Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about *Accepted Manuscripts* can be found in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard **Terms & Conditions** and the **ethical guidelines** that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these *Accepted Manuscript* manuscripts or any consequences arising from the use of any information contained in them.

RSC Publishing

www.rsc.org/obc Registered Charity Number 207890 Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Rhodium-Catalyzed Three-Component Reaction of 3-Diazooxindoles with Indoles and Isatin-Derived Ketimines: A Facile and Versatile Approach to Functionalized 3,3',3''-Trisindoles

⁵ Liang-Yong Mei,^a Xiang-Ying Tang,^{b*} Min Shi^{ab*}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

A simple, facile and efficient Rh₂(OAc)₄-catalyzed three-component reaction of 3-diazooxindoles with indoles and isatin-derived N-Boc ketimines towards a variety of functionalized 3,3',3''-trisindoles in high yields with moderate to excellent ¹⁰ diastereoselectivities has been developed. This methodology provides an ideal approach for the direct introduction of indole and oxindole onto an isatin moiety at the 3-position.

Introduction

- Indole and oxindole derivatives are very useful building blocks ¹⁵ for the construction of biologically valuable indole-containing alkaloids.¹ Among them, the bisindoles and 3,3',3''-trisindoles are particularly intriguing for their widespread existence and exhibition of a wide range of biological activities such as antibacterial, antiprotozoal and anti-inflammatory behavior ²⁰ (Figure 1).² Therefore, developing efficient methodologies for the synthesis of such compounds is highly desirable. To this aspect, a variety of elegant synthetic protocols have been developed for the synthesis of bisindoles,^{2f,3} as well as for the construction of functionalized 3,3',3''-trisindoles involving metal-catalyzed ²⁵ reactions,⁴ Brønsted acid mediated processes,⁵ and other methods.⁶ Very recently, we reported a gold-catalyzed intramolecular cycloisomerization of 1,1-bis(indolyl)-5-alkynes,
- affording a convenient method for the synthesis of bis(indloe) derivatives with good regio- and enantioselectivity.⁷
- ³⁰ The reaction of α -diazo carbonyl compounds with transition metals is a well studied method for generation of transient electrophilic carbenoids, which can undergo an array of attractive transformations such as cyclopropanations, C-H or heteroatom-H insertions, cycloaddition reactions and ylide formations.⁸
- ³⁵ Recently, Hu⁹ reported that the carbenoids could react with a nucleophilic indole substrate and then generate a suspected zwitterionic intermediate.¹⁰ This intermediate could undergo either rapid proton transfer to afford C-H insertion products;^{3a-3d} or subsequently be trapped by electrophiles such as activated
- ⁴⁰ imines⁹ or ethyl glyoxylate.^{3e} As part of our ongoing interest in exploring novel routes for synthesis of bis- or trisindole derivatives, we considered to trap the zwitterionic intermediate

by using isatin as the electrophile. However, due to the rapid 1,2-⁵⁵ proton shift process,^{3a-3d} C-H functionalized byproduct **5** was obtained as the sole product (Scheme 1). Therefore, finding a suitable electrophile is vital for the three-component reaction. In this paper, we selected isatin-derived N-Boc ketimines as the electrophiles to react with 3-diazooxindoles and indoles as ⁶⁰ substrates, in expectation to afford the desired functionalized 3,3',3''-trisindoles (Scheme 1).

Figure 1. Bioactive compounds containing bisindoles and 3,3',3''-trisindoles.

Results and Discussion

Initial examinations using 1-benzyl-3-diazoindolin-2-one **1a**, 1-methyl-1*H*-indole **2a** and tert-butyl (1-benzyl-2-oxoindolin-3-70 ylidene)carbamate **3a** as the model substrates in the presence of Rh₂(OAc)₄ were aimed at screening the optimal conditions and the results are summarized in Table 1. Upon adding the solution of **1a** via a syringe over 1 h into the mixtures of **2a** and **3a** in the presence of 10 mol% Rh₂(OAc)₄, tert-butyl-1-benzyl-3-(1-75 benzyl-3-(1-methyl-1H-indol-3-yl)-2-oxoindolin-3-yl)-2-

oxoindolin-3-ylcarbamate **4a** was obtained in 96% yield with >20/1 dr in toluene at room temperature (Table 1, entry 1). While, if **1a** was added in one portion, the yield of **4a** decreased remarkably, though no significant change of diastereoselectivity 80 (Table 1, entry 2). To our delight, by reducing the catalyst

 ^a Key Laboratory for Advanced Materials and Institute of Fine Chemicals,
 ⁴⁵ East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.

 ^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Fenglin Road, Shanghai 200032, P. R. China. E-mail: <u>siocxiangying@sioc.ac.cn</u>, 50 <u>mshi@mail.sioc.ac.cn</u>, Fax: 86-21-64166128.

[†] Electronic Supplementary Information (ESI) available: Experimental procedures, characterization data of new compounds, and CCDC 942511. See DOI: 10.1039/b000000x/.

75

trisindoles

loading of Rh₂(OAc)₄ to 5 mol%, the corresponding product **4a** was still furnished in 94% yield with > 20/1 dr, which are chosen as the optimized conditions for this reaction (Table 1, entry 3). Moreover, when other isatin-derived ketimines such as N-PMP 5 **3b**, N-Ts **3c** or N-NHTs **3d** were employed as substrates, only the corresponding byproducts **5** were obtained, indicating that using tert-butyl (1-benzyl-2-oxoindolin-3-ylidene)carbamate **3a** as the electrophile was crucial for this three-component reaction (Table 1, entries 4-6).

10

Scheme 1. Proposed mechanism for the three-component reaction of 1a, 2a, and 3a.

¹⁵ **Table 1**. Optimization of Conditions for Rh₂(OAc)₄-Catalyzed Three-Component Reaction

^{a)} To the mixture of **2a** (0.1 mmol), **3** (0.12 mmol) and Rh₂(OAc)₄ (x mol%) in toluene (0.5 mL) was added a solution of 1a (0.12 mmol) in toluene (1.0 mL) via a syringe pump over 1 h. ^{b)} Isolated yield. ^{c)} The diastereometric ratios were determined by ¹H NNR spectroscopy. ^{d)} To the mixture of **2a** (0.1 mmol), **3** (0.12 mmol) and Rh₂(OAc)₄ (x mol%) in toluene (0.5 mL) was added a solution of 1**a** (0.12 mmol) in toluene (1.0 mL) in one portion.

With the optimized reaction conditions in hand, the substrate ²⁰ scope was next explored and the results are shown in Table 2. At first, using 1-methyl-1*H*-indole **2a** and tert-butyl (1-benzyl-2oxoindolin-3-ylidene)carbamate **3a** as the model substrates, we investigated different 3-diazooxindoles **1** bearing different *N*substituted groups (Table 2, entries 1-2). Both *N*-protecting ²⁵ methyl and methoxymethyl (MOM) groups were tolerable in this reaction, as for substrates **1b** and **1c**, giving desired adducts **4b** and **4c** in high yields with excellent diastereoselectivities (Table 2, entries 1-2). Next, various indoles **2** possessing different substituents on the aromatic ring and *N*-protecting groups were ³⁰ tested (Table 2, entries 3-9). A wide range of substituents R³

having different electronic properties at the C4', C5', or C6' position of indoles did not have significant electronic impact on

at using a as the in (Table as the in (Table as the in (Table as the in (Table as the in high yields along with excellent diastereoselectivities under the standard conditions (Table 2, entries 8-9). Several halide or dihalide substituted 3-diazooxindoles 1d-1f were also employed as substrates, and the expected functionalized 3,3',3''-trisindoles 45 **4k-4m** were aquired in satisfactory yields of 90-94% and good dr

values (Table 2, entries 10-12). Finally, an array of isatin-derived N-Boc ketimines that exhibit diverse electronic and steric effects were studied using 1-benzyl-3-diazoindolin-2-one **1a** and 1-methyl-1*H*-indole **2a** as the model substrates (Table 2, entries 13-

this reaction, smoothly affording the corresponding 3,3',3"-

35 diastereoselectivities (Table 2, entries 3-7). It is noteworthy that

several functional groups including nitrile (2c) or ester group (2e)

on the aryl residue are well tolerated (Table 2, entries 4 and 6). In

vields with

5/1->20/1

4d-4h in 70-97%

- ⁵⁰ 18). Different ketimines **3e-3j** with single or multiple diverse substituents R⁵ at the C5', C6', or C7' position of isatins could readily participate in this reaction, providing the desired products **4o-4s** in 91-94% yields with 5/1->20/1 diastereoselectivities and, no significant electronic effect was observed (Table 2, entries 14-
- ⁵⁵ 18). When a methyl group (R⁵) was introduced at the C4' position of isatin, the by-product 5 derived from the two-component reaction of 1a and 2a was formed in 86% yield rather then the desired product 4n, presumably because the electrophile trapping reaction was prohibited due to the steric hindrance of methyl
 ⁶⁰ group (Table 2, entry 13). Moreover, the relative configuration of 4a has been confirmed by its X-ray diffraction. The ORTEP drawing of 4a is shown in Figure 2 and its CIF data are summarized in Supporting Information.

Based on our experimental results and previously reported ⁶⁵ studies,⁸⁵ we tentatively proposed transition states I and II to explain the observed stereochemical outcome of the reaction (Scheme 2). In **TS-II**, the large steric repulsions between the sterically bulky rhodium species and the aromatic ring of isatin as well as the large N-Boc group and aromatic ring of indole ⁷⁰ disfavoured the formation of 4. But, in **TS-I**, the possible π - π stacking interaction between two aromatic rings of isatins and the less steric repulsions facilitated the production of 4.

Table 2. Substrate	Scope for Rh ₂ (OAc) ₄ -Catalyzed Three-
	Component Reaction

	•0 + _{R³} × N _{R⁴} + R ⁵	NBoc NBoc Rh ₂ O/ toluer	Ac ₄ (5 mol%) he, rt, 24 h	7 1 R ² 7 1 R ² 4 3 7 1 R ² 4 R ² 4 R ² 5 R ⁴ 8 CHN 2 3 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	О N-В
entry ^[a]	R ¹ /R ²	R ³ /R ⁴	R⁵	yield [%] ^[b]	dr ^[c]
1	H/Me, 1b	H/Me, 2a	Н, За	4b , 90	10:1
2	H/MOM, 1c	H/Me, 2a	Н, За	4c , 87	>20:1
3	H/Bn, 1a	5'-Me/Me, 2b	Н, За	4d, 97	5:1
4	H/Bn, 1a	5'-CN/Me, 2c	Н, За	4e , 96	>20:1
5	H/Bn, 1a	6'-Br/Me, 2d	Н, За	4f , 95	9:1
6	H/Bn, 1a	6'-COOMe/Me, 2e	Н, За	4g , 92	5:1
7	H/Me, 1b	4'-Cl/Me, 2f	Н, За	4h , 70	10:1
8	H/Me, 1b	H/H, 2g	Н, За	4i , 93	11:1
9	H/Me, 1b	H/Bn, 2h	Н, За	4 j, 94	>20:1
10	5-F/Me, 1d	H/Bn, 2h	Н, За	4k , 90	12:1
11	6-Br/Me, 1e	H/Bn, 2h	Н, За	4I , 94	5:1
12	5, 7-Cl ₂ /Me, 1f	H/Bn, 2h	Н, За	4m , 93	5:1
13	H/Bn, 1a	H/Me, 2a	4"-Me, 3e	4n , n. d. ^[d]	n. d. ^{[d}
14	H/Bn, 1a	H/Me, 2a	5"-F, 3f	40 , 93	11:1
15	H/Bn, 1a	H/Me, 2a	6"-Me, 3g	4p , 94	7:1
16	H/Bn, 1a	H/Me, 2a	6"-Br, 3h	4q , 91	8:1
17	H/Bn, 1a	H/Me, 2a	7"-CF ₃ , 3i	4r , 94	>20:1
18	H/Bn, 1a	H/Me, 2a	5"-Cl, 7"-Me, 3j	4s , 92	5:1

 $^{a)}$ To the mixture of 2 (0.1 mmol), 3 (0.12 mmol) and Rh₂(OAc)₄ (5 mol%) in toluene (0.5 mL) was adde a solution of 1 (0.12 mmol) in toluene (1.0 mL) via a syringe pump over 1 h. $^{b)}$ Isolated yield. $^{c)}$ The diastereometic ratios were determined by $^{1}\mathrm{H}$ NMR spectroscopy. 0 Not detected; 86% byproduct **5** was obtained.

Figure 2. X-ray Crystal Structure of Product 4a.

In conclusion, a facile and versatile $Rh_2(OAc)_4$ -catalyzed three-component reaction of 3-diazooxindoles with indoles and 10 isatin-derived N-Boc ketimines has been developed. On the basis of *in situ* generation of an active zwitterionic intermediate through 3-diazooxindole and indole in the presence of $Rh_2(OAc)_4$, and subsequent trapping by isatin-derived N-Boc ketimines, the reaction proceeded efficiently furnishing a spectrum of 3,3',3''-

¹⁵ trisindoles from readily available starting materials in high yields with moderate to excellent diastereoselectivities. Further investigations expanding the substrate scope of this reaction as well as the applications of this protocol to natural product synthesis are in progress.

20

50

Acknowledgement: We thank the Shanghai Municipal Committee of Science and Technology (11JC1402600), National Basic Research Program of China (973)-2010CB833302, the Fundamental Research Funds for the Central Universities and the

²⁵ National Natural Science Foundation of China for financial support (20902019, 21372241, 20672127, 21302203, 21121062, 20732008, 20772030 and 20702059).

Experimental Section

- ³⁰ General Remarks. MP was obtained with a Yanagimoto micro melting point apparatus and is uncorrected. Infra-red spectra were measured on a spectrometer. ¹H NMR spectra were recorded for solution in CDCl₃ with tetramethylsilane (TMS) as internal standard; ¹⁹F NMR spectra were recorded for a solution in CDCl₃
- ³⁵ with CFCl₃ as the external reference. *J*-values are in Hz. Mass spectra were recorded with a HP-5989 instrument and HRMS was measured by a Finnigan MA+ mass spectrometer. Organic solvents used were dried by standard methods when necessary. Commercially obtained reagents were used without further
- ⁴⁰ purification. All reactions were monitored by TLC with Huanghai GF₂₅₄ silica gel coated plates. Flash column chromatography was carried out using 300-400 mesh silica gel at increased pressure. All reactions were performed under argon using standard Schlenk techniques.
- ⁴⁵ 3-Diazooxindoles **1a**, **1b**, **1d** were prepared according to the previously reported procedures.¹¹ Indoles **2** were prepared according to the previously reported procedures.¹² Isatin-derived N-Boc ketimines **3** were prepared according to the previously reported procedures.¹³

General procedure for Rhodium-Catalyzed Coupling Reaction of 3-Diazooxindoles with Indoles and Isatin-Derived Ketimines

To the mixture of indoles 2 (0.1 mmol), isatin-derived N-Boc st ketimines 3 (0.12 mmol) and $Rh_2(OAc)_4$ (2.2 mg, 5 mol%) in toluene (0.5 mL) was added a solution of 3-diazooxindoles 1 (0.12 mmol) in toluene (1.0 mL) *via* a syringe pump over 1 h. When the addition was completed, the reaction mixture was further stirred for 12 hours and then directly subjected to flash 60 column chromatography (petroleum ether/EtOAc, 8:1 to 2:1) to

afford the corresponding pure products 4.

tert-butyl-1-benzyl-3-(1-benzyl-3-(1-methyl-1H-indol-3-yl)-2oxoindolin-3-yl)-2-oxoindolin-3-ylcarbamate 4a (major isomer): 65 a colorless solid, 94% yield (65 mg), >20:1 dr. M.p.: 127-130 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 1.23-1.39 (m, 9H, CH₃), 3.86 (s, 3H, CH₃), 4.39 (d, J = 15.2 Hz, 1H, CH₂), 4.70 (d, J =16.0 Hz, 1H, CH₂), 4.86 (d, J = 16.0 Hz, 1H, CH₂), 5.17 (d, J =15.2 Hz, 1H, CH₂), 5.74 (s, 1H, ArH), 6.18 (d, J = 8.0 Hz, 1H, 70 ArH), 6.54-6.57 (m, 2H, ArH), 6.67-6.73 (m, 2H, ArH), 6.79-6.87 (m, 3H, ArH), 7.08-7.19 (m, 9H, ArH), 7.23-7.29 (m, 4H, ArH), 7.96 (s, 1H, ArH), 8.22 (s, 1H, NH). ¹³C NMR (CDCl₃, 100 MHz, TMS) & 28.2, 33.3, 44.2, 44.5, 54.5, 67.1, 80.2, 107.6, 109.0, 109.4, 109.9, 119.3, 120.9, 121.7, 122.1, 122.2, 125.9, 75 126.2, 126.8, 127.1, 127.17, 127.2, 127.4, 128.5, 128.6, 129.39, 129.4, 131.2, 135.4, 135.5, 137.0, 143.8, 144.6, 154.8, 174.8, 176.5. IR (CH₂Cl₂) v 3319, 3059, 2978, 2926, 1717, 1697, 1609, 1486, 1465, 1365, 1276, 1158, 1104, 1075, 1018, 956, 898, 877, 734, 697, 661 cm⁻¹. MS (ESI) *m/z* (%): 689.3 (100) [M⁺+H]; ⁸⁰ HRMS (ESI) Calcd. for $C_{44}H_{41}N_4O_4^+$ (M⁺+H) requires 689.3128, found: 689.3139.

tert-butyl-1-benzyl-3-(1-methyl-3-(1-methyl-1H-indol-3-yl)-2oxoindolin-3-yl)-2-oxoindolin-3-ylcarbamate **4b** (major isomer):

⁸⁵ a colorless solid, 90% yield (55 mg), 10:1 dr. M.p.: 130-133 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 1.23-1.38 (m, 9H, CH₃), 3.27 (s, 3H, CH₃), 3.84 (s, 3H, CH₃), 4.40 (d, J = 16.0 Hz, 1H, CH₂), 4.58 (d, J = 16.0 Hz, 1H, CH₂), 5.81 (d, J = 6.0 Hz, 1H, ArH), 6.41 (d, J = 8.4 Hz, 1H, ArH), 6.52 (d, J = 7.6 Hz, 1H, 90 ArH), 6.65 (dd, J = 7.6 Hz, 7.6 Hz, 1H, ArH), 6.76-6.85 (m, 4H, ArH), 6.93 (d, J = 8.0 Hz, 1H, ArH), 7.09-7.17 (m, 6H, ArH), 7.27 (d, J = 8.4 Hz, 1H, ArH), 7.36 (dd, J = 8.0 Hz, 8.0 Hz, 1H, ArH), 7.84 (s, 1H, ArH), 8.22 (s, 1H, NH). ¹³C NMR (CDCl₃, 75 MHz, TMS) & 28.1, 33.1, 33.2, 44.1, 54.3, 67.1, 80.1, 107.3, 95 108.6, 108.9, 109.3, 118.1, 119.1, 119.4, 121.0, 121.6, 122.0, 122.1, 122.6, 125.8, 126.2, 126.8, 127.1, 127.3, 127.8, 128.5, 129.1, 129.3, 129.5, 131.2, 135.5, 137.0, 144.6, 154.8, 174.8, 176.1. IR (CH₂Cl₂) v 3311, 3055, 2977, 2923, 1717, 1698, 1610, 1489, 1467, 1368, 1276, 1161, 1131, 1067, 1028, 911, 882, 750, $100 697 \text{ cm}^{-1}$. MS (ESI) m/z (%): 613.3 (100) [M⁺+H]; HRMS (ESI) Calcd. for $C_{38}H_{37}N_4O_4^+$ (M⁺+H) requires 613.2815, found: 613.2809.

tert-butyl-1-benzyl-3-(1-(methoxymethyl)-3-(1-methyl-1H-indol-¹⁰⁵ 3-yl)-2-oxoindolin-3-yl)-2-oxoindolin-3-ylcarbamate 4c (major isomer): a colorless solid, 87% yield (56 mg), >20:1 dr. M.p.: 128-131 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 1.23-1.39 (m, 9H, CH₃), 3.28 (s, 3H, CH₃), 3.86 (s, 3H, CH₃), 4.40 (d, *J* = 16.0 Hz, 1H, CH₂), 4.64 (d, *J* = 16.0 Hz, 1H, CH₂), 5.16 (d, *J* = 11.2
¹¹⁰ Hz, 1H, CH₂), 5.23 (d, *J* = 11.2 Hz, 1H, CH₂), 5.77 (d, *J* = 4.4 Hz, 1H, ArH), 6.36 (d, *J* = 8.4 Hz, 1H, ArH), 6.54 (d, *J* = 8.0 Hz, 1H, ArH), 6.65 (dd, *J* = 6.8 Hz, 6.8 Hz, 1H, ArH), 6.76-6.87 (m, 4H, ArH), 7.09-7.20 (m, 7H, ArH), 7.25 (d, *J* = 6.8 Hz, 1H, ArH), 7.35 (dd, *J* = 8.0 Hz, 8.0 Hz, 1H, ArH), 7.86 (s, 1H, ArH), 8.09

- (s, 1H, NH). ¹³C NMR (CDCl₃, 75 MHz, TMS) δ 28.1, 33.1, 33.2, 44.2, 56.5, 67.1, 72.1, 80.2, 107.4, 108.9, 109.4, 110.1, 118.3, 119.1, 119.5, 120.7, 121.1, 121.7, 122.0, 122.6, 123.0, 125.8, 126.2, 126.7, 127.1, 128.5, 129.4, 129.7, 131.2, 133.2, ⁵ 135.4, 137.0, 143.0, 144.6, 154.7, 174.6, 176.9. IR (CH₂Cl₂) v 3325, 3055, 2978, 2931, 1717, 1610, 1485, 1466, 1366, 1275, 1159, 1123, 1093, 1028, 1008, 910, 881, 736, 700, 664 cm⁻¹. MS (ESI) *m*/z (%): 643.3 (100) [M⁺+H]; HRMS (ESI) Calcd. for C₃₉H₃₉N₄O₅⁺(M⁺+H) requires 643.2920, found: 643.2908.
- tert-butyl-1-benzyl-3-(1-benzyl-3-(1,5-dimethyl-1H-indol-3-yl)-2-oxoindolin-3-yl)-2-oxoindolin-3-ylcarbamate
 4d (major isomer): a colorless solid, 97% yield (68 mg), 5:1 dr. M.p.: 133-136 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 1.25-1.40 (m, 9H, 15 CH₃), 2.09 (s, 3H, CH₃), 3.81 (s, 3H, CH₃), 4.40 (d, *J* = 15.2 Hz, 1H, CH₂), 4.71 (d, *J* = 15.2 Hz, 1H, CH₂), 4.84 (d, *J* = 16.0 Hz, 1H, CH₂), 5.19 (d, *J* = 16.0 Hz, 1H, CH₂), 5.73 (d, *J* = 5.6 Hz, 1H, ArH), 6.11 (s, 1H, ArH), 6.53-6.56 (m, 2H, ArH), 6.67 (d, *J* = 8.0 Hz, 1H, ArH), 6.78-6.86 (m, 3H, ArH), 6.95 (d, *J* = 8.0 Hz, 20 1H, ArH), 7.10-7.20 (m, 9H, ArH), 7.26-7.39 (m, 3H, ArH), 7.77 (s, 1H, ArH), 8.26 (s, 1H, NH). ¹³C NMR (CDCl₃, 100 MHz,
- (3, 111, 111), 5.25 (3, 111, 111). C HAIR (CDC), 100 H12, TMS) & 21.5, 28.2, 33.2, 44.2, 44.3, 54.4, 66.9, 80.0, 107.1, 108.8, 108.9, 109.8, 121.0, 121.9, 122.1, 123.2, 125.8, 126.2, 126.9, 127.0, 127.07, 127.1, 127.3, 127.35, 127.8, 127.9, 128.2, 128.3, 128.4, 128.5, 128.8, 120.0, 120.0, 120.2, 121.2, 125.2,
- ²⁵ 128.3, 128.46, 128.5, 128.8, 129.0, 129.1, 129.3, 131.2, 135.3, 135.47, 135.5, 143.8, 144.5, 154.7, 174.7, 176.5. IR (CH₂Cl₂) v 3312, 3051, 2971, 2925, 1716, 1608, 1491, 1468, 1367, 1276, 1159, 1090, 1027, 972, 909, 870, 734, 698 cm⁻¹. MS (ESI) *m/z* (%): 703.3 (100) [M⁺+H]; HRMS (ESI) Calcd. for C₄₅H₄₃N₄O₄⁺
 ³⁰ (M⁺+H) requires 703.3284, Found: 703.3275.

tert-butyl-1-benzyl-3-(1-benzyl-3-(5-cyano-1-methyl-1H-indol-3-yl)-2-oxoindolin-3-ylcarbamate **4e** (major isomer): a colorless solid, 96% yield (68 mg), >20:1 dr. M.p.:

- ³⁵ 144-147 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 1.25-1.40 (m, 9H, CH₃), 3.91 (s, 3H, CH₃), 4.41 (d, *J* = 15.6 Hz, 1H, CH₂), 4.70 (d, *J* = 15.6 Hz, 1H, CH₂), 4.88 (d, *J* = 16.0 Hz, 1H, CH₂), 5.14 (d, *J* = 16.0 Hz, 1H, CH₂), 5.69 (s, 1H, ArH), 6.48 (s, 1H, ArH), 6.58-6.60 (m, 2H, ArH), 6.73-6.88 (m, 4H, ArH), 7.09-7.19 (m, 40 4H, ArH), 7.20-7.27 (m, 6H, ArH), 7.33-7.41 (m, 3H, ArH), 8.08 (s, 1H, ArH), 8.16 (s, 1H, NH). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 28.2, 33.5, 44.3, 44.6, 54.2, 66.8, 80.6, 102.7, 109.2, 109.5, 110.3, 110.5, 120.4, 122.1, 122.6, 124.6, 125.5, 126.0, 126.4, 126.5, 126.7, 127.0, 127.1, 127.2, 127.5, 127.7, 127.9, 45 128.6, 128.8, 129.7, 130.1, 133.4, 135.0, 135.3, 138.5, 143.6, 144.6, 154.7, 174.5, 176.1. IR (CH₂Cl₂) v 3323, 3053, 2978, 2923, 2221, 1720, 1698, 1610, 1487, 1467, 1456, 1367, 1276, 1163, 1079, 1017, 899, 803, 733, 698 cm⁻¹. MS (ESI) *m/z* (%): 731.3 (100) [M⁺+NH₄]; HRMS (ESI) Calcd. for C₄₅H₄₃N₆O₄⁺
- ⁵⁰ (M⁺+NH₄) requires 731.3346, found: 731.3340.

tert-butyl-1-benzyl-3-(1-benzyl-3-(6-bromo-1-methyl-1H-indol-3-yl)-2-oxoindolin-3-yl)-2-oxoindolin-3-ylcarbamate **4f** (major isomer): a colorless solid, 95% yield (73 mg), 9:1 dr. M.p.: 137-55 140 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 1.25-1.39 (m, 9H, CH₃), 3.83 (s, 3H, CH₃), 4.40 (d, *J* = 16.0 Hz, 1H, CH₂), 4.68 (d, *J* = 16.0 Hz, 1H, CH₂), 4.85 (d, *J* = 15.2 Hz, 1H, CH₂), 5.16 (d, *J* = 15.2 Hz, 1H, CH₂), 5.71 (s, 1H, ArH), 6.12 (d, *J* = 8.8 Hz, 1H, ArH), 6.55-6.58 (m, 2H, ArH), 6.69 (d, *J* = 7.6 Hz, 7.6 Hz, 1H, 60 ArH), 6.75-6.87 (m, 4H, ArH), 7.08-7.21 (m, 9H, ArH), 7.28-7.44 (m, 3H, ArH), 7.87 (s, 1H, ArH), 8.18 (s, 1H, NH).¹³C NMR (CDCl₃, 75 MHz, TMS) δ 28.1, 33.3, 44.2, 44.5, 54.3, 66.9, 80.2, 108.2, 108.5, 109.0, 109.9, 112.4, 114.8, 115.5, 120.0, 121.7, 122.0, 122.2, 122.3, 122.6, 125.6, 126.0, 127.2, 127.4, 128.1, ⁶⁵ 128.5, 128.6, 129.1, 129.4, 129.5, 131.8, 133.9, 134.9, 135.2, 135.4, 137.4, 137.9, 143.7, 144.6, 154.7, 174.6, 176.2. IR (CH₂Cl₂) v 3319, 3059, 2978, 2927, 1716, 1696, 1609, 1486, 1466, 1365, 1275, 1160, 1103, 1075, 1017, 955, 898, 879, 733, 697 cm⁻¹. MS (ESI) *m/z* (%): 767.2 (100) [M⁺+H]; HRMS (ESI) ⁷⁰ Calcd. for C₄₄H₄₀BrN₄O₄⁺ (M⁺+H) requires 767.2233, found: 767.2227.

methyl 3-(1-benzyl-3-(1-benzyl-3-(tert-butoxycarbonyl)-2oxoindolin-3-yl)-2-oxoindolin-3-yl)-1-methyl-1H-indole-6-

- ⁷⁵ carboxylate **4g** (major isomer): a colorless solid, 92% yield (68 mg), 5:1 dr (two isolated isomers). M.p.: 99-102 °C. ¹H NMR (CDCl₃, 300 MHz, TMS) δ 1.25-1.39 (m, 9H, CH₃), 3.89 (s, 3H, CH₃), 3.94 (s, 3H, CH₃), 4.41 (d, *J* = 15.9 Hz, 1H, CH₂), 4.68 (d, *J* = 16.2 Hz, 1H, CH₂), 5.16 (d, *J*
- ⁸⁰ = 15.9 Hz, 1H, CH₂), 5.73 (s, 1H, ArH), 6.23 (d, J = 8.7 Hz, 1H, ArH), 6.55-6.59 (m, 2H, ArH), 6.70 (d, J = 8.1 Hz, 1H, ArH), 6.82-6.88 (m, 3H, ArH), 7.08-7.32 (m, 11H, ArH), 7.40 (d, J = 8.7 Hz, 1H, ArH), 8.05 (s, 1H, ArH), 8.12 (s, 1H, ArH), 8.20 (s, 1H, NH). ¹³C NMR (CDCl₃, 75 MHz, TMS) δ 28.1, 33.5, 44.2, 85 44.5, 51.9, 54.3, 66.9, 80.3, 108.4, 109.0, 110.0, 111.7, 120.0, 120.2, 120.4, 122.1, 122.3, 122.7, 123.2, 125.6, 126.1, 127.1, 127.4, 128.4, 128.5, 128.6, 128.8, 129.5, 129.6, 130.2, 134.3, 135.2, 135.4, 136.4, 143.7, 144.6, 154.8, 167.8, 174.6, 176.3. IR (CH₂Cl₂) v 3366, 3051, 2982, 2928, 2088, 1709, 1610, 1533,
- ⁹⁰ 1484, 1465, 1434, 1363, 1312, 1265, 1227, 1162, 1096, 1078, 1030, 902, 832, 751, 734, 698, 670 cm⁻¹. MS (ESI) m/z (%): 747.3 (100) [M⁺+H]; HRMS (ESI) Calcd. for $C_{46}H_{43}N_4O_6^+$ (M⁺+H) requires 747.3177, found: 747.3179.
- 3-(1-benzyl-3-(1-benzyl-3-(tert-butoxycarbonyl)-2-95 methyl oxoindolin-3-yl)-2-oxoindolin-3-yl)-1-methyl-1H-indole-6carboxylate 4g' (minor isomer): a colorless solid. ¹H NMR (CDCl₃, 400 MHz, TMS) & 1.25-1.40 (m, 9H, CH₃), 3.86 (s, 3H, CH_3), 3.95 (s, 3H, CH_3), 4.36 (d, J = 15.2 Hz, 1H, CH_2), 4.53 (d, $_{100} J = 16.0 \text{ Hz}, 1\text{H}, \text{CH}_2$, 5.10 (d, $J = 16.0 \text{ Hz}, 1\text{H}, \text{CH}_2$), 5.37 (d, J= 15.2 Hz, 1H, CH₂), 5.97 (d, J = 8.4 Hz, 1H, ArH), 6.31 (d, J = 7.6 Hz, 1H, ArH), 6.55-6.58 (m, 2H, ArH), 6.74-6.78 (m, 2H, ArH), 6.95-6.98 (m, 2H, ArH), 7.12-7.19 (m, 3H, ArH), 7.21-7.41 (m, 10H, ArH), 7.99 (s, 1H, ArH), 8.72 (s, 1H, NH). ¹³C 105 NMR (CDCl₃, 100 MHz, TMS) & 28.4, 33.4, 44.3, 44.5, 51.9, 55.9, 65.1, 80.3, 105.4, 108.3, 108.7, 111.7, 111.8, 118.3, 120.1, 121.7, 122.3, 122.7, 122.73, 125.2, 126.8, 127.2, 127.4, 127.5, 127.8, 128.0, 128.2, 128.4, 128.6, 128.9, 129.0, 129.3, 129.5, 130.1, 134.9, 135.4, 135.9, 136.6, 142.5, 143.1, 154.0, 168.0, 110 173.8, 177.0.
 - tert-butyl-1-benzyl-3-(3-(4-chloro-1-methyl-1H-indol-3-yl)-1methyl-2-oxoindolin-3-yl)-2-oxoindolin-3-ylcarbamate **4h** (major isomer): a colorless solid, 70% yield (45 mg), 10:1 dr. M.p.: 142-
- ¹¹⁵ 145 °C. ¹H NMR (CDCl₃, 300 MHz, TMS) δ 1.25-1.37 (m, 9H, CH₃), 3.05 (s, 3H, CH₃), 3.89 (s, 3H, CH₃), 4.33 (d, *J* = 16.2 Hz, 1H, CH₂), 5.06 (d, *J* = 16.2 Hz, 1H, CH₂), 6.14 (d, *J* = 7.5 Hz, 1H, ArH), 6.29 (d, *J* = 7.8 Hz, 1H, ArH), 6.65 (dd, *J* = 7.5 Hz, 7.5 Hz, 1H, ArH), 6.81-6.86 (m, 2H, ArH), 6.88-7.02 (m, 4H, ArH),
- ¹²⁰ 7.13-7.35 (m, 8H, ArH), 9.04 (s, 1H, NH).
 ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 28.0, 28.3, 33.6, 44.0, 57.2, 66.7, 80.2, 103.0, 107.3, 107.8, 108.1, 121.0, 121.4, 121.5, 121.9, 122.9, 124.1, 124.6, 127.2, 127.4, 127.5, 127.8, 128.5, 128.8, 129.1, 129.4, 129.8, 135.4, 137.6, 138.6, 142.7, 144.4, 153.6, 174.4, 177.9. IR
- ¹²⁵ (CH₂Cl₂) v 3321, 3044, 2979, 2920, 1717, 1611, 1479, 1465, 1393, 1368, 1340, 1303, 1286, 1248, 1147, 1099, 1019, 1003, 925, 887, 838, 735, 698 cm⁻¹. MS (ESI) m/z (%): 647.2 (100)

 $[(M^{+}+H]; HRMS (ESI) Calcd. for C_{38}H_{36}ClN_4O_4^{+}(M^{+}+H) requires 647.2420, found: 647.2422.$

tert-butyl-3-(3-(1H-indol-3-yl)-1-methyl-2-oxoindolin-3-yl)-1-

5 benzyl-2-oxoindolin-3-ylcarbamate 4i (major isomer): a colorless solid, 93% yield (56 mg), 11:1 dr. M.p.: 153-156 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) & 1.25-1.37 (m, 9H, CH₃), 3.28 (s, 3H, CH_3), 4.38 (d, J = 16.0 Hz, 1H, CH_2), 4.58 (d, J = 16.0 Hz, 1H, CH₂), 5.80 (d, J = 6.4 Hz, 1H, ArH), 6.43 (d, J = 8.0 Hz, 1H, ¹⁰ ArH), 6.52 (d, J = 7.6 Hz, 1H, ArH), 6.66 (dd, J = 7.6 Hz, 7.6 Hz, 1H, ArH), 6.76-6.83 (m, 4H, ArH), 6.94 (d, *J* = 8.0 Hz, 1H, ArH), 7.07 (dd, J = 8.0 Hz, 8.0 Hz, 1H, ArH), 7.12-7.17 (m, 4H, ArH), 7.26 (s, 1H, ArH), 7.32-7.39 (m, 2H, ArH), 7.98 (s, 1H, ArH), 8.24 (s, 1H, NH), 8.52 (s, 1H, NH). ¹³C NMR (CDCl₃, 75 MHz, 15 TMS) δ 28.1, 29.6, 44.1, 54.3, 67.1, 80.1, 108.6, 108.9, 111.3, 118.0, 119.7, 120.8, 121.4, 121.5, 122.0, 122.1, 122.6, 125.8, 126.2, 126.8, 127.1, 127.2, 127.8, 128.45, 128.5, 129.1, 129.3, 129.5, 135.4, 136.3, 144.5, 144.6, 154.7, 174.7, 176.0. IR (CH₂Cl₂) v 3329, 3053, 2977, 2925, 1705, 1611, 1490, 1467, 20 1369, 1276, 1162, 1067, 906, 750, 697 cm⁻¹. MS (ESI) m/z (%): 599.3 (100) $[M^++H]$; HRMS (ESI) Calcd. for $C_{37}H_{35}N_4O_4^+$ (M⁺+H) requires 599.2658, Found: 599.2647.

tert-butyl-1-benzyl-3-(3-(1-benzyl-1H-indol-3-yl)-1-methyl-2-

- ³⁰ ArH), 6.51 (d, J = 7.6 Hz, 1H, ArH), 6.59-6.67 (m, 2H, ArH), 6.73 (dd, J = 7.6 Hz, 7.6 Hz, 1H, ArH), 6.80-6.85 (m, 3H, ArH), 6.94 (d, J = 8.0 Hz, 2H, ArH), 7.07 (dd, J = 8.4 Hz, 8.4 Hz, 1H, ArH), 7.12-7.19 (m, 6H, ArH), 7.23 (d, J = 8.4 Hz, 1H, ArH), 7.28-7.38 (m, 4H, ArH), 7.81 (s, 1H, ArH), 8.24 (s, 1H, NH). ¹³C
- ³⁵ NMR (CDCl₃, 100 MHz, TMS) & 27.8, 29.3, 43.7, 49.7, 53.9, 66.8, 79.7, 107.8, 108.3, 108.5, 109.5, 119.3, 121.0, 121.4, 121.5, 121.7, 125.4, 125.6, 125.8, 126.0, 126.3, 126.6, 126.7, 127.4, 128.1, 128.3, 128.5, 128.7, 128.9, 129.2, 130.5, 135.1, 136.2, 136.9, 144.2, 154.3, 174.4, 175.6. IR (CH₂Cl₂) v 3313, 3051, 2027, 2020, 140
- $_{40}$ 2977, 2926, 1719, 1692, 1610, 1490, 1466, 1367, 1276, 1161, 1131, 1077, 1028, 906, 882, 750, 697 cm $^{-1}$. MS (ESI) *m/z* (%): 689.3 (100) [M^++H]; HRMS (ESI) Calcd. for C_{44}H_{41}N_4O_4^+ (M^++H) requires 689.3128, found: 689.3114.

⁴⁵ tert-butyl-1-benzyl-3-(3-(1-benzyl-1H-indol-3-yl)-5-fluoro-1methyl-2-oxoindolin-3-yl)-2-oxoindolin-3-ylcarbamate **4k** (major isomer): a colorless solid, 90% yield (64 mg), 12:1 dr. M.p.: 125-128 °C. ¹H NMR (CDCl₃, 300 MHz, TMS) δ 1.23-1.28 (m, 9H, CH₃), 3.27 (s, 3H, CH₃), 4.42 (d, J = 15.6 Hz, 1H, CH₂), 4.60 (d,

- ⁵⁰ J = 15.6 Hz, 1H, CH₂), 5.36 (s, 2H, CH₂), 5.50 (dd, J = 1.8 Hz, 8.4 Hz, 1H, ArH), 6.60 (d, J = 7.8 Hz, 1H, ArH), 6.65 (d, J = 7.8 Hz, 1H, ArH), 6.74 (dd, J = 7.5 Hz, 7.5 Hz, 1H, ArH), 6.79-6.86 (m, 2H, ArH), 6.89-6.94 (m, 3H, ArH), 6.97-7.05 (m, 1H, ArH), 7.09 (dd, J = 7.5 Hz, 7.5 Hz, 1H, ArH), 7.15-7.20 (m, 6H, ArH), 7.22 7.27 (M, 2H, 2H), 7.20 (M, 2H), 7.20 (m, 2H, 2H), 7.20 (m, 7.
- ⁵⁵ 7.23-7.27 (m, 2H, ArH), 7.29-7.39 (m, 2H, ArH), 7.78 (s, 1H, ArH), 8.18 (s, 1H, NH). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 26.8, 28.1, 44.2, 50.1, 54.6, 67.0, 80.2, 107.5, 108.9 (d, *J* = 8.3 Hz), 109.0, 110.0, 114.1 (d, *J* = 25.1 Hz), 116.0 (d, *J* = 23.5 Hz), 119.9, 121.2, 122.0 (d, *J* = 5.0 Hz), 125.8, 126.6, 126.7, 126.8,
- ⁶⁰ 127.2, 127.3, 127.8, 128.5, 128.7, 128.8, 128.9, 120.6, 130.8, 135.4, 136.6, 137.1, 140.6, 144.4, 155.9 (d, J = 247.5 Hz), 159.5, 174.5, 175.7. ¹⁹F NMR (CDCl₃, 282 MHz, CFCl₃) δ -120.4. IR (CH₂Cl₂) v 3311, 3051, 2976, 2925, 1717, 1699, 1604, 1485, 1470, 1368, 1351, 1276, 1252, 1159, 1110, 1064, 1028, 911, 879,

- $_{65}$ 843, 735, 701 cm $^{-1}.$ $^{19}{\rm F}$ NMR (CDCl₃, 282 MHz, CFCl₃) δ 120.4. MS (ESI) m/z (%): 707.3 (100) [M $^+$ +H]; HRMS (ESI) Calcd. for C_{44}H_{40}{\rm FN}_4{\rm O}_4^+ (M $^+$ +H) requires 707.3034, Found: 707.3029.
- 70 tert-butyl-1-benzyl-3-(3-(1-benzyl-1H-indol-3-yl)-6-bromo-1methyl-2-oxoindolin-3-yl)-2-oxoindolin-3-ylcarbamate 41 (major isomer): a colorless solid, 94% yield (72 mg), 5:1 dr. M.p.: 127-130 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 1.25-1.33 (m, 9H, CH_3), 3.27 (s, 3H, CH_3), 4.37 (d, J = 15.6 Hz, 1H, CH_2), 4.71 (d, $_{75} J = 15.6 \text{ Hz}, 1\text{H}, \text{CH}_2$, 5.35 (s, 2H, CH₂), 6.62 (d, J = 8.0 Hz, 1H,ArH), 6.56 (d, J = 8.0 Hz, 1H, ArH), 6.70-6.77 (m, 3H, ArH), 6.83-6.91 (m, 3H, ArH), 7.07-7.13 (m, 2H, ArH), 7.15-7.17 (m, 3H, ArH), 7.22-7.38 (m, 8H, ArH), 7.72 (s, 1H, ArH), 8.12 (s, 1H, NH). ¹³C NMR (CDCl₃, 75 MHz, TMS) δ 28.1, 31.9, 44.3, 80 50.1, 54.0, 66.9, 80.1, 107.5, 109.0, 110.0, 112.1, 120.0, 121.3, 121.4, 121.9, 122.0, 123.4, 124.9, 125.5, 125.8, 126.1, 126.7, 126.8, 127.2, 127.26, 127.3, 127.5, 127.8, 128.5, 128.7, 128.8, 129.4, 130.8, 135.3, 136.6, 137.1, 144.5, 145.8, 154.5, 174.6, 175.8. IR (CH₂Cl₂) v 3323, 3051, 2974, 2922, 1716, 1600, 1489, 85 1465, 1455, 1364, 1275, 1258, 1159, 1099, 1075, 1028, 965, 912, 883, 843, 809, 732, 697 cm⁻¹. MS (ESI) m/z (%): 767.2 (100) $[M^++H]$; HRMS (ESI) Calcd. for $C_{44}H_{40}BrN_4O_4^+$ (M⁺+H) requires 767.2233, Found: 767.2226.
- 90 tert-butyl-1-benzyl-3-(3-(1-benzyl-1H-indol-3-yl)-5,7-dichloro-1methyl-2-oxoindolin-3-yl)-2-oxoindolin-3-ylcarbamate 4m (major isomer): a colorless solid, 93% yield (70 mg), 5:1 dr. M.p.: 124-127 °C. ¹H NMR (CDCl₃, 300 MHz, TMS) δ 1.25-1.33 $(m, 9H, CH_3)$, 3.63 $(s, 3H, CH_3)$, 4.39 $(d, J = 15.6 Hz, 1H, CH_2)$, 95 4.68 (d, J = 15.6 Hz, 1H, CH₂), 5.38 (s, 2H, CH₂), 5.44 (s, 1H, ArH), 6.53 (d, J = 7.8 Hz, 1H, ArH), 6.72 (d, J = 7.5 Hz, 1H, ArH), 6.77 (dd, J = 7.5 Hz, 7.5 Hz, 1H, ArH), 6.87 (dd, J = 7.8 Hz, 7.8 Hz, 1H, ArH), 6.96-7.03 (m, 3H, ArH), 7.05-7.12 (m, 2H, ArH), 7.15-7.21 (m, 2H, ArH), 7.24-7.40 (m, 8H, ArH), 7.82 (s, 100 1H, ArH), 8.00 (s, 1H, NH). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 28.1, 30.2, 44.3, 50.2, 54.3, 67.1, 80.4, 106.9, 108.8, 110.1, 115.8, 117.9, 120.1, 120.7, 122.1, 124.9, 125.9, 126.4, 126.6, 126.8, 127.1, 127.3, 127.5, 127.6, 127.9, 128.6, 128.7, 128.8, 128.9, 129.7, 130.55, 130.6, 131.4, 135.3, 136.6, 137.0, 139.2, 105 144.4, 154.6, 174.2, 176.0. IR (CH₂Cl₂) v 3325, 3062, 2978, 2924, 1716, 1611, 1577, 1487, 1464, 1366, 1275, 1253, 1160, 1118, 1075, 1028, 918, 861, 738, 697 cm⁻¹. MS (ESI) m/z (%): 757.2 (100) [M⁺+H]; HRMS (ESI) Calcd. for C₄₄H₃₉Cl₂N₄O₄⁺ (M⁺+H) requires 757.2349, found: 757.2346. 110

tert-butyl-1-benzyl-3-(1-benzyl-3-(1-methyl-1H-indol-3-yl)-2oxoindolin-3-vl)-5-fluoro-2-oxoindolin-3-vlcarbamate 40 (major isomer): a colorless solid, 93% yield (66 mg), 11:1 dr. M.p.: 115-118 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 1.26-1.41 (m, 9H, 115 CH₃), 3.86 (s, 3H, CH₃), 4.40 (d, J = 15.6 Hz, 1H, CH₂), 4.65 (d, J = 16.0 Hz, 1H, CH₂), 4.85 (d, J = 16.0 Hz, 1H, CH₂), 5.16 (d, J= 15.6 Hz, 1H, CH₂), 5.82 (s, 1H, ArH), 6.22 (d, J = 7.6 Hz, 1H, ArH), 6.46 (dd, J = 4.0 Hz, 8.0 Hz, 1H, ArH), 6.58 (dd, J = 6.8 Hz, 6.8 Hz, 1H, ArH), 6.69-6.90 (m, 5H, ArH), 6.95-7.01 (m, 1H, 120 ArH), 7.09-7.37 (m, 11H, ArH), 7.90 (s, 1H, ArH), 8.25 (s, 1H, NH). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 28.2, 33.3, 44.4, 44.5, 53.4, 67.3, 80.5, 109.3 (d, J = 8.1 Hz), 109.5, 110.0, 114.2 (d, J = 25.3 Hz), 115.7 (d, J = 22.9 Hz), 119.5, 120.8, 121.9, 122.2, 122.7 (d, J = 5.4 Hz), 126.7, 127.1, 127.2, 127.4, 127.6, 128.1, 125 128.4, 128.6, 128.65, 129.6, 131.0, 135.2, 135.3, 137.1, 140.7, 143.8, 154.8, 158.5 (d, J = 238.6 Hz), 174.6, 176.2. ¹⁹F NMR (CDCl₃, 376 MHz, CFCl₃) δ -120.1. IR (CH₂Cl₂) v 3385, 3062, 2978, 2924, 1714, 1702, 1610, 1507, 1469, 1424, 1368, 1348,

1249, 1160, 1130, 1067, 1020, 912, 878, 845, 810, 736, 699, 669 cm⁻¹. MS (ESI) *m/z* (%): 707.3 (100) [M⁺+H]; HRMS (ESI) Calcd. for $C_{44}H_{40}FN_4O_4^+$ (M⁺+H) requires 707.3034, found: 707.3028.

tert-butyl-1-benzyl-3-(1-benzyl-3-(1-methyl-1H-indol-3-yl)-2oxoindolin-3-yl)-6-methyl-2-oxoindolin-3-ylcarbamate 4p (major isomer): a colorless solid, 94% yield (66 mg), 7:1 dr. M.p.: 122-125 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 1.25-1.47 (m, 9H, 10 CH₃), 2.23 (s, 3H, CH₃), 3.86 (s, 3H, CH₃), 4.39 (d, J = 15.6 Hz, 1H, CH₂), 4.66 (d, J = 16.0 Hz, 1H, CH₂), 4.85 (d, J = 16.0 Hz, 1H, CH₂), 5.16 (d, J = 15.6 Hz, 1H, CH₂), 5.82 (d, J = 2.8 Hz, 1H, ArH), 6.23 (d, J = 8.4 Hz, 1H, ArH), 6.37 (s, 1H, ArH), 6.53-6.57 (m, 1H, ArH), 6.63-6.74 (m, 3H, ArH), 6.80-6.85 (m, 2H, 15 ArH), 7.08-7.19 (m, 8H, ArH), 7.26-7.39 (m, 4H, ArH), 7.92 (s, 1H, ArH), 8.22 (s, 1H, NH). ¹³C NMR (CDCl₃, 75 MHz, TMS) δ 21.9, 28.2, 33.2, 44.1, 44.4, 54.5, 66.9, 80.0, 109.3, 109.7, 109.8, 118.9, 119.3, 120.9, 121.0, 121.6, 122.1, 122.3, 122.5, 122.7, 124.3, 125.7, 126.3, 126.8, 127.0, 127.2, 127.3, 127.9, 128.5, 20 128.6, 128.7, 129.3, 131.2, 133.3, 135.4, 135.7, 137.0, 139.4, 143.8, 144.6, 154.8, 175.1, 176.6. IR (CH₂Cl₂) v 3324, 3055, 2977, 2926, 1719, 1618, 1610, 1487, 1466, 1366, 1276, 1162, 1115, 1077, 1016, 899, 848, 749, 698 cm⁻¹. MS (ESI) m/z (%): 703.3 (100) $[M^++H]$; HRMS (ESI) Calcd. for $C_{45}H_{43}N_4O_4$

²⁵ (M⁺+H) requires 703.3284, found: 703.3280.

tert-butyl-1-benzyl-3-(1-benzyl-3-(1-methyl-1H-indol-3-yl)-2oxoindolin-3-yl)-6-bromo-2-oxoindolin-3-ylcarbamate 4q (major isomer): a colorless solid, 91% yield (70 mg), 8:1 dr. M.p.: 135-³⁰ 138 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 1.25-1.43 (m, 9H, CH_3), 3.85 (s, 3H, CH_3), 4.38 (d, J = 16.0 Hz, 1H, CH_2), 4.63 (d, J = 15.2 Hz, 1H, CH₂), 4.88 (d, J = 16.0 Hz, 1H, CH₂), 5.13 (d, J= 15.2 Hz, 1H, CH₂), 5.89 (d, J = 4.4 Hz, 1H, ArH), 6.38 (d, J = 8.0 Hz, 1H, ArH), 6.62-6.71 (m, 3H, ArH), 6.74-6.84 (m, 3H, 35 ArH), 6.96-7.04 (m, 2H, ArH), 7.11-7.39 (m, 11H, ArH), 7.80 (s, 1H, ArH), 8.29 (s, 1H, NH). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 28.2, 33.3, 44.3, 44.5, 54.2, 66.7, 80.5, 109.3, 109.4, 110.1, 112.2, 118.7, 119.1, 119.5, 121.1, 121.2, 121.8, 122.4, 123.1, 124.5, 125.0, 126.0, 126.3, 126.6, 127.1, 127.2, 127.3, 127.4, 40 127.8, 128.1, 128.7, 129.6, 131.2, 133.1, 134.9, 135.2, 137.1, 143.7, 145.9, 154.8, 174.8, 176.2. IR (CH₂Cl₂) v 3318, 3059, 2978, 2923, 1718, 1695, 1603, 1485, 1466, 1367, 1276, 1159, 1110, 1064, 1018, 898, 878, 843, 735, 697, 670 cm⁻¹. MS (ESI) m/z (%): 767.2 (100) [M⁺+H]; HRMS (ESI) Calcd. for ⁴⁵ C₄₄H₄₀BrN₄O₄⁺ (M⁺+H) requires 767.2233, found: 767.2231.

tert-butyl-1-benzyl-3-(1-benzyl-3-(1-methyl-1H-indol-3-yl)-2-oxoindolin-3-yl)-2-oxo-7-(trifluoromethyl)indolin-3-ylcarbamate
4r (major isomer): a colorless solid, 94% yield (71 mg), >20:1 dr.
⁵⁰ M.p.: 133-136 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 1.25-1.41 (m, 9H, CH₃), 3.83 (s, 3H, CH₃), 4.64 (d, *J* = 17.2 Hz, 1H, CH₂), 4.76 (d, *J* = 17.2 Hz, 1H, CH₂), 4.88 (d, *J* = 16.0 Hz, 1H, CH₂), 5.01 (d, *J* = 16.0 Hz, 1H, CH₂), 5.86 (d, *J* = 3.6 Hz, 1H, ArH), 6.69-6.78 (m, 5H, ArH), 6.86 (dd, *J* = 7.6 Hz, 7.6 Hz, 1H, ArH), 7.23-7.32 (m, 4H, ArH), 7.57 (d, *J* = 7.6 Hz, 1H, ArH), 7.66 (s, 1H, ArH), 8.33 (s, 1H, NH). ¹³C NMR (CDCl₃, 100 MHz, TMS) 28.2, 33.1, 33.2, 44.4, 47.0, 65.5, 80.6, 106.9, 108.6, 109.4, 110.3, 119.6, 120.7, 121.4, 121.7, 122.1, 122.8, 125.1, 125.4, ⁶⁰ 125.8, 126.0 (q, *J* = 268.5 Hz), 126.1, 126.5, 126.7, 127.0, 127.7, 127.9, 128.1, 128.60 (q, *J* = 33.1 Hz), 128.62, 129.0, 129.2,

127.9, 128.1, 126.00 (q, 9 = 35.1 Hz), 128.02, 129.0, 129.2, 129.8, 130.4, 131.5, 134.9, 136.1, 137.2, 143.0, 143.7, 154.9, 175.8, 176.9. ¹⁹F NMR (CDCl₃, 376 MHz, CFCl₃) δ -54.8. IR (CH₂Cl₂) v 3310, 3040, 2978, 2928, 1716, 1699, 1609, 1596,

- ⁶⁵ 1491, 1470, 1452, 1438, 1368, 1332, 1282, 1252, 1160, 1122, 1097, 1020,967, 904, 888, 834, 790, 735, 697 cm⁻¹. MS (ESI) *m/z* (%): 774.3 (100) [(M⁺+NH₄]; HRMS (ESI) Calcd. for $C_{45}H_{43}F_{3}N_{5}O_{4}^{+}$ (M⁺+NH₄) requires 774.3262, found: 774.3254.
- ⁷⁰ tert-butyl-1-benzyl-3-(1-benzyl-3-(1-methyl-1H-indol-3-yl)-2-oxoindolin-3-yl)-5-chloro-7-methyl-2-oxoindolin-3-ylcarbamate **4s** (major isomer): a colorless solid, 92% yield (68 mg), 5:1 dr. M.p.: 130-133 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 1.24-1.44 (m, 9H, CH₃), 2.06 (s, 3H, CH₃), 3.84 (s, 3H, CH₃), 4.70 (br, 2H, 75 CH₂), 4.83 (d, *J* = 16.0 Hz, 1H, CH₂), 5.11 (d, *J* = 16.0 Hz, 1H, CH₂), 5.94 (s, 1H, ArH), 6.59 (d, *J* = 7.6 Hz, 1H, ArH), 6.69-6.74 (m, 3H, ArH), 6.82 (dd, *J* = 7.6 Hz, 7.6 Hz, 1H, ArH), 6.88-7.05 (m, 2H, ArH), 7.12-7.42 (m, 12H, ArH), 7.75 (s, 1H, ArH), 8.21 (s, 1H, NH). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 18.7, 28.3, 80 33.2, 44.5, 45.9, 56.6, 65.1, 80.5, 109.0, 109.3, 109.5, 110.2, 119.0, 119.6, 120.5, 120.9, 121.3, 121.9, 122.0, 124.0, 125.7, 126.2, 126.7, 127.1, 127.4, 128.0, 128.4, 128.6, 128.8, 129.2, 129.6, 131.5, 132.5, 132.8, 133.2, 135.2, 136.5, 137.3, 141.5, 143.9, 153.9, 176.0, 176.8. IR (CH₂Cl₂) v 3325, 3062, 2977,
- ⁸⁵ 2928, 1716, 1608, 1486, 1466, 1366, 1276, 1160, 1077, 1029, 913, 870, 839, 738, 697 cm⁻¹. MS (ESI) m/z (%): 737.3 (100) [M⁺+H]; HRMS (ESI) Calcd. for C₄₅H₄₂ClN₄O₄⁺ (M⁺+H) requires 737.2895, found: 737.2892.

90 Notes and references

- a) R. J. Sundberg, Indoles, Academic Press, San Diego 1996; b) S. Cacchi, G. Fabrizi, Chem. Rev. 2005, 105, 2873-2920; c) L. Joucla, L. Djakovitch, Adv. Synth. Catal. 2009, 351, 673-714; d) M. Bandini, A. Eichholzer, Angew. Chem, Int. Ed. 2009, 48, 9608-9644; e) G. Bartoli,
 G. Bencivenni, R. Dalpozzo, Chem. Soc. Rev. 2010, 39, 4449-4465; f) A. Gazit, N. Osherov, I. Posner, P. Yaish, E. Poradosu, C. Gilon, A. Levitzki, J. Med. Chem. 1991, 34, 1896-1907; g) H. Pajouhesh, R. Parsons, F. D. Popp, J. Pharm. Sci. 1983, 72, 318-321; h) J. M. Finefield, J. C. Frisvad, D. H. Sherman, R. M. Williams, J. Nat. Prod.
- 2012, 75, 812-833; i) J. Yang, X. Z. Wearing, P. W. Le Quesne, J. R. Deschamps, J. M. Cook, J. Nat. Prod. 2008, 71, 1431-1440; j) P. R. Sebahar, R. M. Williams, J. Am. Chem. Soc. 2000, 122, 5666-5667; k) S.-W. Duan, Y. Li, Y.-Y. Liu, Y.-Q. Zou, D.-Q. Shi, W.-J. Xiao, Chem. Commun. 2012, 48, 5160-5162; l) D. A. Klumpp, K. Y. Yeung, G. K. S.
- Prakash, G. A. Olah, J. Org. Chem. 1998, 63, 4481-4484; m) K. A. Miller, S. Tsukamoto, R. M. Williams, Nat. Chem. 2009, 1, 63-68; n) B. M. Trost, N. Cramer, H. Bernsmann, J. Am. Chem. Soc. 2007, 129, 3086-3087; o) K. Ding, Y. Lu, Z. Nikolovska-Coleska, G. Wang, S. Qiu, S. Shangary, W. Gao, D. Qin, J. Stuckey, K. Krajewski, P. P. Roller, S. Wang, J. Med. Chem. 2006, 49, 3432-3435; p) G. S. Singh, Z. Y. Desta, Chem. Rev. 2012, 112, 6104-6155; q) R. Dalpozzo, G. Bartoli, G. Bencivenni, Chem. Soc. Rev. 2012, 41, 7247-7290; r) R. Rios, Chem. Soc. Rev. 2012, 41, 1060-1074; s) R. M. Williams, R. J. Cox, Acc. Chem. Res. 2003, 36, 127-139; t) A. B. Dounay, L. E. Overman, Chem. 15 Rev. 2003, 103, 2945-2963.
- 2. a) S. Kohmoto, Y. Kashman, O. J. McConnell, K. L. Rinehart, A. Wright, F. Koehn, J. Org. Chem. 1988, 53, 3116-3118; b) S. P. Gunasekera, P. J. McCarthy, M. Kelly- Borges, J. Nat. Prod. 1994, 57, 1437-1441; c) X.-H. Gu, X.-Z. Wan, B. Jiang, Bioorg. Med. Chem. Lett. 1999, 9, 569-572; d) W.-N. Xiong, C.-G. Yang, B. Jiang, Bioorg. Med. 120 Chem. 2001, 9, 1773-1780; e) W. Gul, M. T. Hamann, Life Sci. 2005, 78, 442-453; f) M. Shiri, M. A. Zolfigol, H. G. Kruger, Z. Tanbakouchian, Chem. Rev. 2010, 110, 2250-2293; g) J.-F. Liu, Z.-Y. Jiang, R.-R. Wang, Y.-T. Zheng, J.-J. Chen, X.-M. Zhang, Y.-B. Ma, Org. Lett. 2007, 9, 4127-4129; h) J. Lee, J. S. Panek, Org. Lett. 2011, 13, 502-505; i) Y. C. Kong, K. F. Cheng, R. C. Cambie, P. G. Waterman, Chem. Commun. 1985, 47-48; j) Y. C. Kong, K. H. Ng, K. H. Wat, Planta Medica 1985, 304-307; k) N. G. Wang, M. Z. Guan, H. P. Lei, Ydoxue Xuebao 1990, 25, 85-89; 1) M. Hammastrom, L. Venemalm, J. Bergman, P. Eneroth, Am. J. Chin. Med. 1990, 18, 1-2; m) 130 T. A. Foderato, L. R. Barrows, P. Lassota, C. M. Ireland, J. Org. Chem. 1997, 62, 6064-6065; n) T. J. K. Gibbs, N. C. O. Tomkinson, Org.

Biomol. Chem. 2005, 3, 4043-4045; o) P. Seidel, Chem. Ber. 1950, 83, 20-26.

- a) S. Muthusamy, C. Gunanathan, S. A. Babu, E. Suresh, P. Dastidar, *Chem. Commun.* 2002, 824-825; b) B. M. Trost, J. Xie, J. D. Sieber, J.
- 5 Am. Chem. Soc. 2011, 133, 20611-20622; c) A. DeAngelis, V. W. Shurtleff, O. Dmitrenko, J. M. Fox, J. M. J. Am. Chem. Soc. 2011, 133, 1650-1653; d) Y. Cai, S.-F. Zhu, G.-P. Wang, Q.-L. Zhou, Adv. Synth. Catal. 2011, 353, 2939-2944; e) D. Xing, C.-C. Jing, X.-F. Li, H. Qiu, W.-H. Hu, Org. Lett. 2013, 15, 3578-3581; f) C. V. S. Kumar, V. G.
- ¹⁰ Puranik, C. V. Ramana, *Chem.-Eur. J.* **2012**, *18*, 9601-9611; g) M. Rueping, S. Raja, A. Núñez, *Adv. Synth. Catal.* **2011**, *353*, 563-568.
- a) S.-Y. Wang, S.-J. Ji, *Tetrahedron* 2006, *62*, 1527-1535; b) J. S. Yadav, B. V. S. Reddy, K. U. Gayathri, S. Meraj, A. R. Prasad, *Synthesis* 2006, *24*, 4121-4123; c) A. Kamal, Y. V. V. Srikanth, M.
- ¹⁵ Naseer, A. Khan, T. B. Shaik, M. Ashraf, *Bioorg. Med. Chem. Lett.* 2010, 20, 5229-5231; d) M. Nikpassand, M. Mamaghani, K. Tabatabaeian, H. A. Samimi, *Synth. Commun.* 2010, 40, 3552-3560.
- 5. a) M. Chakrabarty, R. Mukherjee. A. Mukherji, S. Arima, Y. Harigaya, *Heterocycles* **2006**, *68*, 1659-1668; b) P. Hazarika, S. D. Sharma, D.
- Konwar, Synth. Commun. 2008, 38, 2870-2880; c) H. Veisi, R. Gholbedaghi, J. Malakootikhah, A. Sedrpoushan, B. Maleki, D. Kordestani, J. Heterocyclic. Chem. 2010, 47, 1398-1405.
- a) T. Janosik, J. Bergman, *Heterocycles* 2002, 64, 1273-1278; b) T. J.
 K. Gibbs, N. C. O. Tomkinson, Org. Biomol. Chem. 2005, 3, 4043-4045;
- c) K. R. Moghadam, M. S. Kiasaraie, H. T. Amlashi, *Tetrahedron* 2010, 66, 2316-2321; d) W.-B. Qin, Q. Chang, Y.-H. Bao, N. Wang, Z.-W. Chen, L.-X. Liu, Org. Biomol. Chem. 2012, 10, 8814-8821; e) B. V. S. Reddy, N. Rajeswari, M. Sarangapani, Y. Prashanthi, R. J. Ganji, A. Addlagatta, Bioorg. Med. Chem. Lett. 2012, 22, 2460-2463.
- ³⁰ 7. a) L. Huang, H.-B. Yang, D.-H. Zhang, Z. Zhang, X.-Y. Tang, Q. Xu, M. Shi, *Angew. Chem, Int. Ed.* **2013**, *52*, 6767-6771. b) D.-H. Zhang, M. Shi, *ChemistryOpen* **2012**, *1*, 215-220. c) W. Yuan, Y. Wei, M. Shi, *ChemistryOpen* **2013**, *2*, 63-68.
- a) M. P. Doyle, Chem. Rev. 1986, 86, 919-939; b) T. Ye, M. A.
 McKervey, Chem. Rev. 1994, 94, 1091-1160; c) A. Padwa, D. J. Austin, Angew. Chem., Int. Ed. 1994, 33, 1797-1815; d) M. P. Doyle, M. A.
 McKervey, T. Ye, J. Chem. Soc., Chem. Commun. 1997, 983-989; e) D.
- J. Miller, C. J. Moody, *Tetrahedron* 1995, *51*, 10811-10843; f) A.
 Padwa, M. D. Weingarten, *Chem. Rev.* 1996, *96*, 223-269; g) S.-F. Zhu,
 Y. Cai, H.-X. Mao, J.-H. Xie, Q.-L. Zhou, *Nature Chem.* 2010, *2*, 546-
- 551; h) S.-F. Zhu, X. Xu, J. A. Perman, X. P. Zhang, J. Am. Chem. Soc.
 2010, 132, 12796-12799; i) Y.-J. Lian, H. M. L. Davies, J. Am. Chem. Soc.
 2010, 132, 440-441; j) A. Padwa, S. F. Hornbuckle, Chem. Rev.
 1991, 91, 263-309; k) B. Alcaide, P. Almendros, C. Aragoncillo, R.
- ⁴⁵ Callejo, M. P. Ruiz, M. R. Torres, *Eur. J. Org. Chem.* 2012, *12*, 2359-2366; l) S. Muthusamy, C. Gunanathan, *Synlett* 2003, 1599-1602; m) C. Marti, E. M. Carreira, *J. Am. Chem. Soc.* 2005, *127*, 11505-11515; n) B. V. S. Reddy, T. Rajasekaran, G. Karthik, T. P. Rao, *Tetrahedron Lett.* 2012, *53*, 3416-3420; o) Z.-Y. Cao, F. Zhou, Y.-H. Yu, J. Zhou, *Org.*
- 50 Lett. 2012, 15, 42-45; p) A. Awata, T. Arai, Synlett 2013, 24, 29-31; q) Z.-Y. Cao, X. Wang, C. Tan, X.-L. Zhao, J. Zhou, K. Ding, J. Am. Chem. Soc. 2013, 135, 8197-8200; r) X. Guo, W.-H, Hu, Acc. Chem. Res. DOI: 10.1021/ar300340k; s) M. Li, L. Zan, D. Prajapati, W.-H. Hu, Org. Biomol. Chem. 2012, 10, 8808-8813.
- 9. H. Qiu, M. Li, L.-Q. Jiang, F.-P. Lv, L. Zan, C.-W. Zhai, M. P. Doyle, W.-H. Hu, *Nature Chem.* 2012, *4*, 733-738.
 10. a) M. P. Doyle, M. S. Shanklin, H. Q. Pho, S. N. Mahapatro, *J. Org. Chem.* 1988, *53*, 1017-1022; b) H. M. L. Davies, S. J. Hedley, *Chem. Soc. Rev.* 2007, *36*, 1109-1119.
- 60 11. Z.-Y. Cao, F. Zhou, Y.-H. Yu, J. Zhou, Org. Lett. 2012, 15, 42-45.
 12. M. Chen, Z.-T. Huang, Q.-Y. Zheng, Chem. Commun., 2012, 48, 11686-11688.
 - a) Y.-L. Liu, J. Zhou, *Chem. Commun.*, **2013**, *49*, 4421-4423; b) F.-L
 Hu, Y. Wei, M. Shi, S. Pindi, G. Li, *Org. Biomol. Chem.* **2013**, *11*, 1921-1924.

Rhodium-Catalyzed Three-Component Reaction of 3-Diazooxindoles with Indoles and Isatin-Derived Ketimines: A Facile and Versatile Approach to Functionalized 3,3',3''-Trisindoles A variety of functionalized 3,3',3''-trisindoles could be produced in high yields with moderate to excellent diastereoselectivities via Rh₂(OAc)₄-catalyzed three-component reaction of 3diazooxindoles with indoles and isatin-derived N-Boc ketimines

Rh₂OAc₄ (5 mol%) toluene, rt, 24 h up to 96% yield up to >20/1 dr

Liang-Yong Mei,^a Xiang-Ying Tang,^{b*}and Min Shi^{ab*}