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Contact Angles on Surfaces Using Mean Field 

Theory: Nanodroplet vs. Nanoroughness 

A. P. Malanoski,a B. J. Johnsona and J.S. Ericksona ,  

With emerging systems and applications accessing features within the nano regime, whether 
due to droplet size or feature size, understanding the wetting behaviours for these materials is 
an area of ongoing interest. Theoretical studies, providing a fundamental understanding of how 
contact angle behaviour changes at these length scales, are important to further such work. 
This study provides a comprehensive examination of the application of lattice density 
functional theory (LDFT) to a pillared surface to confirm the suitability of LDFT for studying 
more complex surfaces. Incorporation of the correct level of detail for the fluid-wall 
interaction was found to produce all of the qualitative changes that have been observed in off-
lattice theories. Though previous reports have provided apparently conflicting results, the more 
comprehensive examination of feature sizes provided here demonstrates that those behaviours 
are consistent with one another. The well-studied failure of macroscopic models that results 
from non-negligible line tension contributions and small droplet to feature size ratios was 
demonstrated with LDFT. Furthermore, the failure of macroscopic models resulting upon 
reduction in feature size, which has been considered less often, is clearly demonstrated. A key 
assumption of the macroscopic models is the consistent interaction between surface and fluid 
regardless of the flatness or roughness of the surface. The density functional results presented 
here show that, for the smallest features, this is not the case and demonstrate that macroscopic 
models do not predict the correct contact angle for droplets of any size on nano rough surfaces. 
 

 

 

 

 

 

 

 

Introduction 

The application of microscopic approaches using density functional 
formalisms for evaluation of nanodrops on surfaces has been the 
topic of several papers. Young’s classic description of wetting angles 
was developed over 200 years ago. The equation relates the contact 
angle (θ) to the solid-vapour (γvw), solid-liquid (γlw), and liquid-
vapour (γvl) free energies while neglecting contributions from the 
intersection of the three phases.1  
cos � � ���	�
�

��

                (1)                                                                             

This classic result is reasonably accurate and routinely used for 
macroscale droplets on flat, homogenous surfaces that have 
negligible contributions from the intersection of the phases. Several 
studies have produced modifications to equation (1) to quantitatively 
account for the contribution of the phase intersections.2-6 It was 
found that, as droplet size decreases into the micro scale range, 
equation (1) holds, while for cases focused on droplets approaching 
the nanoscale, inclusion of contributions from the intersection of the 

phases becomes important. Extensions to this simple model were 
also developed to address chemical and physical heterogeneity 
(Cassie-Baxter and Wenzel models, respectively). These models are 
focused on behaviour of large droplets and ignore line tension 
contributions.7-9 The Cassie-Baxter form initially developed for 
chemical heterogeneity on flat surfaces has been further extended for 
application to systems with physical heterogeneity by assuming that 
one surface within the system (representing air) has a 180° contact 
angle. These two models predict two very different types of droplets 
on rough surfaces. In the Cassie-Baxter model, the droplet sits on top 
of the structure with a vapour phase surrounding the features. In the 
Wenzel model, the droplet is in intimate contact with the entire 
surface. Several excellent reviews cover work on a range of issues 
that relate to droplets considered using these models.10-12  

Some effort has been made to more rigorously define the 
relationship between contact angle and free energies, but these 
definitions are rarely applied to physical studies. The Wenzel and 
Cassie models have been shown to be special cases of these more 
rigorous and general relationships.13, 14 Depending on real system 
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conditions, a Wenzel-type drop or a Cassie-type drop will be more 
energetically favourable. Conditions under which the application of 
these models may fail have also been actively discussed in the 
literature.14-17 These failures are most often related to systems for 
which the critical assumptions of the models fail to hold. A critical 
assumption, for example, is that the droplet is much larger than the 
size of surface variations, whether physical or chemical. There are 
other assumptions for these models that, to date, have not been 
encountered in experimental systems. As capabilities and systems 
continue to evolve, assumptions regarding the composition of the 
surface and the accuracy of representing surface interactions based 
on the flat surface assumption may become problematic.  

Although the effects of metastability and hysteresis often prevent 
the observation of the lowest energy configuration for real droplets, 
thermodynamic considerations are still important to understanding 
the behaviours observed for droplets on surfaces. Density functional 
formalisms allow a detailed examination of a range of small drop 
sizes, incorporate molecular interactions, allow study of metastable 
as well as stable states, and provide a point of comparison for other 
theories. While small droplet behaviour will deviate from that 
predicted by the macroscopic models, density functional formalisms 
with the proper level of detail can capture those deviations. 
Formalisms capturing varying levels of detail have led to the 
generation of several different models.18-21 A lattice density 
functional study found that trends in overall behaviour for 
nanodroplets could be qualitatively predicted by simple theories 
while the physically observed contact angles were shifted to smaller 
than predicted values.21 A more detailed off lattice 2D density 
functional study found similar behaviour for some wall-fluid 
interaction strengths.18, 19 This study also identified a behaviour that 
was the opposite of that described by the simple theories for some of 
the cases considered. This model considered conditions (wall-fluid 
interaction strengths, height, shape, width, and spacing of features) 
that were highly different from the other study in addition to the 
inherent differences in spatial detail. It is important, when making 
these comparisons, to understand whether differences in predictions 
are due to changes in variables describing the system or due to the 
difference in lattice versus off lattice approach. Lattice simulations 
are significantly faster than off lattice, but, if details critical to 
modelling real systems are not present, the benefit of faster solutions 
is not relevant.  

The effort described here applies a lattice density functional 
formalism to a broader study of variations in surface configuration 
and droplet size. We sought to access a range over which the contact 
angle of a droplet is not predicted by the Cassie-Baxter or Wenzel 
equations. A broader study of the variations in surface configuration 
also provides better context for previous theoretical work and 
accounts for the apparent disagreement in observed trends with 
previous off lattice studies. A unique advantage of lattice density 
functional formalisms is the ability to explore model systems that, 
while less realistic, offer a clearer understanding of the influence of 
different levels of detail. It is also possible to calculate contact 
angles by several different methods allowing for direct comparison 
to other studies. Here, the use of a lattice density functional model 
allows exploration of a large number of physical features and 
interaction conditions in order to provide an overview of important 
effects as droplet and/or physical feature size enter the nano regime. 

Methods 

Lattice model 

A 3D single occupancy lattice density functional model developed 
previously was used to study the wetting behaviour on various 

surface structures.22 The model allows for a mean field square-well-
type attraction for nearest neighbour sites on a lattice. For this study, 
a simple cubic lattice was used. The grand potential function, �Ω��, 
of M lattice sites and lspe species, which is 1 (one) for this study, is 
represented by the following expression: 
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where ρi

k is the density of species k at lattice site i, β is 1/kT where T 
is the temperature and k is Boltzmann’s constant, Vi

k is the external 
potential acting on species k at lattice site i, µi

k is the chemical 
potential of species k at lattice site i, Ne is the number of interacting 
neighbours for the chosen lattice (which in the case of a simple cubic 
lattice is 6), and d(i, m+ and (i, m+ are lattice dependent functions to 
obtain neighbor positions. The critical temperature for this model is 
kTc = -ρcN&4

55
/2 where the critical density is ρc = 0.5 and &4

55   = -1.0 
is the mean field fluid interaction which results in kTc = 1.5. The 
model was studied at a single temperature, T/Tc = 0.234. The wall 
sites were not considered to be a species for modelling purposes. It 
was determined to be more efficient to compute the contribution 
from wall sites for each individual species at each lattice site. These 
values were added to the βVi

k value for that lattice site. This means 
that the wall-fluid interactions only needed to be calculated once for 
a given solution. The potentials used are described below. 

A single temperature was selected for evaluation at T/Tc = 0.234 
to facilitate comparison to other studies while limiting the number of 
cases to be evaluated under this effort. The range of possible 
temperatures for the model is limited by the critical temperature of 
the system.  It should be noted that the form of the data utilized 
(presented as the interaction energy required to obtain a given 
contact angle on a flat surface) allows for generalization of the 
results to other temperatures.  

The partial derivatives with respect to the species density at each 
site can be determined from the grand potential functional: 
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At equilibrium, all these partial derivatives equal zero, and Eq. 2 is 
at its global minimum. In practice it is possible to solve for a local 
minimum rather than the global minimum depending on the initial 
density values assigned to all lattice sites. We interpret the local 
minima as metastable equilibrium points. Physical droplet DFT 
solutions are solved in the NVT ensemble where the Helmholtz free 
energy describes the system. This ensemble has additional 
constraints that the total N of each species is constant. Using 
undetermined Lagrangian multipliers these constraints can be 
incorporated and the partial derivatives can be expressed as: 
 
6($;8�+

689
: �
ln 	��

� � ln�1 � ∑ ��
�����

� � � �"�
� � <� �

$
% ∑ ∑ &'(�,*+

�,����
, �-(�,*+

,.�*     (4) 

 
where 
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A Picard iteration scheme was used to solve for the site densities at 
the specified chemical potential using the set of partial derivatives in 
Eq. 3 or for given fixed amounts of species using Eq. 4 and 5. 
Density functional theory is advantageous in this regard because the 
appropriate free energy is easily computed, and a global minimum 
can be selected from any local minima generated using different 
initial conditions. 

The wall-fluid interaction was modelled in one of two ways to 
study the effect of including different levels of detail. A square well 
potential interaction between nearest-neighbour fluid sites to all wall 
sites (SW potential) was used as a less accurate model and a 
potential adopted from a previous study was used to better represent 
the solid-fluid interaction.21 This potential consists of a Lennard-
Jones 12-6 potential for sites in pillar structures on top of a surface 
represented by an integrated wall potential (LJ potential). The 12-6 
potential was cut off at 8σ where σ is the distance of the lattice site 
separation and also the effective diameter of fluid molecules. For 
most of the studies a simple square well nearest neighbour model 
was used for the fluid-fluid interaction. This model is sufficient to 
provide the necessary vapour-liquid phase interaction. A simple 
stepped interaction considering the closest three lattice sites was also 
evaluated. This model did not result in significant perturbation to the 
observed qualitative behaviours. While the exclusion of mid- and 
long-range fluid-fluid interactions could result in oversimplification, 
more complicated potentials would diminish the benefit of using the 
lattice rather than off lattice formalisms. Comparison to established 
models of behaviour on flat surfaces was used for validation of this 
approach (see Results).   

Several types of DFT solutions were performed for this work. The 
x-dimension shall always refer to the position perpendicular to the 
wall while y- and z-dimensions are parallel to the surface. When a 
DFT model box has y and z different lengths, the z-dimension is 
assigned to the shorter box length. NVT ensemble DFT solutions are 
used to determine a stable or metastable configuration of a droplet, 
that is either fully 3-dimensional (box size:  150σ x 200σ x 200σ) or 
pseudo 2-dimensional (p2D; box sizes ranged from:  150-500σ x 
200-880σ x length of one to four unit cells). For these cases, initial 
starting configurations used a hemispherical cap region placed at the 
top or base of the features.  

An alternate method for obtaining contact angles is to use the DFT 
model to obtain values for γvw, γlw, and γvl on a given heterogeneous 
surface and use them in Young’s equation to produce a contact angle 
prediction. Young’s equation is normally considered to apply to a 
flat surface where estimations of the various free energies are 
possible, but it can be used for any surface if a method is available to 
determine the free energy values. The contact angle calculated 
represents the large droplet size limit since line tension contributions 
are ignored. For this method, the DFT model was solved in the grand 
ensemble (box size: 15-20σ  + height of feature x, one or two unit 
cells of pattern). Three different solution conditions were used: (1) a 
bulk fluid with a vapour-liquid interface present, (2) a liquid above a 
surface, and (3) a vapour above a surface. These cases provide the 
liquid-vapour, liquid-wall, and vapour-wall free energies. Young’s 
equation is then used to calculate a contact angle. The bulk fluid 
solution is required only once for a given temperature condition. 
Initial configurations for each wall interaction case consist of a thin 
layer of liquid near wall for vapour, a thick layer of vapour near 
wall, and the density profile that was the solution of the previous 
run. Unless reported otherwise, the features used in the DFT model 

are square pillars described by s for the side length, d for the 
separation between pillars, and h for the height.  

 

 

Results 

Flat surfaces: methods for calculating contact angles 

In order to test the methods used here, we will first consider 
predictions from the models for flat surfaces. There are several 
approaches to solving for contact angles. Fundamentally, 
determinations involve either application of Young’s equation (for 
systems where free energies are calculated) or construction of a 
droplet configuration from which the contact angle can be measured. 
Variations on the latter approach are possible due to the differences 
in methods used for generation of droplet constructs. The 
configuration of fully 3-dimensional (3D), pseudo 2-dimensional 
(p2D), or 2-dimensional (2D) droplets can be solved using lattice 
density functional theory. A p2D droplet results from a 3D droplet in 
which one of the solution box lengths is much shorter than the others 
and the initial configuration forms a periodic infinite cylinder in that 
direction. Though these systems do not reflect physically 
reproducible conditions, the use of a 2D or p2D rather than the full 
3D droplet is attractive because the solutions require less 
computation time and allow larger droplet diameters to be studied. 
Faster solution times also allow for more complete exploration of the 
metastable droplet states possible in lattice density functional 
models. The p2D DFT solution is typically more useful than a 2D 
DFT solution because identical surface structures can be evaluated 
under the 3D configuration. This is not necessarily the case for 
strictly 2D DFT solutions. Unlike droplet constructs, contact angles 
calculated using Young’s equation with DFT free energies neglect 
line tension contributions (but not other potential contributions) and 
represent the contact angle for larger droplets on the nano rough 
surfaces studied. The DFT solution box for this technique can be 
significantly smaller and may be solved in the grand ensemble 
providing a great reduction in computation time. Using this 
approach, contact angles can be calculated for a range of wall-fluid 
interaction strengths (for example, from wetting to non-wetting) in 
the time needed to solve a single p2D droplet case at one wall-fluid 
interaction strength.  

Figure 1 presents results for 3D and p2D droplets on a flat 
surface. These results are compared to those from application of 
Young’s equation, which has no dependence on droplet size, with 
DFT free energies for two types of wall-surface interaction, the LJ 
and SW potentials described above. The value of the wall-fluid 
interaction for the individual cases was selected so that application 
of Young’s Equation with DFT free energies would produce a 
similar contact angle ~101.8° (Supplemental Figure S1 has results 
for the LJ potential with a more wetting surface showing similar 
trends). The radius reported is for the area of the fluid (ρ>0.5) in 
contact with the surface. As the radius is increased, 3D and p2D 
DFT solutions approach the same limiting contact angle. The contact 
angle deviates from the limiting value at the smallest droplet sizes, in 
agreement with previous findings. The contact angles and radius 
from the DFT solutions can be used with a simple model that 
accounts for the contribution from line tension:4 
 

=>? @A � BCD	BED
BCE

� F
GH     (6) 
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This is the simplest expression used; it does not explicitly describe 
the influence of surface shape, droplet shape, or local contact angle. 
Nevertheless, in all cases, the deviations from the limiting contact 
angle value as droplet size decreases are well described by the 
general form (Table 1). The different potentials (LJ and SW) have 
similar but not identical values. The change in droplet shape due to 
application of 3D versus p2D or use of a different surface potential 
strength alters the calculated line tension in agreement with 
predicted behaviour from earlier models.4-6 
 Using Young’s equation with DFT free energies gives a contact 

angle value 101.7° for the LJ potential and 101.9° for the SW 
potential. This should be the contact angle of physically simulated 
droplets as the droplet size becomes very large; however, simulated 
droplets may report a slightly different angle due to approximations 
used in computing contact angles. The method used to calculate the 
contact angle from a DFT solution of a physical droplet was initially 
adopted from an earlier study.21 The approach involves estimating 
the tangent line to the curvature of the droplet near the surface. The 
contact angle is then the angle between this line and the surface. The 
tangent line is determined by linear regression of the radii of the 
droplet in four successive parallel planes two lattice sites above the 
tallest feature on the surface (x = 2).  
 

 

 
 

Figure 1. Contact angle versus the droplet radius from 3D 
simulations on a flat surface (diamonds), pseudo 2D droplet 
simulations using the LJ potential (circles), pseudo 2D droplet 
simulations using the SW potential (squares), and simulation free 
energies with Young’s equation (solid line). The filled symbols for 
the integrated potential use the alternative method of calculating 
droplet contact angle. 
 

Table 1. Line tension parameters from equation 6. 
 

Droplet 

Type 

Potential  Line Tension 

Parameter Type Strength 

p2D LJ -0.1 -2.35 

p2D SW -0.4561 -2.36 

3D LJ -0.1 -3.38 

p2D LJ -0.12 -1.74 

 
The DFT solutions using the SW potential have droplet contact 

angles that are in good agreement with Young’s equation using the 
chosen method, but the LJ potential does not. Figure 1 also presents 
results for the LJ potential if the four planes examined start 3 lattice 
sites above the tallest feature on the surface (x=3). The contact 
angles for the droplets under this analysis are reduced by roughly 2° 

and are in better agreement with the contact angle determined from 
Young’s equation with DFT free energies. General trends in 
behaviour remain the same regardless of the absolute contact angle 
measurement method applied. The caveat here applies to large size 
limits such as comparing DFT results to predictions from 
macroscopic models. When selecting the method used for estimation 
of contact angles in those cases, it will depend on the potential used. 
For the remainder of this report, contact angles for the SW potential 
are computed using planes starting two lattice sites above surface 
features. Droplet contact angles from the LJ potential surfaces are 
computed starting three lattice sites above the surface features with 
results obtained using the earlier method in parenthesis.21  

Nanodroplet contact angles: average vs. local 

While 2D and p2D DFT models are attractive due to faster 
solution times, a complication is introduced: different approaches 
(2D, p2D, and 3D) provide differing paths of contact that should to 
be taken into account when results are compared. 2D and p2D 
nanodrop DFT solutions trace only sections of the entire contact line 
path captured by a fully 3D droplet. Figure 2 provides two views of 
an isodensity curve for a Cassie-like droplet on pillars based on a LJ 
potential (s = d =10σ and h =10σ; additional curves presented in the 
Supplemental Information, Figure S2). The bottom of the droplet 
takes on a complex shape. It is possible to orient a p2D DFT solution 
box in a number of different ways relative to a cubically arranged 
pillar pattern. These orientations are equivalent with regard to 
surface roughness overall but represent different contact line paths 
for the periodic infinite cylinder that is present in a p2D solution. 
Two configurations are shown in Figure 3A (Case A) and 3B (Case 
B) representing the shortest and longest distance possible between 
pillars for contact line paths. Case B represents an approximate 45° 
rotation of Case A. The area of a pillar top is 0.25 for Case A and 
0.2551 for Case B which, according to the Cassie-Baxter equation, 
would produce a slightly smaller contact angle in Case B. The 
contact angles resulting for the two cases differ significantly with 
Case A at 131.9° (134.9°) and Case B at 135.1° (139.4°) (s = d = 5σ 
and h = 5σ). For comparison, the average contact angle for a full 3D 
droplet DFT solution results from a contact line that passes over 
geometries including the range from Case A to Case B. The contact 
angle, ≈133.0°, is similar to the average of the two p2D cases 
presented, ≈133.5°. Cases A and B were solved for several different 
values of s, d, and h. The local contact angle for each case varies 
depending on the path traced, size, and spacing of the pillars (See 
Supplemental Figures S3 and S4). The contact angle of Case B is 
always larger than that of Case A for a given surface configuration 
(Table 2). 
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Figure 2. Isodensity surfaces (ρ = 0.5) for a 3D droplet using LJ 
potential on a surface with s = d = h = 10σ. Two views are shown, 
with and without the pillars rendered. Additional images provided in 
the Supplemental Information (Figure S2). 

 

 

Nanodroplet contact angles: variation in physical heterogeneity 

 
 For flat surfaces, the type of wall-fluid potential employed 

has a small impact on the observed contact angles. 
Heterogeneous surfaces, however, display different behaviour. 
The use of the LJ potential for pillar sites results in smooth 
variations in the field experienced by fluid across the surface 
while the SW potential better reflects the step changes in fluid 
interaction that are an underlying assumption in the Cassie-
Baxter model. Table 2 presents results for infinite cylinders 
forming a Cassie-like droplet. The contact angle changes by a 
large amount from one potential to another over a range of 
pillar sizes and heights while the fractional surface coverage by 
the pillars remains constant. The contact angles were computed 
by averaging contact angles for a selection of droplet DFT 
solutions where the diameter of the droplet at the surface was 
similar to the sizes used in an earlier study.21 The LJ and SW 
potentials also differed with regard to the conditions required to 
easily form a Cassie-like droplet solution. For s = d < 10σ, a 
Cassie-like droplet could be generated as a metastable case for 
h = 5σ using the LJ potential while h = 10σ  was the minimum 
required for the SW potential. As s = d becomes larger (10σ 
and 20σ) a greater pillar height was required to obtain a stable 
Cassie-like droplet solution. Though the interaction strengths 
for the two potentials were selected to produce the same flat 
surface contact angle, the cases presented do not produce the 
same trends for variations in physical heterogeneity. 3D 
droplets for various pillar sizes were also simulated and 
produced values that agreed with the corresponding cases in 
p2D. The contact angles determined were between the contact 
angles observed for the two orientations of the periodic infinite 
cylinder (results not shown). 
 

 
 

Figure 3. Pillar patterns used for simulations. Panel A has a unit cell 
of 2s where the spacing, d, between the square pillars equals the side 
length, s (surface fraction = 0.25), Panel B has a unit cell of 2*(1+ 
√2)s containing two square pillars with the second pillar shifted in 
the unit cell by √2s in both y and z directions. 
 

The results shown in Table 2 deviated from predictions made 
using the Cassie-Baxter model. This was expected due to the fact 
that droplet sizes considered to this point were in a size range where 
both line tension considerations and the ratio of droplet size to 
feature size may impact the contact angle. In order to explore the 
trends as these contributions become less significant and to 
determine if the Cassie-Baxter model result is approached, larger 
droplet sizes were studied for one surface feature size. Figure 4 
presents results for a pillared surface (s = d = 5σ and h = 10σ) using 
both the LJ and SW potentials. Flat surface results under the LJ 
potential are provided for reference. For this larger range of droplet 
sizes, the specific location of the droplet on the surface has an 
impact. The result is a varying approach to the limiting contact 
angle, rather than the typical smooth, monotonic approach observed 
for flat surfaces. This is a direct result of the changing ratio of 
droplet to surface feature size. It does appear that the droplets 
residing on the tops of the pillars are trending towards a limiting 
value, but the approach is slower than that observed for the flat 
surface. It is clear that, for the SW potential, as droplet size increases 
the contact angle is approaching a value in the range of 120° to 125°. 
It is expected even with this approximate potential that the Cassie-
Baxter prediction of 143° would be the limiting value. In the case of 
the LJ potential, it is possible that the contact angle is approaching 
the Cassie-Baxter prediction, but, because of the variability in the 
contact angles, it is difficult to draw a definitive conclusion.  

 

Table 2. Periodic infinite cylinder Cassie-like DFT droplet 

contact angles (in degrees) 

 

Size Height Pattern* 
Interaction 

Strength 

Contact angle 

Potential LJ 

Contact 

angle 

Potential 

SW 

St. 

Dev. 

0 0   99.6 (103.0) 
99.6 

(103.0) 
0.23 

1 10 A 
LJ=-0.1 

SW=-.4561 
146.3 (152.5) 103.2 0.50 

2 10 A 
LJ=-0.1 

SW=-.4561 
139.5 (144.6) 110.8 0.49 

3 10 A 
LJ=-0.1 

SW=-.4561 
137.2 (141.7) 113.8 1.04 

4 10 A 
LJ=-0.1 

SW=-.4561 
136.2 (140.3) 114.5 1.11 

5 5 A LJ=-0.08 144.9 (149.4)  0.98 

5 5 A LJ=-0.1 131.1 (134.9) 
 

1.28 

A B 

Page 5 of 10 Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



ARTICLE Nanoscale 

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012 

5 5 B LJ=-0.1 135.1 (139.4)  1.30 

5 10 A 
LJ=-0.1 

SW=-.4561 
133.2 (137.2) 116.5 1.25 

5 10 B 
LJ=-0.1 

SW=-.4561 
136.6 (141.0) 123.1 0.68 

5 20 A 
LJ=-0.1 

SW=-.4561 
134.0 (137.8) 116.9 1.29 

5 20 B LJ=-0.1 137.1 (141.5) 
 

0.78 

10 8 A LJ=-0.1 130.8 (135.0) 
 

2.39 

10 8 B LJ=-0.1 136.6 (141.6) 
 

1.24 

10 10 A 
LJ=-0.1 

SW=-.4561 
130.8 (135.0) 120.9 2.39 

10 10 B LJ=-0.1 136.7 (141.6) 
 

1.23 

10 20 A LJ=-0.1 131.6 (135.8) 120.5 2.45 

10 20 B LJ=-0.1 136.5 (141.6) 
 

0.82 

20 22 A 
LJ=-0.1 

SW=-.4561 
133.2 (137.8) 119.7 3.41 

20 22 B LJ=-0.1 137.9 (143.3) 
 

0.80 

20 40 A LJ=-0.1 132.7 (137.0) 121.1 3.32 
* Patterns from Figure 3.  

Droplet contact angles: droplet size independent predictions 

Though the ratio of droplet size to feature size may account for 
effects seen with the larger drops simulated, the contact angles 
generated for the SW potential appear to be approaching a limit well 
below the Cassie-Baxter predicted value for some surface 
configurations. Unfortunately, it is difficult to increase the droplet or 
feature size further in the DFT physical droplet solutions 
implemented in this study. Combining DFT solution free energies 
with Young’s equation provides a method to calculate contact angles 
that correspond to the limit of very large droplet to surface feature 
size ratios. It is expected that a transition from obeying Wenzel to 
Cassie-Baxter equations as the surface roughness is changed would 
accurately predict the DFT contact angles for droplets unless another 
assumption of the theories is invalid.  

 
 

 

 
 

Figure 4. Contact angle versus the number of simulation sites 
contained within the droplet with a density greater than 0.5 from 
p2D simulations on a surface with s = d = 5σ and h = 10σ.  Blue 
circles use the LJ potential on the surface in Figure 3A (solid) and on 
the surface in Figure 3B (open). Green squares use the SW potential 
on the surface in Figure 3A. The solid line is the prediction from 

Cassie-Baxter model using the contact angle on the flat surface. 
Simulation free energies with Young’s equation were used to solve 
for the contact angle for the LJ potential and SW potential for the 
same surface structure (see legend). Also shown is the contact angle 
from simulation free energies with Young’s equation using the SW 
potential when h = 40σ and the limiting value has been reached (see 
legend). For reference, the red diamonds show the droplet results on 
the flat surface.  

 
Under a potential that generates a low wetting flat surface contact 

angle (> 90°), the angle predicted based on the DFT solutions 
diverges from that predicted by the Cassie-Baxter equation based on 
the flat surface contact angle for smaller values of s. Figure 5 
demonstrates that for a given value of s = d, the contact angle 
initially increases in size then approaches a limiting value, θhl, as h 
increases; this last result approximates the predicted Cassie-Baxter 
value. The observed increase in contact angle with increasing height 
below hl (increasing roughness) and dependence of hl on surface 
roughness (changes in s and/or d) qualitatively match the behaviour 
predicted by the Wenzel model. The value of θhl for a given value of 
s, d, and h is different for the two potentials, matching the results 
from physical droplet simulations. The SW potential provides better 
agreement with the Wenzel model predictions than the LJ potential 
under all conditions. Contact angles for small s under the SW 
potential have a greater difference from the Wenzel predictions, but, 
as the size of s increases, the DFT solution contact angle gets closer 
to the Wenzel model prediction, specifically, as the region of 
transition to Cassie-Baxter behaviour is approached. Results for 
other conditions utilizing the LJ and SW potentials are provided in 
the Supplemental Tables S1 through S4. Often, a single 
thermodynamically stable contact angle is determined from the 
different initial configurations used. In some cases a metastable 
solution also appears from one of the initial configurations which 
corresponds to θhl for the given s and d (noted in the tables).  

When θhl is plotted versus s for the LJ and SW potentials, the 
observed behaviours are very different (Supplemental Figure S5A 
and S5B). The interaction strengths used in the presented cases give 
a flat surface contact angle of 101.9° for the SW potential and 101.7° 
for the LJ potential. For the LJ potential, θhl is at a minimum value 
when s = 4σ or 5σ, becomes very large for smaller values of s, and 
seems to be approaching some limiting value for larger values of s. 
For the SW potential, θhl is monotonically increasing as s increases 
and appears to approach some large s value limit. It is possible to 
plot θhl of the three largest s values versus 1/s and make a prediction 
for θhl as s = d becomes very large (Supplemental Figure S5B). For 
the SW potential, the θhl prediction is 143.0°. In the case of the LJ 
potential, θhl is 145.8°. The predicted contact angle for both cases 
using the Cassie-Baxter equation is 143.2°.  
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Figure 5. Contact angles from simulation free energies with 
Young’s equation using the LJ potential with a low wetting 
interaction strength versus pillar height for three pillar sizes.  
 

Returning to consideration of the droplet simulations, contact 
angles for 3D and p2D droplets under the SW potential (Figure 4) 
approach a limit in the range of 120° to 125°. This result is 
consistent with the contact angle, 125.9°, predicted using Young’s 
equation with DFT free energies for the same pillar height and size. 
In contrast, the limiting value, θhl, from Young’s prediction with 
DFT free energies is 131°, and the Cassie-Baxter prediction is 143°. 
For the LJ potential (Figure 4) under these conditions, the DFT 
solutions with Young’s equation and Cassie-Baxter predictions are 
very similar, and determining which of the predictions is the limiting 
value is impossible.  

For surface potentials that correspond to low wetting flat surfaces, 
the behaviour of the two potentials (LJ and SW) is qualitatively the 
same for increases in height with a Wenzel droplet regime that 
transitions to a Cassie-Baxter droplet regime. For a high wetting flat 
surface (contact angle < 90°), however, the behaviour for the two 
potentials differs. For a surface of this type (contact angle 78°), 
Wenzel surface behaviour is expected. That is, the contact angle 
should decrease as the surface roughness increases for up to a 
transition point. After the transition, the behaviour should follow that 
of a Cassie droplet that has liquid-fluid rather than vapour-fluid 
between the pillars (contact angle of 0° rather than 180°). The 
surfaces tested with the SW potential do exhibit a decreasing contact 
angle with increasing values of h (i.e. increasing roughness), but, for 
smaller values of s, the rate of change in the contact angle is smaller 
than what is predicted by the Wenzel model. The LJ potential for s 
less than 20σ does not obey this behaviour. Instead, behaviour 
similar to that of the low wetting surface is observed with the contact 
angle increasing as height increases (Figure 6). The discrepancy 
between the Cassie-Baxter prediction and Young’s equation with 
DFT free energies on tall pillars is larger than that for the low 
wetting case. For s = 40σ, the contact angle initially increases for the 
lowest values of h, then decreases with increasing h. At s = 20σ, the 
behaviour is difficult to determine. For a more wetting surface (flat 
surface contact angle of 65.5°), the behaviour previously observed 
for s = 20σ is observed at s = 5σ. At s = 20σ for the heights tested, 
the LJ potential has the expected behaviour - decreasing contact 
angle as roughness increases up to a transition to the Cassie droplet 
on a wet pillared surface. As the value of s increases at a fixed value 
of roughness, contact angles for the two potentials decrease. In the 
case of the SW potential, the value of s approaches the value 
predicted using the flat surface contact angle in Wenzel’s model 
(Supplemental Figure S6). As the differences between the Wenzel 
prediction and contact angles for the LJ potential are larger, it is not 
clear whether the Wenzel value will be approached as s increases. 

 

Figure 6. Contact angle versus pillar height using three pillar sizes. 
Contact angles were calculated from simulation free energies with 
Young’s equation using the LJ potential with high wetting flat 
surface interaction strengths (< 90 degrees). The contact angle that 
the interaction strength would produce on a flat surface is provided 
in parenthesis.  

Droplet contact angles: alternate implementation of Cassie’s 

model 

The results seen for Young’s equation with DFT free energies 
suggest strongly that, when the surface features become sufficiently 
small, a departure from the macroscopic models, independent of 
droplet size, occurs. An underlying assumption of the macroscopic 
model is that the fluid contact surface corresponds either to flat 
surface or air. For real surfaces, there is a third region representing 
the transition between these two surfaces. When the pattern of 
surface features is large, the transition region represents only a small 
fraction of the surface and can be ignored as line tension 
contributions are ignored for large droplets. In the case of the pillar 
geometry, the transition region becomes significant as the value of s 
decreases.  

For the SW potential, the interaction distance is limited to 
neighbouring sites. The transition region can be approximated to be 
the sites immediately surrounding a pillar and directly affected by 
the wall potential. This allows us to estimate a fraction of sites, 1/s, 
subject to an interaction potential ranging between that of the flat 
surface and air. Treating this region as a third surface region and 
applying the Cassie-Baxter equation will produce contact angles that 
depend on the size of the pillar. If it is assumed that this third region 
interacts with the same strength as the tops of pillars, the behaviour 
predicted from this equation (based on the flat surface energy) 
qualitatively (but not quantitatively) matches the contact angles from 
the DFT solutions (Figure 7). If this third type of interaction strength 
is fitted to a few of the DFT solution values for θhl at different pillar 
sizes, a reasonably good fit of θhl at all pillar sizes is generated (see 
Figure 7). From this fit, it is clear that the contribution of this third 
region only becomes significant when the pillar side length is less 
than 100σ. Above that, the variance from the previously predicted 
limiting value is less than one degree.  

The behaviour as pillar size changes for the LJ potential does not 
match that seen for a three surface Cassie model of the SW potential. 
This result is not unexpected as the longer range van der Waals 
interactions of the LJ potential provide more complicated behaviour 
when the size of the pillar decreases. This complication would also 
be expected in real systems. Because a solid site contributes to fluid 
interactions over greater distances, the size of the transition region is 
larger and extends into and away from the pillar edge in a more 
complex manner.  
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Figure 7. Contact angles (diamonds) from simulation free energies 
with Young’s equation using the SW potential for tall pillar height 
limits are plotted versus 1/s. The results using the flat surface contact 
angle and different Cassie model implementations are also shown.  
The solid line is the standard two surface model using the actual 
surface fraction of pillar top (0.25) and the remaining fraction air. 
The large dashed line modifies the calculation by calculating the 
pillar surface area as 0.25 plus the fraction of area taken up by lattice 
sites that adjoin the pillar,1/s. The short dashed line used three 
surfaces, 0.25 for the pillar top, a fitted region whose surface is the 
adjoining lattice sites, and the remainder of the surface as air.  

Discrepancies seen in previous studies  

Having studied a much larger range of feature sizes under a 
number of different boundary conditions, the apparent discrepancies 
between previous studies using off lattice and lattice density 
functional formalisms18-21 can now be explained as being primarily 
due to the differences in surface feature sizes and dimensionality of 
the simulations; one utilized pillars while the other used infinite 
repeating trenches with sizes of 5σ and 2σ, respectively. The 
differences were not due to the use of a lattice. A major difference 
noted between the two studies was the value of the observed contact 
angle compared to macroscopic model predictions. The work 
presented here demonstrated that this value is dependent on the 
feature size and contact path line represented in the simulations. The 
use of a feature size more similar to the off lattice value will account 
for much of the noted difference. In addition, the method of 
calculating contact angles can introduce differences in reported 
values. Producing droplets that approach the macroscopic limit 
allowed for determination of this contribution so that either the 
correct large droplet limit would be approached or a correction can 
be made when comparing values from studies that use different 
methods to compute the contact angle. The lattice model can 
reproduce all of the hydrophilic surface wetting behaviours observed 
in the off lattice method. 

Conclusions 

This study sought to understand whether lattice DFT methods 
could be used to provide increased understanding of contributions to 
noted deviations in contact angle from predictions of traditional 
models, specifically, as droplet and feature sizes become smaller. 
Overall, it has been concluded that it is possible to use lattice DFT 
methods but care must be taken with several aspects of the model 
used. An important aspect was evaluation of the various methods 
utilized for calculation of contact angles from DFT solutions. For 

different methods, 3D and p2D flat surface DFT solutions gave 
results that were consistent but not identical with one another.  
Directly comparing 3D to p2D to true 2D rough surfaces is not 
possible because different contact path lines are represented in each 
case. It is possible to establish bounds for 3D from p2D cases by 
considering configurations that represent the shortest and longest 
contact path lines. It was found that the method utilized for contact 
angle calculation from droplets was important. The correct method 
provides a limiting contact angle for 3D and p2D DFT solutions as 
droplet size increases that approaches the value obtained from DFT 
free energies with Young’s equation.  

Line tension contributions and ratios of surface feature to droplet 
size were expected to cause deviations from macroscopic model 
predictions; this was confirmed by the study presented here. For a 
flat surface, the DFT solutions depended on droplet size as predicted 
by other theories. Contact line tension was found to be important 
only for the smallest of nanodrops, has the predicted dependence on 
radius, and depends on the droplet shape and interaction potential. 
The other important aspect, which is the type of surface potential, 
had no effect for flat surfaces and only became important when 
surface roughness was introduced. It was clearly demonstrated in 
these cases that the type of surface potential used influenced the 
observed behaviours. Small droplets subjected to the SW potential 
qualitatively followed the behaviour predicted by Wenzel and 
Cassie-Baxter models based on the flat surface interaction while 
those subjected to the LJ potential did not; line tension and ratios of 
feature to droplet size are responsible for a portion of the deviation. 
The simple SW potential has a very small transition region, and the 
interaction strength of the pillars does not depend on their size. The 
LJ potential (and for that matter any real potential) contributes to 
interactions at much greater distances. The surface interaction of 
very small pillars will be weaker than the interaction strength of a 
flat surface. 

The behaviour of the LJ potential highlights the contributions of 
another factor (besides line tension and the ratio of surface feature to 
droplet size) leading to deviations from macroscopic model 
predictions. These behaviours were observed in previous studies but 
the complete implications were not demonstrated by the limited 
conditions studied.18, 19 In fact, these effects arise even when 
Young’s equation is utilized with DFT free energies in calculation of 
contact angles, meaning even macroscopic droplets would 
experience the effect. The cases modelled found that the contact 
angle will be dependent on feature size with the effect becoming 
noticeable at very small feature sizes. For the SW potential, a simple 
approximation using a three surface Cassie-Baxter model accounted 
for the majority of the dependence of contact angle on feature size. 
This approach identified an increasing percentage of interactions 
accounted for by the transition region as feature sizes were decreased 
resulting in larger deviations in the contact angle. This transition-
type interaction should also play a role for surfaces interacting with 
more realistic potentials such as the LJ potential. Only the smallest 
features exhibited this effect, paralleling the effect of line tension 
which is only a significant contribution for very small drops. In 
contrast to line tension effects, the behaviour does not depend on the 
size of the droplet but rather the fraction of the surface that is 
transition region so this effect will also be seen for macro-scale 
droplets.  

The influence of small feature size leads to an interesting 
phenomenon in which it is possible for a nano rough surface to be 
non-wetting (>90) while the wall-fluid interaction is otherwise 
wetting on a flat surface (<90). As the surface feature size increases 
and the pillar surface potential becomes closer to that of the flat 
surface, the behaviour transitions to that predicted by the 
macroscopic model. Also, as the wall potential becomes more 
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strongly wetting, a transition to predicted macroscopic model 
behaviour occurs for even the smallest surface features. The LJ 
potential (and other more realistic potentials) fails to uphold basic 
assumptions inherent to the macroscopic models for a much larger 
range of features. The transition from wall interaction to fluid filled 
region under these potentials has a characteristic length, and the 
interaction at a surface location (depends on the size and location of 
features) is very different from the flat surface interaction when 
features become small. Considering these observations together it 
can be concluded that the observed deviations from macroscopic 
models for nanodroplets on nano rough surfaces are the result of 
three contributing factors: line tension contributions, the ratio of 
droplet size to surface feature size, and variation in surface potential 
from the flat surface values due to the small feature size. This is an 
important consideration for devices made with very small feature 
sizes as models for behaviour built on the macroscopic models will 
fail even for large droplets. 

Because there are several causes for deviations from 
macroscopic behaviour for drops on nano rough surfaces, care must 
be taken in drawing conclusions based on the behaviour of models 
that do not fully explore variations in feature sizes. We have 
demonstrated that the level of detail in the wall-fluid interaction is a 
more important consideration than the level of detail in the fluid-
fluid interaction. While the fluid comprising the droplets considered 
for this model does not include hydrogen bonding or electrostatic 
interactions, the lattice method is capable of producing behaviour 
that qualitatively matches more realistic fluid potential studies and is 
an excellent tool to apply to understanding the wetting behaviour for 
even more complicated surface structures. In a broader context, it is 
necessary to note the limitations of varying modelling approaches.  
Lattice models, such as the one applied here, provide qualitative 
descriptions utilizing a few critical features to maximize the phase 
space or system size that can be sampled with fixed resources. This 
provides the opportunity to observe the range of behaviours possible, 
but does not provide the quantitative or predictive capabilities of 
some detailed (off-lattice) models.  The approach provides a bridge 
between molecular-scale calculations and macroscopic approaches.  
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