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ABSTRACT: We have developed a new global optimization method for the determination of interface structure based on 
the differential evolution algorithm. Here, we applied this method to search for the ground state atomic structures of the 
grain boundary (GB) between the armchair and zigzag oriented graphene. We find two new grain boundary structures 
with considerably lower formation energy of about 1 eV nm–1 than those of the previously widely used structural models. 
We also systematically investigate the symmetric GBs with GB angle ranging from 0° to 60°, and find some new GB struc-
tures. Surprisingly, for intermediate GB angle the formation energy does not depend monotonically on the defect concen-
tration. We also discovered an interesting linear relation between the GB density and the GB angle. Our new method pro-
vides important novel route for the determination of GB structures and other interface structures, and our comprehensive 
study on GB structures could provide new structural information and guidelines to this area. 
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I. INTRODUCTION 

Graphene, the two dimensional (2D) material, shows 
great application potential1-3 with the advancement in 
techniques such as chemical vapor deposition that makes 
the large-scale growth of graphene feasible.4-9 In practice, 
however, graphene is always grown with different defects, 
among which grain boundary (GB) is one of the most fre-
quently formed defects.10-12 GBs provide numerous novel 
possibilities in modifying graphene such as tuning the 
charge distribution12 and transport property13. Therefore, 
GBs in graphene have been the focus of numerous re-
searches due to their great significance in science and 
application.10-15 

Intensive works have been done to study the broad 
properties of GBs.13-29 By analyzing the symmetry between 
the Brillouin zones of two sides, a theory was developed 
to predict the electronic transport property through GBs,13 
indicating symmetric GBs have zero transport gap, but 
the asymmetric GBs have finite gaps. Such predictions are 
confirmed by non-equilibrium Green’s function (NEGF) 
calculations,13,16 and provide promising potential to regu-
late the electric transport properties. As a result, some 
heterojunctions have already been designed using GBs to 
develop new transport devices.17,18 The mechanical re-
sponses of under tensile stress were studied by molecular 
dynamics (MD) simulations.19-22,28 It is found that the 
strength of graphene with GBs are affected by not only 
the density of GBs,19 but also the local structures at 
GBs.19,20 Thermal properties were examined by both 
NEGF23 and MD24,25 techniques, indicating the excellent 
thermal conductivity of GBs.23 

Structures are the basis of theoretical investigations on 
materials, so are the GBs in graphene. People have devel-
oped some methods to construct GB structures, e.g., 
Yazyev and Louie14 used elementary topological defects to 
build dislocations and GBs in graphene. However, if we 
extend the 2D single-composition GB to three dimension-
al (3D) multi-composition compound interfaces, the 
complexity of constructing structures from elementary 
defects would exponentially increase. One kind of prom-
ising methods to predict complex structures is the global 
optimization, which has been successfully applied to pre-
dict both 2D and 3D crystal structures.30-39 However, even 
this method is so powerful, it may still have a lot of diffi-
culties to overcome in predicting the interface structure, 
which is usually much more complicated than the corre-
sponding bulk systems, largely increasing the complexity 
of the task. Initial efforts towards interface structure pre-
diction have been undertaken in some precedent work40,41 
using global optimization algorithms. 

Among the numerous global optimization algorithms, 
differential evolution (DE) has been applied to many 
fields and achieved great successes.42-46 DE is based on the 
idea that using the differentials of randomly selected solu-
tion candidates to mutate the existing ones and the gen-
erated candidates are accepted only if they have im-
provements (a greedy strategy). DE is strongly believed to 
have competitive performance in structure searching be-

cause previous studies showed DE outperforms many 
other algorithms with the tested functions and prob-
lems.42,44,46 

 

 

Figure 1. (a), (c) The previously widely used struc-
tures of GB between armchair and zigzag oriented gra-
phene with the gathering of one pentagon and two hep-
tagons, denoted as (a) GB-I in (7, 0)|(4, 4) and (c) GB-i 
in (5, 0)|(3, 3). (b), (d) The presently found GB struc-
tures with an armchair-like shape, denoted as (b) GB-II 
in (7, 0)|(4, 4) and (d) GB-ii in (5, 0)|(3, 3). Atoms in the 
optimization layer are marked using gold color. (e) A 
schematic illustration of the slab model used in our 
interface structure prediction. 

 

In this paper, to generally solve the global optimization 
of the 2D (the GBs in graphene could be viewed as 2D 
interfaces) and 3D interfaces, we developed a method 
based on DE algorithm to theoretically predict the inter-
face structures. The performance of our method turns out 
to be very efficient in searching interface structures, for 
example, the GBs in graphene, which is the main focus of 
this work. We first applied our method in one asymmetric 
case – GB between armchair and zigzag oriented gra-
phene. This type of GB is of great interests13,15-18,21-25 be-
cause people wonder how graphene behaves when the 
two different types of edges with distinct structural, elec-
tronic and magnetic properties meet. It turns out that we 
have found two new structures [GB-II and GB-ii in Figure 
1(b)] with considerably lower formation energy of about 1 
eV nm–1 than the previously widely used one [GB-I in Fig-
ure 1(a)]. Then we performed large-scale scan of the 
symmetric GBs in graphene, with the GB angle varying 
from 0° to 60°, and we derived the energy curve with re-
spect to GB angle, which is consistent with the previous 
studies.14,15,27 We have also found some new GB structures 
under some specific GB angles that have not been report-
ed before, to our best knowledge. Interestingly, we found 
that the defect density along the GB direction would be 
linearly dependent on the GB angle. This relation could 
be explained by analyzing the specific defect topologies, 
and could be treated as the guidance in constructing 
symmetric GB structures in graphene. Our new method 
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could be generally applied in searching interface struc-
tures where broad interesting phenomena emerge. The 
new structures found in this paper provide different 
structural basis for the further investigations on GBs in 
graphene. 

 

 

II. METHODS 

DE Based Global Optimization Method for Inter-
face Structure Prediction. In our approach, we use the 
slab model to simulate the interface system. As shown in 
Figure 1(e), we set up the structure with different layers 
stacking along the c axis, which is set perpendicular to the 
ab plane, and the periodic boundary conditions (PBC) are 
applied on a and b directions. At the bottom is the fixed 
layer, which means the atoms in this layer is fixed during 
the whole searching process to simulate the bulk. The 
optimization layer is in the middle, corresponding to the 
interfacial region. On the top is the rigid layer, in which 
the atoms always keep the relative coordinates constant, 
but could translate as a whole rigid body. During the sim-
ulation, besides the degrees of freedom (DOF) of the 
atomic positions (2 and 3 for the 2D and 3D cases, respec-
tively) in the optimization layer, we also allow three more 
DOF: the height of the optimization layer and the transla-
tion along a and b directions for the rigid layer. This op-
eration would lead to more reliable results by avoiding 
the constraints brought about by the initial setup. The 
dimension of the problem in the 3D case is thus 3Nopt + 3, 
where Nopt is the number of atoms in the optimization 
layer. 

DE is a global optimization algorithm designed to 
search the multidimensional continuous spaces to best fit 
to the designated evaluation functions.42-46 In the basic 
DE algorithm, each solution candidate is treated as a vec-
tor in the D-dimensional phase space, and involves in 
three steps: mutation, crossover and selection. The muta-
tion operation generates a mutant vector v for the ith 
target vector x in the population as follow: 

��,��� � �	�,� 
 ���	,� � �	�,��                (1) 

where G denotes the generation, r1, r2 and r3 are random 
indexes in the population which are mutually different 
from i, F is a parameter that controls the effect of differ-
ential vector. Crossover step creates the trail vector 
��,��� � ����,���, ��,���, … , ���,���� according to the fol-
lowing scheme: 

���,��� � ����,���, if ���� � �� or � � ��� �
!��,�, if ���� " �� and � # ��� �          (2) 

where ���� ∈ %0,1( is the jth uniformly generated random 
number, ��� �  represents a randomly chosen index of 
dimension to ensure the ith target vector gets at least one 
element from the mutant vector, and �� ∈ %0,1( is the 
crossover probability. Selection in DE simply takes the 
greedy principle to accept the trail vector only if it is bet-
ter than the previous corresponding target vector. Two 
important parameters F and CR in DE control the general 
behaviors of the algorithms and in this work we choose F 

= 0.5 and CR = 0.9. To optimize interface structures using 
DE, each potential structure corresponds to one target 
vector with D = 3Nopt + 3. 

The use of symmetry constraints35,36,39 is suggested to 
significantly improve the performance of global optimiza-
tion. However, usually the interfacial part has rather low 
symmetry since the bulk structures on the two sides are 
always asymmetric. To achieve the high efficiency of 
global optimization based on DE, we propose another 
strategy. In DE, operations are applied dimension by di-
mension. However, it might happen that the vectors cor-
responding to two interface structures are misaligned, 
which results in unrealistic high energy structure by the 
DE operations. Thus, we take a sorting strategy for the 
atoms in the optimization layer according to their posi-
tions, so that structures would not be distorted too much 
or even destroyed by DE. With this additional sorting step, 
the efficiency of the global optimization by DE could be 
kept high. 

After all structures are generated by DE in each genera-
tion, all the 3Nopt + 3 DOF of every structure will be re-
laxed to its local minimum, using either empirical poten-
tials or first-principles calculations. In this work, because 
of the 2D nature of graphene, the DOF is reduced to D = 
2Nopt + 2. The local optimization is a common routine in 
structure prediction, aiming to effectively reduce the 
search space and to get total energy of each structure. 

Empirical Potentials Calculations. Our empirical po-
tentials calculations are performed using LAMMPS47 with 
the widely used AIREBO potential48 for graphene systems. 
For local optimization in DE searching, we minimize the 
total energy of every structure using conjugate gradient 
method. For the molecular dynamics (MD) simulations 
which are used to get the mechanical property of the 
structure finally predicted by DE, we use the following 
method:20 MD simulations are performed using NVE en-
semble, i.e., atom number, volume and energy are con-
stant, the cutoff radius of C-C bond rCC is set 1.92 Å, the 
graphene sheets are applied with uniaxial strain at a rate 
of 10-9 s-1, and Virial stresses are calculated (See results on 
stress in Supporting Information). 

First-principles Calculations. The first-principles cal-
culations based on DFT are performed using VASP49 with 
the projected augmented wave method.50,51 We use first-
principles calculations to ensure the final results from DE 
and to study the electronic properties. For such purposes, 
we use the local density approximation to describe the 
exchange-correlation potential in the DFT calculations. 
Structures are relaxed until the atomic forces are less than 
0.01 eV/Å and total energies are converged to 10)* eV 
with the cutoff energy for plane-wave basis wave func-
tions set to 400 eV. 

Searching Criterion. We intend to search the struc-
ture of the GB between the armchair and zigzag oriented 
graphene as an example of illustration. 

For this type of GB, many of the abovementioned 
works13,15-18,21-25 adopted two similar GB structures shown 
in Figure 1(a) and (c), denoted as GB-I and GB-i in this 
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work, corresponding to (7, 0)|(4, 4) and (5, 0)|(3, 3) lattice 
matching respectively. Both GB-I and GB-i present the 
same structural character that one pentagon and two hep-
tagons gathered at one point (fly-head pattern). However, 
the gathering of defects is likely to increase the intrinsic 
stress,22 making the structure relatively unstable with 
high energy, similar to the isolated pentagon rule in de-
termining the structures of fullerenes.52,53 Thus, a quite 
serious and questionable issue is whether GB-I or GB-i is 
the ground state structure of the GB between the arm-
chair and zigzag oriented graphene. Therefore, it is desir-
able to reinvestigate this GB structure using the method 
we developed in this work. 

Since we use the slab model to simulate the interface 
structure with one dimensional PBC, the structure we 
used is actually carbon nanoribbon with GB parallel to the 
edges. The two edges are passivated by hydrogen atoms, 
and are about 15 Å away from the GB. For each case of 
lattice matching, we keep the fixed and rigid layers the 
same, and perform a series of searching with different 
numbers of atoms in the optimization layer. We adopt a 
simple searching criterion to minimize the relative for-
mation energy defined below: 

∆,-.	/�0.12� � 3,2.2�0.12� � ,2.2�GB-I� � �0.12 � 7� 9
:;</>                                    (3) 

where ∆,-.	/ is the relative formation energy, ,2.2�0.12� 
the total energy of the structure with a certain Nopt, and µC 
the chemical potential of one carbon atom taken from 
pristine graphene. In fact, we are using GB-I as the zero 
point in the comparisons, i.e., ∆,-.	/�GB-I� � 0, because 
Nopt = 7 for GB-I (see Table 1). This equation is used in 
searching structures specifically in (7, 0)|(4, 4) GB, with a 
certain periodicity L along GB. For (5, 0)|(3, 3) GB, Eq. (3) 
could be rewritten by substituting GB-i for GB-I and 
�0.12 � 5� for �0.12 � 7�, because Nopt = 5 for GB-i (see 
Table 1). 

To get the absolute graphene GB formation energy so 
that we could compare different structures in a more di-
rect manner, we construct the periodic structures made of 
only carbon atoms by applying inversion symmetry to the 
slabs we used in the global optimization. The absolute 
formation energy could be written as:21 

,-.	/ � �,2.2 � 0 9 :;�/2>                   (4) 

where Etot denotes the total energy of the periodic cell 
containing two equivalent GBs with the length of GB L, 
and N the total number of atoms in the cell. 

    

III. RESULTS AND DISCUSSIONS 

Predicting Armchair-Zigzag Grain Boundary Struc-
tures. Our method is quite efficient in finding the lowest-
energy structures, and one benchmark is provided in the 
Supporting Information. For the (7, 0)|(4, 4) GB, we scan 
a large range of Nopt and plot our results in the upper pan-
el of Figure 2. When Nopt = 15, a new GB structure is found, 
shown as GB-II in Figure 1(b). After full structural relaxa-
tion by DFT, we obtain Eform (GB-I) = 4.29 eV nm–1 and 

Eform (GB-II) = 3.22 eV nm–1 (see Table 1), indicating that 
the formation energy of GB-II is 1.07 eV nm–1 (a consider-
ably large formation energy difference) lower than GB-I. 
The reason for this is quite simple. GB-I structure pos-
sesses a gathering of one pentagon and two heptagons, 
while GB-II is just a clean pentagon-heptagon chain with 
armchair-like shape. Since the gathering of the pentagon 
and heptagon defects in graphene usually leads to higher 
energy, GB-II could effectively reduce the formation ener-
gy comparing with GB-I. Interestingly, when Nopt = 14, we 
found a structure [see upper panel of Figure 2] that has 
slightly lower formation energy than GB-I by empirical 
potential calculations. This structure has a hole in the GB 
and actually if one additional carbon atom is added to the 
middle of the hole, it would become GB-II. 

 

 

Figure 2. The upper panel: the relative formation en-
ergy ∆ABCDE to GB-I by empirical potential for each Nopt. 
GB-II structure is found to have the lowest formation 
energy. Structures with Nopt = 8 and 14 are shown in 
insets. The lower panel: performance of our method 
based on DE algorithm. Black dots represent the total 
energy evaluated for the structures in each generation. 
GB-II is found in 10 generations, indicating high effi-
ciency of our method. 

 

 

We also compute other properties of armchair-zigzag 
GBs. For instance, we have performed MD simulations, 
showing that GB-II has a better mechanical property un-
der uniaxial strain. STM image simulations from first-
principles calculations show that GB-I and GB-II can be 
distinguished by the STM technique. (See details and re-
sults of MD and STM simulations in Supporting Infor-
mation) 
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Table 1. Formation energies of four GBs. Nopt is 
the number of atoms in the optimization layer. 

GBs GB-I GB-II GB-i GB-ii 

Nopt 7 15 5 11 

Eform (eV nm–1) 4.29 3.22 5.45 4.41 
 

 

For (5, 0)|(3, 3) GB, we also find a new structure GB-ii, 
which has a considerably lower formation energy of 1.04 
eV nm–1 than GB-i (see Table 1). Actually, GB-I and GB-i 
are similar, and GB-II is similar to GB-ii as well (see Fig-
ure 1): comparing with GB-I, GB-i lacks one pentagon-
heptagon pair; if we take one pentagon-heptagon pair 
away from GB-II, it naturally becomes GB-ii. However, (5, 
0)|(3, 3) GB has a larger lattice mismatch than (7, 0)|(4, 4) 
GB (3.8% to 1.0%). According to Eq. (4), when calculating 
the absolute formation energy, with two equivalent GBs 
in one unit cell, the farther the two GBs separate, (5, 0)|(3, 
3) GB would have larger formation energy than (7, 0)|(4, 4) 
GB, because the graphene part between GBs would get 
higher energy due to the strain effect. To avoid ambiguity, 
we address here that for all periodic structures in this 
work, we have two equivalent GBs in one unit cell sepa-
rated by about 30 Å from each other. Because (7, 0)|(4, 4) 
GB has a smaller lattice mismatch and lower formation 
energy (see Table 1), practically it is more preferable ex-
perimentally, and we would mainly focus on this type of 
GB. In all four structures considered in this work, GB-II 
has the lowest formation energy (see Table 1). 

Before further investigation on other GB structures, we 
first demonstrate the global optimization efficiency of our 
algorithm for (7, 0)|(4, 4) GB. In our DE simulations, we 
set the size of population to 30, and the maximum gener-
ation number 50. To check the reliability and efficiency of 
our methods, we have performed ten separate independ-
ent DE simulations Nopt = 15 and all found GB-II structure. 
The smallest number of generation of finding GB-II is 4, 
the largest 23, and the average 12.2, evidencing highly effi-
cient performance in this 32-dimensional optimization 
problem. The lower panel of Figure 2 shows the history of 
one typical search for the Nopt = 15 case, with the maxi-
mum generation number set 200 for the purpose of analy-
sis. In this case, the program finds GB-II in 10 generations. 
Note that the average energy of all structures keeps de-
creasing during the simulation owing to the greedy selec-
tion, indicating good convergence of our method based 
on DE. 

 

Predicting Symmetric Grain Boundary Structures. 
Yazyev and Louie14 showed that usually there are three 
types of dislocations in graphene GBs, as shown in Figure 

3 (a – c). Burgers vector FGH�I,/� � �JH� 
 KJH is used to de-
scribe the dislocations. In the (1, 0) dislocation, the pen-
tagon-heptagon pair is symmetrically along the GB direc-
tion. In the (1, 1) dislocation, the pentagon-heptagon pair 

is till along the GB direction, but the pentagon and the 
heptagon are separated by hexagons. The third type is (1, 
0) + (0, 1) dislocation, where there are two pentagon-
heptagon pairs, and neither of them is along the GB direc-
tion. In this type of dislocation, if the two pentagon-
heptagon pairs are adjacent, then it is named as paired 
type [Figure 3(b)], otherwise it is named as disperse type 
[see, e.g., Figure S6(f) in Supporting Information]. Besides 
the above three main dislocations, there is another transi-
tion state between the (1, 0) and (1, 0) + (0, 1) dislocation, 
where both characters exist [see Figure 3(e) for example]. 

 

 

Figure 3. (a – c) Three types of dislocations.14 Listed are 
the examples for (d) (1, 0) dislocation, (e) transition 
region, (f) (1, 0) + (0, 1) dislocation and (g) (1, 1) disloca-
tion. (d – g) show one periodicity along the GB direc-
tion in each case, and the numbers in the figures corre-
spond to those in Figure 4. In this Figure, (f) and (g) are 
new structures reported in this work. 

 

We searched quite a few symmetric GBs with the angle 
ranging from 0° to 60°, and we have successfully found 
the structures that have been reported before, and some 
new structures at the angles that has not been reported 
yet, to our best knowledge.14,15,27 Also, by the construction 
principles,14 i.e., three types of dislocation, we also manu-
ally created some GBs with higher energy but reasonable 
structures. Here are some examples shown in Figure 3(d – 
g), where Figure 3(f) and (g) are the new structures that 
have not been reported. (See all structures studied in this 
work in Supporting Information) 

For all the GB structures obtained by DE or manual 
construction we calculated their absolute formation ener-
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gy using empirical potential with Eq. 4. The obtained 
formation energies with respect to the angle of the sym-
metric GBs are shown in the upper panel of Figure 4, and 
all structures are relaxed without 2D restriction, i.e., they 
are allowed to relax in the third dimension. We find that 
all the lowest energy structures at each angle can be 
found by our DE method. The newly found structures in 
this work are denoted by solid symbols in Figure 4, and 
those reported before are denoted by empty symbols. 
From the upper panel of Figure 4, we find that in small 
angle GBs, (1, 0) dislocation will dominate the structures. 
However, at large angle GBs, both (1, 0) + (0, 1) and (1, 1) 
dislocations could be constructed reasonably, but usually, 
(1, 0) + (0, 1) dislocation would lead to lower formation 
energy, which is consistent with previous study.14,27 

 

 

 

Figure 4. Upper panel: Formation energy versus sym-
metric GB angle. All energies are derived from the em-
pirical potentials calculation, including GB-II, which is 
used as comparison, after fully relaxation in 3D space, 
denoted by brown dashed line. Lower panel, depend-
ence of GB density along the GB direction on the GB 
angle. All detailed structural information of these struc-
tures is in Supporting Information. Solid points are the 
new structures found in this work, while the empty 
ones are the structures previously proposed.14,15,27 

 

 

 

Very interestingly, from the lower panel in Figure 4, 
one can find the number of pentagon-heptagon pair n5-7 
per GB length, shows a linear dependence on the GB an-
gle. The slop is uniquely dependent on the type of dislo-

cation in the GB. Generally speaking, the pentagon-
heptagon pair n5-7 density not only depends on the grain 
boundary angle, but also depends on the type of disloca-
tion. For the small GB angles, the defect density linearly 
increases with the GB angle, while for the large GB angles 
the defect density linearly decreases with the GB angle. 
The highest density is observed near 32.2°. Considering 
the low energy structures, at the small angle side the dis-
location type is (1, 0), while the large angle side the dislo-
cation type is (1, 0) + (0, 1). Another special point at 21.8° 
can be also considered as pseudo-maximum of the defect 
density, which is a turning point of the dislocation type 
changing from (1, 0) to (1, 1), although the GBs with dislo-
cation (1, 1) are meta-stable structure. These two points 
could be treated as the dislocation type transition points, 
which are corresponding to a local minimum of the for-
mation energy, as shown in Figure 4. In other word, at 
such points, the GB structures are highly symmetric,27 the 
characters of two types of dislocations could coexist, as 
the strain in bonds are very small at these angle, and thus 
the formation energy has local minima in terms of GB 
angle. These linear relations could be proved by analyzing 
the topological characters of the different types of disloca-
tions. 

Generally, the formation energy should have positive 
correlation with the defect density. However, one can 
surprisingly see the non-monotonic behavior between 
defect density and formation energy in Figure 4. Actually, 
the monotonic behavior appears only for the small angle 
and large angle side. During the transition region be-
tween 21.8° and 32.2°, the strain energies in GB are relaxed, 
so the formation energies vary only slightly. However, 
from 32.2° to around 42.0°, although it has only one kind 
of defect, the formation energy increases with decreasing 
the defect density. The reason could be that, in this re-
gion (greater than 32.2°), as GB angle increasing, the dis-
tance between the pairs of pentagon-heptagon also in-
creases [see structures of (1, 0) + (0, 1) dislocation in Fig-
ure S6 in Supporting Information], which decreases the 
interaction between pentagon-heptagon pairs29 resulting 
in a small increase in the formation energy. While the GB 
angle is larger than around 42.0°, the distance between 
the pairs becomes large enough, and the interaction be-
tween pairs becomes negligible, thus the formation ener-
gy of GB decreases with the decrease in the defect density. 

In Figure 4, the formation energy and the defect density 
of armchair-zigzag GB-II is also plotted for comparison, 
but note that GB-II is asymmetric (with GB angle 30°) 
rather than symmetric. What is counterintuitive is that at 
the highest GB density, e.g., GB-II and the topmost point 
at 32.2° in lower panel of Figure 4, they have relatively 
lower formation energies within the neighboring GB an-
gles. This can be understood as follows. In fact, the for-
mation energy is highly dependent on the local distortion 
of the C-C bonds. These two structures have energetically 
favorable arrangements of the pentagon-heptagon pairs 
so that the strain energy is sufficiently released, resulting 
in lower formation energies. 
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IV. CONCLUSION 

To predict the structure of interface, we have developed 
a global optimization method using DE algorithm. We 
have applied our method to searching the structure of GB 
between the armchair and zigzag oriented graphene, and 
found the new structure GB-II (GB-ii) that has a 1.07 eV 
nm–1 (1.04 eV nm–1) lower formation energy than the pre-
viously widely used GB-I (GB-i) in (7, 0)|(4, 4) GB [(5, 
0)|(3, 3) GB].54 We have comprehensively studied the 
symmetric GBs with GB angle ranging from 0° to 60°. We 
pointed out the linearity between the defects density 
along the GB direction and the GB angle, however the 
formation energy does not show monotonic behavior with 
defect density. The results in this work provide new in-
sight on the structures and properties of GBs in graphene. 

 

 

Supporting Information. Benchmark of our method, 
properties of armchair-zigzag GB structures, all GB struc-
tures studied in this work. 

AUTHOR INFORMATION 

Corresponding Author 
§ hxiang@fudan.edu.cn 
§ xggong@fudan.edu.cn 

* These two authors contributed equally in this work. 

† Present address: Department of Physics, University of 
California, Berkeley, California 94720, USA 

    

ACKNOWLEDGMENT  

The authors thank M. Ji, X. Gu, S. Chen and Z. Guo for in-
sightful discussions. The work was partially supported by the 
Special Funds for Major State Basic Research, National Sci-
ence Foundation of China (NSFC), Program for Professor of 
Special Appointment (Eastern Scholar), and Foundation for 
the Author of National Excellent Doctoral Dissertation of 
China. 

 

REFERENCES 

1.  K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. 
Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, 
Nature 2005, 438, 197. 

2. Y. Zhang, Y.-W. Tan, H. L. Stormer and P.  Kim, Nature 2005, 
438, 201. 

3. A. K. Geim and K. S. Novoselov, Nature Materials 2007, 6, 
183. 

4. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. 
Dresselhaus and J. Kong, Nano Lett. 2009, 9, 30. 

5. M. P. Levendorf, C. S. Ruiz-Vargas, S. Garg and J. Park, Nano 
Lett. 2009, 9, 4479. 

6. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S.-S. Pei, 
App. Phys. Lett. 2008, 93, 113103. 

7. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. 
Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. 
S. Ruoff, Science 2009, 324, 1312. 

8. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-
H. Ahn, P. Kim, J.-Y. Choi and B. H. Hong, Nature 2009, 457, 
706. 

9. Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. 
Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. 
Guisinger, E. A. Stach, J. Bao, S.-S. Pei and Y. P. Chen, Nature 
Materials 2011, 10, 443. 

10. P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. 
Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. 
Hustedt, Y. Zhu, J. Park, P. L. McEuen and D. A. Muller, Nature 
2011, 469, 389. 

11. D. L. Duong, G. H. Han, S. M. Lee, F. Gunes, E. S. Kim, S. T. 
Kim, H. Kim, Q. H. Ta, K. P. So, S. J. Yoon, S. J. Chae, Y. W. Jo, 
M. H. Park, S. H. Chae, S. C. Lim, J. Y. Choi and Y. H. Lee, Nature 
2012, 490, 235. 

12. J. Lahiri, Y. Lin, P. Bozkurt, I. I. Oleynik and M. Batzill, Na-
ture Nanotechnology 2010, 5, 326. 

13. O. V. Yazyev and S. G. Louie, Nature Materials 2010, 9, 806. 

14. O. V. Yazyev and S. G. Louie, Phys. Rev. B 2010, 81, 195420. 

15. Y. Liu and B. I. Yakobson, Nano Lett. 2010, 10, 2178. 

16. J. Zhang, J. Gao, L. Liu and J. Zhao, J. App. Phys. 2012, 112, 
053713. 

17. X.-F. Li, L.-L. Wang, K.-Q. Chen and Y. Luo, J. Phys. Chem. 
C 2011, 115, 12616. 

18. X.-F. Li, L.-L. Wang, K.-Q. Chen and Y. Luo, J. Phys.: Con-
dens. Matter 2012, 24, 095801. 

19. R. Grantab, V. B. Shenoy and R. S. Ruoff, Science 2010, 330, 
946. 

20. Y. Wei, J. Wu, H. Yin, X. Shi, R. Yang and M. Dresselhaus, 
Nature Materials 2012, 11, 759. 

21. J. Zhang, J. Zhao and J. Lu, ACS Nano 2012, 6, 2704. 

22. B. Wang, Y. Puzyrev and S. T. Pantelides, Carbon 2011, 49, 
3983. 

23. Y. Lu and J. Guo, App. Phys. Lett. 2011, 101, 043112. 

24. H.-Y. Cao, H. Xiang and X.-G. Gong, Solid State Comm. 
2012, 152, 1807. 

25. A. Bagri, S.-P. Kim, R. S. Ruoff and V. B. Shenoy, Nano Lett. 
2011, 11, 3917. 

26. J. Zhou, T. Hu, J. Dong and Y. Kawazoe, Phys. Rev. B 2012, 
86, 035434. 

27. T.-H. Liu, G. Gajewski, C. W. Pao and C.-C. Chang, Carbon 
2011, 49, 2306. 

28. Z. Song, V. I. Artyukhov, B. I. Yakobson and Z. Xu, Nano 
Lett. 2013, 13, 1829. 

29. J. M. Carlsson, L. M. Ghiringhelli and A. Fasolino, Phys. 
Rev. B 2011, 84, 165423. 

30. C. W. Glass, A. R. Oganov and N. Hansen, Computer Phys. 
Comm. 2006, 175, 713. 

31. G. Trimarchi and A. Zunger, Phys. Rev. B 2007, 75, 104113. 

32. M. Ji, K. Umemoto, C.-Z. Wang, K.-M. Ho and R. M. 
Wentzcovitch, Phys. Rev. B 2011, 84, 220105(R). 

33. D. J. Wales and J. P. K. Doye, J. Phys. Chem. A 1997, 101, 
5111. 

Page 7 of 8 Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



 

 

34. A. Nayeem, J. Vila and H. A. Scheraga, J. Computer Chem. 
1991, 12, 594. 

35. Y. Wang, J. Lv, L Zhu and Y. Ma, Phys. Rev. B 2010, 82, 
094116. 

36. Y. Wang, J. Lv, L. Zhu and Y. Ma, Computer Phys. Comm. 
2012, 183, 2063. 

37. X. Luo, J. Yang, H. Liu, X. Wu, Y. Wang, Y. Ma, S.-H. Wei, 
X. Gong and H. Xiang, J. Am. Chem. Soc. 2011, 133, 16285. 

38. C. J. Pickard and R. J. Needs, Phys. Rev. Lett. 2006, 97, 
045504. 

39. C. J. Pickard and R. J Needs, J. Phys.: Condens. Matter 2011, 
23, 053201. 

40. A. L.-S. Chua, N. A. Benedek, L. Chen, M. W. Finnis and A. 
P. Sutton, Nature Materials 2010, 9, 418. 

41. H. J. Xiang, J. L. F. Da Silva, H. M. Branz and S.-H. Wei, 
Phys. Rev. Lett. 2009, 103, 116101. 

42. R. Storn and K. J. Price, Global Optimization 1997, 11, 341. 

43. R. Storn, Biennial Conference of the North American Fuzzy 
Information Processing Society (NAFIPS) 1996, pp. 519–523. 

44. K. V. Price, Biennial Conference of the North American 
Fuzzy Information Processing Society (NAFIPS) 1996, pp. 524–
527. 

45. K. Price, R. M. Storn and J. A. Lampinen, Differential Evolu-
tion: A Practical Approach to Global Optimization, Springer 2005, 
ISBN 978-3-540-20950-8. 

46. Z. Chen, X. Jiang, J. Li, S. Li and L. Wang, J. Comp. Chem. 
2013, 34, 1046. 

47. S. Plimpton, J. Comp. Phys. 1995, 117, 1. 

48. S. J. Stuart, A. B. Tutein and J. A. Harrison, J. Chem. Phys. b, 
112, 6472. 

49. G. Kresse and J. Furthmüller, Phys. Rev. B 1996, 54, 11169. 

50. P. E. Blöchl, Phys. Rev. B 1994, 50, 17953. 

51. G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758. 

52. H. W. Kroto, K. McKay, Nature 1988, 331, 328. 

53. T. G. Schmalz, W. A. Seitz, D. J. Klein and G. E. Hite, J. Am. 
Chem. Soc. 1988, 110, 1113. 

    54. The GB structures observed experimentally are sometimes 
not global minimum in formation energy due to some other 
factors (such as entropy or non-equilibrium growth). In most 
cases, our strategy for finding the lowest formation energy 
should provide clues to the detailed GB structures. If the readers 
are interested in experimental results, they could refer to the 
above mentioned references and also the following references: B. 
I. Yakobson and F. Ding, ACS Nano 2011, 5, 1569; P. Nemes-Incze, 
P. Vancsó, Z. Osváth, G. I. Márk, X. Jin, Y.-S. Kim, C. Hwang, P. 
Lambin, C. Chapelier and L. PéterBiró, Carbon 2013, 64, 178. 

 

 

 

 

 

 

 

 

 

 

Page 8 of 8Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t


