00

This journal is © The Royal Society of Chemistry [year]

Organic & Biomolecular Chemistry Accepted Manuscrip

Graphic Abstract

Two series of analogues of RO1891, a potent anti-HCV agent, were synthesized via Pd-catalyzed regioselective single and double C-H arylations, respectively.

