NJC Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/njc

A novel polyurethane prepolymer compatibilizer successfully improved the compatibility and performances of polycaprolactone (PCL)/starch composites.

New Journal of Chemistry Accepted Manuscript

1	Effects of a Novel Compatible Interface Structure on the Properties of Starch-
2	PCL Composites
3	Jingjing Liao, Zimu Luo, Yu Zhang, Xu Zhang, Jing Cheng, Qiangxian Wu*
4	Green Polymer Laboratory, College of Chemistry, Central China Normal University,
5	Wuhan, China, 430079
6	
7	ABSTRACT:
8	Polycaprolactone (PCL)/starch composites were prepared in an intensive mixer using
9	PCL-based polyurethane prepolymer (PCLPU) as a compatibilizer. A multifunctional
10	polyurethane layer (PCLPU layer) was then located at the interface between the starch
11	granules and PCL matrix. Good compatibility was shown between starch and PCLPU
12	layer, which was attributed to the urethane linkages. And the degradation experiment
13	revealed that the urethane linkages between PCLPU and starch were stable. The PCL
14	soft segments in PCLPU layer could also interact with PCL matrix through PCL
15	crystallinity to improve the compatibility between PCL matrix and PCLPU. The
16	multifunctional PCLPU was thus deemed effective in improving the compatibility of
17	starch-PCL composites. Additionally, the mechanical properties and thermal stability
18	of the composites enhanced compared to starch-PCL composites. The novel

^{*} Corresponding author at: College of Chemistry, Central China Normal University, Wuhan, China, 430079. Tel. and fax: +86-27-67867953;

E-mail address: greenpolymerlab@yahoo.com (Q. X. Wu).

19	multifunctiona	al PCLPU	laye	er there	fore j	played	an i	mpor	tant role in	ı im	proving th	e
20	compatibility	between	the	starch	and	PCL	and	the	properties	of	starch-PC	Ĺ
21	composites.											
22												
23												
24												
25												
26												
27												
28												
29												
30												
31												
32												
33												
34												
35												
36												
37												

38 Keywords: Starch; Polycaprolactone; Polyurethane; Compatibility; Biodegradable

39 Introduction

40	In the last two decades, the increased production and use of plastic materials has
41	led to an urgent need for waste disposal solutions. ¹ Biodegradable polymers and
42	composites have been considered as one of the solutions to the public environmental
43	problem caused by the waste disposal of traditional nondegradable polymers. ²⁻⁴ Starch,
44	being an important set of natural biopolymers, has been considered as one of the most
45	promising candidate materials due to its biodegradability, derivability, availability, and
46	low cost. ⁵⁻⁸ However, native starch is very hydrophilic and possesses inferior
47	mechanical properties compared with most polymers. To overcome these issues,
48	various physical and chemical modifications of starch granules have been considered.
49	To obtain completely biodegradable materials, starch is blended with various
50	biodegradable polymers. ⁹ Among the many kinds of candidates, the composites of
51	starch and aliphatic polyester, especially PCL, can reach the goal. ¹⁰⁻¹⁴ However, the
52	poor miscibility between hydrophilic starch and hydrophobic PCL has been a
53	difficulty to be overcome for enhancement of the properties of the composites. ¹⁵

Much previous research has focused on compatibilizing the composites of PCL and starch. Various compatibilizers and additives have been proposed to improve the interface between starch and biodegradable polyesters.¹⁶⁻¹⁸ In recent years, PCL-g-

57	glycidyl methacrylate (PCL-g-GMA) and PCL-g-diethyl maleate (PCL-g-DEM), as
58	reactive interfacial agents for starch-PCL systems, were utilized to improve the
59	compatibility and so the adhesion between the two immiscible polymers. ¹⁹ These
60	compounds were prepared by reacting a low molecular weight PCL (M_w =3000) with
61	GMA or DEM in the presence of benzoylperoxide (BPO) at 130 °C. The mechanical
62	properties of the compatibilized blends differ from the uncompatibilized ones and in
63	particular the elastic modulus for the compatibilized blends was found significantly
64	higher. It is also confirmed that poly (ethylene glycol) (PEG) which has an
65	appropriate molecular weight is the most commonly used compatibilizer and the most
66	widely researched for starch-based composites. PEG is able to interact with both the
67	starch phase and the PCL phase by locating at the interface and stabilize the starch-
68	PCL composites. ^{20,21} Evidently, various compatibilizers have been used to improve
69	interfacial compatibility and performances of starch-PCL composites. However, the
70	compatibilizers such as maleate or maleic anhydride are not easy to react with starch
71	with high efficiency, which result in limited compatibility between starch and
72	hydrophobic polymer.

Polyurethanes,²² first discovered in the 1940s, attracted much research attention due to their versatile applications and the possibility to be synthesized with a wide variety of isocyanates and polyols.²³ The reaction leads to a unique polyurethane that

76	is generally composed of polyether or polyester soft segments and diisocyanate-based
77	hard segments. ²⁴ A wide range of materials can be used in the preparation of PUs and
78	as such, the subsequent polymers can have a wide range of properties. ²⁵ In our
79	previous work, PCLPU was used to prepare modified starch. ²⁶ A grafting ratio of near
80	100% was demonstrated for PUP modified starch, which was attributed to the high
81	reactivity between the isocyanate groups of PUP and the hydroxyl groups of starch. ²⁷
82	The properties of the modified starch were thus improved compared with pure starch
83	materials. Namely, the PCLPU demonstrated good compatibility with starch through
84	urethane linkages. Moreover, the PCLPU and the PCL matrix showed good
85	compatibility because they both had PCL crystal component. It was therefore
86	supposed that a novel compatible PCLPU layer structure could be formed to improve
87	the compatibility of starch and PCL matrix. The multifunctional PCLPU has thus been
88	proposed as a compatibilizer for the preparation of starch-PCL composites. This
89	endeavor was not tried in our previous work and much remains to be explored in this
90	area.
91	In this work, polycaprolactone (PCL)/starch composites were prepared in an

intensive mixer using polyurethane prepolymer which was synthesized with PCL diol and 4, 4'-methylenedi-*p*-phenyl diisocyanate (MDI) as a compatibilizer. The effects of the novel compatibilizer on the structure and properties of the starch-PCL composites

11	
10	
U	
Ð	
1	
St	
ist	
hist	
nist	
mist	
mist	
emist	
nemist	
hemist	
chemist	
Chemist	
Chemist	
Chemist	
f Chemist	
of Chemist	
of Chemist	
of Chemist	
I of Chemist	
al of Chemist	
al of Chemist	
nal of Chemist	
nal of Chemist	
rnal of Chemist	
Irnal of Chemist	
urnal of Chemist	
urnal of Chemist	
Durnal of Chemist	
ournal of Chemist	
Journal of Chemist	
Journal of Chemist	
Journal of Chemist	
v Journal of Chemist	
w Journal of Chemist	
w Journal of Chemist	
ew Journal of Chemist	
lew Journal of Chemist	
New Journal of Chemist	

		•	
05	MARA	INVACI	hatent
75	wuru	mvcs	ugaitu
			\mathcal{O}

- 96 Experimental
- 97 Materials
- Polycaprolactone (M_w =65000 g mol⁻¹) and polycaprolactone diol (M_w =2000 g mol⁻¹,

hydroxyl value=57.52mg KOH g⁻¹) were purchased from Perstorp UK Ltd. (Cheshire, 99 100 UK). 4,4'-methylenedi-p-phenyl diisocyanate (MDI, 98%) were purchased from 101 Sigma-Aldrich Fine Chemicals (St. Louis, MO, USA). Corn starch (CS, amylose:23-102 26 wt.%; moisture: 12 wt.%) was obtained from Wuhan Corn Starch CO. Ltd. 103 (Wuhan, China) and used without any further pretreatments. High-temperature 104 amylase (activity: 20000 u/mL) and α -Amylase (activity: 100000 u/g) were obtained 105 from Jienuo Enzyme Co. Ltd. (Zaozhuang, China) and acetone (analysis grade) was 106 purchased from the China National Pharmaceutical Group Corporation (Shanghai, 107 China).

108 Synthesis of PUP

The molar number ratio of isocyanate to hydroxyl group (NCO/OH) was 2.0. Polycaprolactone diol (160 g) was charged into a 250 mL three-necked flask fitted with a stirrer operating at a speed of 300 rpm, an inlet and an outlet. The system was dried in vacuum at 100 °C to remove the moisture in the PCL diol. After 30 min, the temperature of the PCL diol in the flask was decreased to 70 °C and MDI (40 g) was then charged into the flask under vacuum conditions. The translucent mixture in the

New Journal of Chemistry Accepted Manuscript

115 flask quickly became transparent. Fifteen minutes after the addition of MDI, the mixture was stirred vigorously and reacted at 80 °C for 1 h. Finally, a white PUP solid 116 117 was obtained. 118 **Preparation of PU powder** 119 PU powder (PW) here was a control sample for PUP. The PCLPU was soaked in 120 water for 2 days. In this case, the un-reacted terminal NCO groups of the PUP were 121 consumed by water and then mill the PUP sheet into PU powder in a polymer grinder 122 (GP-00001 model, Wuhan Qien Science & Technology Co., Ltd., Wuhan, China) with 123 the use of liquid nitrogen. The PU powder was then filtered using a screen with 80 124 meshes.

125 **Preparation of Starch-PCL composites**

114

Corn starch (49 g), PCLPU (7 g) and PCL (14 g) were charged into an intensive mixer (SU-70, Changzhou Suyan Science and Technology Co., Ltd., Changzhou city, China) and mixed reactively at 100 °C with a stirrer speed of 100 rpm. After 20 min, a white starch-PCL composite was obtained. The composite was equilibrated in a sealed plastic bag for 1 day before use. The composite consisting of corn starch (70 wt.%), PCLPU (10 wt.%) and PCL (20 wt.%) was designated as S70P20PU10. As a control, the same amount of PU powder was used to mix with starch/PCL by the same

133	procedure, and the resulting mixture was designated as S70P20PW10. With the same
134	nomenclature, the composite consisting of corn starch (70 wt.%), PCLPU (5 wt.%)
135	and PCL (25 wt.%) was designated as S70P25PU5. The composite consisting of corn
136	starch (70 wt.%) and PCL (30 wt.%) was designated as S70P30 and the composite
137	consisting of corn starch (70 wt.%), PCL (29 wt.%) and MDI (1 wt.%) was designated
138	as S70P29M1.
139	Fractionation of the composites
140	
140	Purification of starch-PCL composites
140	Purification of starch-PCL composites To analyze the structure of the components in starch-PCL composites, PCL fraction
140 141 142	Purification of starch-PCL composites To analyze the structure of the components in starch-PCL composites, PCL fraction was first extracted from the composites using acetone. S70P20PU10 (10 g) and
140 141 142 143	Purification of starch-PCL composites To analyze the structure of the components in starch-PCL composites, PCL fraction was first extracted from the composites using acetone. S70P20PU10 (10 g) and acetone (200 g) were charged into a 500 mL three-necked flask fitted with a stirrer
140 141 142 143 144	Purification of starch-PCL composites To analyze the structure of the components in starch-PCL composites, PCL fraction was first extracted from the composites using acetone. S70P20PU10 (10 g) and acetone (200 g) were charged into a 500 mL three-necked flask fitted with a stirrer operating at a speed of 300 rpm. The composite was dispersed at 55 °C for 1 h. After

142	was first extracted from the composites using acetone. S70P20PU10 (10 g) and
143	acetone (200 g) were charged into a 500 mL three-necked flask fitted with a stirrer
144	operating at a speed of 300 rpm. The composite was dispersed at 55 °C for 1 h. After
145	the dispersion was centrifuged at 8000 rpm in a centrifuge machine (Shanghai Anting
146	Scientific Instrument Factory) for 10 min, the supernatant was PCL-acetone solution.
147	The acetone was then added into precipitate to further extract the PCL component
148	three times. After the PCL-acetone solution was concentrated, the concentrated PCL
149	and the precipitate were vacuum dried at 40 °C for 12 h to obtain extracted PCL
150	(APCL) and modified starch (CSPU), respectively. The procedure is illustrated in
151	Figure 1(a). With the above procedure, we also adopt the same method to extract PCL

from the composite S70P20PW10 using acetone. Finally the mixture of CS and PW

152

New Journal of Chemistry Accepted Manuscript

153 (CSPW) was obtained. 154 **Degradation of the composites** 155 It was necessary to separate the PU component linked to starch to clarify the composition of CSPU. The starch matrix was therefore first degraded into water-156 157 soluble materials through the interaction of a starch enzyme, and the PU component 158 was subsequently separated out. The detailed procedure was as follows: CSPU (6 g) 159 and water (150 mL) were charged into a 250 mL three-necked flask fitted with a 160 stirrer operating at a speed of 300 rpm. The temperature of the system was increased to 95 °C within 10 min to obtain starch dispersion. High-temperature amylase (0.2 g) 161 162 was added into the flask at 95 °C to partially degrade the starch. 1 h after the addition 163 of high-temperature amylase, the temperature of the system was decreased to 60 °C 164 within 10 min and the pH value of the dispersion was adjusted to 4. The α -amylase 165 (0.2 g) was then added. 2 h after the addition of the α -amylase, the viscosity of the 166 dispersion decreased sharply. The dispersion contained only hydrophobic PU 167 precipitate and degraded starch (DS) at this time. The dispersion was separated into a 168 degraded starch solution and a precipitate in a centrifuge machine (Shanghai Anting 169 Scientific Instrument Factory). The degraded starch solution was concentrated and 170 freeze-dried to prepare degraded starch. To remove the existence of the enzyme

171	proteins in the precipitate, an aqueous NaOH solution was used to separate the
172	precipitate into a PU precipitate and a protein solution. The PU precipitate was then
173	washed and freeze-dried to obtain separated PU (SPU). ²⁸ The procedure is illustrated
174	in Figure 1(b). S70P30 was also degraded to obtain DS and PCL component (EPCL)
175	using the same procedure. The specifications of the sample abbreviations were shown
176	in Table 1.
177	Preparation of sample sheets by compression-molding
178	Starch-PCL composites were compression-molded using a hot press (R3202 model,
179	Wuhan Qien Science & Technology Co., Ltd., Wuhan, China) equipped with a water
180	cooling system. The molding time, temperature and pressure were 5 min, 95 °C, and
181	40 MPa, respectively. The sheets were cut into dumbbell-like shapes (5A type)
182	according to GB/T1040-2006. The length of the dumbbell-like specimen was 75 mm,
183	and the width of the narrow section was 4 mm. The sheets were equilibrated at 60%
184	RH for at least 2 weeks before testing.
185	Mechanical test
186	The mechanical properties of the composites were assessed through tensile and impact

properties. The tensile properties were measured using a tensile tester (CMT6503,
Shenzhen SANS Test Machine Co. Ltd.). The samples cut from molded sheets were
aged at 60% RH and room temperature for 2 weeks. The tensile properties were then

Pa) and elongation at	ot
s were made. Impact	crip
Shenzhen SANS Test	NSU
h was measured by	lan
for each sample (4.0	
becimen was held in a	ote
becimen was impacted	Cep
n angle of 45° with a	Ac
at room temperature.	hemistry
rent disks for analysis.	U
de at a resolution of 4	Journal of
Bruker AVANCE III	
of ¹³ C was 100.6 MHz.	Ne
· 1 (54.70)]II	

measured using the tensile tester with a strain rate of 5 mm min⁻¹. The distance
between the two clamps was 40 mm. Strength at break (
$$\sigma_{b}$$
, MPa) and elongation at
break (ε_{b} , %) of the sheets were recorded. Five duplications were made. Impact
properties were measured using an impact tester (ZBC1400-1, Shenzhen SANS Test
Machine Co. Ltd.). Reversed notched Izod impact strength was measured by
following ASTM D256 recommendations, with five specimens for each sample (4.0
mm in thickness, 80 mm in length, and 10 mm in width). The specimen was held in a
vertical cantilever beam and broken by a pendulum (4 J). The specimen was impacted
on the side opposite to the notch. A notch was machined at an angle of 45° with a
depth of 0.25 mm.
Fourier transform infrared spectroscopy (FTIR)
A FTIR spectrometer (Avatar 360, Nicolet, MA, USA) was used at room temperature.
Test samples were pulverized with KBr and pressed into transparent disks for analysis.
The spectra of all the samples were recorded in transmission mode at a resolution of 4
cm⁻¹ with accumulation of 8 scans.
¹³C **CP/MAS NMR measurement**
Solid-state NMR experiment was carried out at $B_0 = 9.4$ T on a Bruker AVANCE III
400 WB spectrometer. The corresponding resonance frequency of ¹³C was 100.6 MHz.

208 Samples were packed in a 4 mm ZrO_2 rotor and spun at the magic angle (54.7°). ¹H-

209	¹³ C CP/MAS spectra were acquired with a contact time of 1.2 ms and a recycle delay
210	of 2 s. The ¹³ C chemical shift was externally referenced to the high field resonance of
211	hexamethylbenzene at 17.17 ppm.
212	X-ray Diffraction (XRD)
213	The composite powders were measured with wide angle X-ray diffraction (WAXRD)
214	(Y-2000 Dandong Radiative Instrument Group Ltd. CO., China). For irradiation, the
215	Cu K α line was applied (λ at 0.1542 nm, cathode at 30 kV and 20 mA) and scattering
216	was recorded as 2θ in a range from 2 to 40° .
217	Emission scanning electron microscopy (ESEM)
218	An ESEM (FEI, Quanta 200 FEG, Netherlands) was used to observe the cross sections
219	of the fractured samples. Each sample was frozen using liquid nitrogen and then
220	fractured using tweezers to produce cross-sections. The cross-sections were coated
221	with gold and then used for ESEM observation.
222	Differential scanning calorimetry (DSC)
223	The DSC experiments (Diamond DSC, PerkinElmer Instruments, MA, USA) were
224	conducted in a nitrogenous atmosphere. The system was calibrated with indium and
225	about 10 mg of the sample was placed into an aluminum pan and sealed. The
226	specimens were heated from 30 to 110 °C at a rate of 20 °C min ⁻¹ (first heating scan),
227	then equilibrated at 110 °C for 2 min, cooled rapidly at 20 °C min ⁻¹ to -50 °C,

1		
	\mathbf{O}	
	\mathbf{U}	
	n	
	U	
	\geq	
1		
	\mathbf{O}	
	4	
	Y	
1		
	D	
	\mathbf{O}	
	1	
1		
1		
	CD	
	D	
Ì		
J		
6	(m.,	
_		
1		
	\mathbf{D}	
	-	
	<	
	D	
2		

228	equilibrated at -50 °C for 2 min and finally heated again to 100 °C at 20 °C min ⁻¹
229	(second heating scan). The T_g was determined on the second scan at the midpoint of
230	the calorific capacity change on the thermogram.
231	Thermal gravimetric analysis (TGA)
232	Testing was conducted using a thermal gravimetric analyzer (STA 449 C, NETZSCH
233	Instruments Inc. MA, USA). Approximately 10 mg of the sample cut from the sheet
234	was equilibrated at ambient conditions and then subjected to heating from 30 to
235	600 °C at a rate of 20 °C min ⁻¹ in a nitrogen atmosphere. The weight loss with
236	respect to temperature and the maximum degradation temperature (T_{max}) of samples
237	were recorded.

238 Dynamic mechanical analysis (DMA)

DMA was performed using a dynamic mechanical analyzer (DMA Q800, TA 239 240 Instruments, DE, USA) in the single cantilever mode. Samples were investigated from -110 to 140 °C at a heating rate of 5 °C min⁻¹. A variable-amplitude sinusoidal 241 242 tensile stress with a frequency of 1 Hz was applied to the samples to produce a 243 sinusoidal strain of 15 μ m amplitudes. The temperature at the peak of the tan δ curve $(T_{\tan \delta})$ was taken as the T_g of the samples. 244

245

228

246 **Results and discussion**

248	The FTIR spectra of corn starch (CS), degraded starch (DS), PCL, EPCL, APCL,
249	CSPU and SPU are shown in Figure 2. As seen from Figure 2, the curves profile of
250	CS was almost identical with that of DS. Generally, CS is known as a white powdered
251	solid. However, DS appeared as a brown viscous liquid. These results indicated that
252	the starch's intrinsic ring structure was preserved after the degradation process, which
253	was in accord with the results obtained by Lv et al. ²⁹ And there were no characteristic
254	absorption peaks of urethane linkage (-NH-CO-O-) at 1732 cm^{-1} and 1644 cm^{-1} in the
255	spectrum of DS, implying that PU was completely separated from starch. It could thus
256	be determined that the starch was successfully degraded using the enzyme method.
257	Moreover, similar spectra profiles were shown for PCL, APCL and EPCL. These
258	results illustrated that PCL could be successfully separated from the composites
259	through both the enzyme method and the acetone extraction method. In addition,
260	comparing with the spectra of CSPU and SPU, a similar curves profile can be shown.
261	The peaks for CSPU and SPU at 1644 cm^{-1} and 1732 cm^{-1} were attributed to the C-O
262	and C=O groups in urethane linkage (-NH-CO-O-), respectively. ^{26,30} The broad peaks
263	for CSPU and SPU at region of 3200–3400 cm ⁻¹ were dominated by the absorption of
264	OH groups in starch component, and the intensity of this peak in SPU was decreased
265	compared to CSPU. These results confirmed that the starch residues linked to PCLPU

through urethane linkages was difficult to degrade by enzyme though enzyme could
degrade starch. It could thus be concluded that the PCLPU reacted with starch and the
urethane linkages between them were stable.

The ¹³C-NMR spectra of CSPU and CSPW are shown in Figure 3. The peak 269 appeared at 35 ppm in CSPU and CSPW was ascribed to the polyurethane cross-270 linking, ³¹ which was formed in two ways in this research: the interaction between 271 272 NCO groups in PCLPU and OH groups in starch granules; the interaction between 273 NCO groups in MDI and OH groups in polycaprolactone diol. As shown in Figure 3, 274 the peak at 35 ppm of CSPW was much weaker than that of CSPU. This confirmed that there were not only urethane bonds in PCLPU inherently but also the urethane 275 276 linkages which were formed by PCLPU reacting with OH groups in starch granules in 277 CSPU. Therefore, it could be concluded that urethane linkages existed between 278 PCLPU and starch granules.

The WXRD spectra of S70P20PU10, S70P25PU5, S70P29M1 and S70P30 are shown in Figure 4. As shown in Figure 4, three peaks appeared at 15.2 °, 17.1 ° and 18.1 °, which were attributed to a typical A-type diffraction pattern of starch crystal in the composites.³² The peak at 22.1 ° was associated with the V-type crystallinity of starch.³³ While the diffraction peaks at 21.4 ° and 23.7 ° were typical crystallization of PCL.¹⁵ Compared with S70P30, the intensity of all peaks in other three samples was

New Journal of Chemistry

decreased, which was ascribed to the incorporation of MDI or PUP. As the isocyanate

286	groups of PUP or MDI reacted with the hydroxyl groups of starch, the interaction
287	between the starch-starch chains declined accordingly. However, the interaction
288	between the starch-PCL chains was increased. Consequently, the mobility of the
289	starch and PCL chains were both limited, which resulted in a decrease in the
290	crystallinity of starch and PCL in the blends.
291	The SEM micrographs of the fractured surfaces for S70P30, S70P29M1 and
292	S70P20PU10 are shown in Fig. 5a-c. It could be observed that the starch granules in
293	S70P30 [Fig. 5a] pulled out of their domains. Many empty cavities were shown in the
294	PCL matrix. Moreover, a clear edge between the starch granules and PCL was
295	observed, which indicated typical characteristics of an immiscible composite with
296	poor interfacial adhesion. For S70P29M1 [Fig. 5b], a relatively smooth fracture
297	surface was observed. Few starch particles pulled out and better interfacial adhesion
298	produced by the MDI. As the isocyanate groups of MDI had reactivity with the
299	hydroxyl groups of starch, MDI improved the compatibility between starch and PCL.
300	A similar starch-PCL blends microstructure was observed by Yu et al., who concluded
301	that the MDI compatibilizer improved the interface between starch and PCL. ¹⁸
302	However, S70P20PU10 showed a morphology indicating enhanced interfacial
303	adhesion between PCL and starch, no cavities were observed on the fracture surface

	1
	n
	<u> </u>
	Π
1.0	
	0
	O
	D
	U.
	11
	2
	S
	IST
	DISt
	mist
	mist
	emist
	Iemist
	hemist
	Jhemist
	Chemist
	Chemist
	T Chemist
	of Chemist
	ot Chemist
	of Chemist
	I of Chemist
	al of Chemist
	al of Chemist
	nal of Chemist
	inal of Chemist
	rnal of Chemist
	Jrnal of Chemist
	urnal of Chemist
	DURNAL OF CHEMIST
	ournal of Chemist
	Journal of Chemist
	Journal of Chemist
	/ Journal of Chemist
	v Journal of Chemist
	W Journal of Chemist
	ew Journal of Chemist
	ew Journal of Chemist
	New Journal of Chemist

304	[Fig. 5c]. The multifunctional PCLPU could efficiently react with starch through
305	urethane linkages and was also compatible with the PCL continuous phase, which
306	could be ascribed to their common PCL crystal soft segments structure (Scheme 1).
307	Therefore, the compatibilizing effect of PCLPU was more significant compared to
308	MDI.
309	In order to further investigate the effects of PCLPU on the starch-PCL

310 composites, S70P30 and S70P20PU10 sheets were both immersed in the 1mol/L 311 NaOH solution for 12h. The sheets were then dried at 40 °C and used for ESEM 312 observation. Following the above procedure, the treated samples of S70P30 and S70P20PU10 were designated as D-S70P30 and D-S70P20PU10, respectively. The 313 314 SEM images of D-S70P30 and D-S70P20PU10 are shown in Fig. 5d-e. As the starch 315 dissolved in NaOH solution, the majority of the starch particles in D-S70P30 316 disbanded from the PCL matrix and left many voids [Fig. 5d], which indicated poor 317 interfacial adhesion between PCL and starch. However, fewer starch granules pulled 318 out from the PCL matrix in S70P20PU10 as compared to S70P30 [Fig. 5e]. It further 319 demonstrated that PCLPU enhanced the interface compatibility between PCL and 320 starch.

Figure 6 shows the typical DSC curves of the PCL/starch composites. The peak for S70P30 at 59.8 °C was attributed to the melting of the crystalline domains of the

New Journal of Chemistry

323	PCL. Compared with S/0P30, the composite of S/0P20P010 with PCLPU
324	exhibited its melting temperature ($T_{\rm m}$) at about 62.4 °C. With the addition of the
325	compatibilizer PCLPU, the value of $T_{\rm m}$ was higher than that of the virgin S70P30
326	composite. The interaction between PCL and PCLPU inhibited the molecular motion
327	of PCL chains. As a result, the T_m value drifted to a higher temperature. Tsai et al.
328	reported that the melting point of PCL soft segments in the PCLPU occurred at around
329	50 °C. ³⁵ The PCL soft segments in the PCLPU could interact with PCL matrix
330	through crystallinity, and the crystals formed between the PCLPU and PCL matrix
331	were physical cross-linkers. Therefore, the compatibility between PCLPU layer and
332	PCL matrix was improved. In S70P29M1, there was no this kind of PCL soft
333	segment-PCL matrix interaction, and the compatibility between MDI and PCL matrix
334	was improved limited.

The tan δ and storage modulus (E') curves of S70P30 and S70P20PU10 are shown in Figure 7. Following the addition of PCLPU to starch-PCL blends, storage modulus was enhanced as the temperature increased from -100 to 40 °C and made the blends of S70P20PU10 more rigid than S70P30. This improvement could be attributed to the efficiency of the cross-link system, which included not only the physical cross-link between the PCLPU layer and PCL matrix through PCL crystals, but also the chemical cross-link between the PCLPU layer and starch through

342	urethane linkages. However, when temperature arrived above 40 °C, the storage
343	modulus of S70P20PU10 became lower than that of S70P30. This indicated that the
344	PCL crystals began to melt and the cross-links between the PCLPU layer and PCL
345	matrix thus collapsed, softening S70P20PU10. For the tan δ curves, the transition
346	peak of S70P30 was located at a low temperature between -50 °C to -10 °C, which
347	corresponded to the glass transition level of the PCL macromolecule. ³⁶ However, an
348	increased glass transition temperature (T_g) was shown for S70P20PU10. This
349	phenomenon could be explained by the compatibilizing effect of PCLPU, which
350	strengthened the interaction between PCL and PCLPU and inhibited the free
351	molecular motion of PCL chains. The process of glass transition was thus slowed and
352	the value of $T_{\rm g}$ drifted to a higher temperature. This result was consistent with
353	previous observation of DSC. With the incorporation of PCLPU, the intensity of the
354	tan δ peak weakened, which could be attributed to the decreased content of the PCL
355	macromolecules from 30% to 20%. Furthermore, two different PCL structures were
356	detected in S70P20PU10: soft segment polyurethane (PCL diol) and PCL itself. As a
357	result, the peak shape of S70P20PU10 differed to S70P30.

359 Mechanical Properties

360 The mechanical properties of the composites were determined through tensile

New Journal of Chemistry Accepted Manuscript

361	and impact strength measurements and the subsequent results are listed in Table 2. In
362	contrast with S70P30, the mechanical properties of S70P29M1 improved as a result of
363	increased compatibility in the composites. As seen in Table 2, S70P25PU5 presented
364	enhanced mechanical properties compared to S70P30. Moreover, the mechanical
365	properties of the composites were increased with increasing PCLPU content. It was
366	thus determined that the addition of PCLPU layer could not only improve the
367	compatibility between PCL and starch, but also the mechanical properties of starch-
368	PCL composites.
369	

370 Thermal Properties

371	TGA and DTG thermograms of S70P30 and S70P20PU10 are shown in Figure 8.
372	It could be found that the composites went through three stages degradation. The first
373	stage began immediately after the temperature increased and ended at around 200 °C.
374	During the first stage, a slight weight loss of around 5% was detected, which resulted
375	from the vaporization of water in the composites. As shown in Figure 8, the residue
376	weight of S70P20PU10 was higher than that of S70P30. In S70P30, the starch
377	granules were surrounded by PCL matrix and the vaporization of the water could
378	easily break through the PCL embedding layer. In S70P20PU10, the starch granules
379	were not only enclosed by PCL matrix but also the PCLPU linkage layer, resulting in

	_
- 1	
	\mathbf{O}
	0)
_	
	\mathbf{O}
	Y
	(1)
	\mathbf{C}
	0
	\mathbf{O}
	Ε
	G
	hemi
	hemi
	Chemi
	Chemi
	r Chemi
	t Chemi
	ot Chemi
	of Chemi
	l of Chemi
	al of Chemi
	al of Chemi
	al of Chemi
	nal of Chemi
	rnal of Chemi
	Irnal of Chemi
	urnal of Chemi
	ournal of Chemi
	ournal of Chemi
	Journal of Chemi
	Journal of Chemi
	Journal of Chemi
	v Journal of Chemi
	w Journal of Chemi
	ew Journal of Chemi
	ew Journal of Chemi
	New Journal of Chemi

380	less weight loss of the vaporization of water. The second stage corresponded to the
381	thermal decomposition of starch macromolecules, which commenced at around
382	280 °C. ³⁷ In the range of 350-390 °C, the remaining residue of S70P30 was higher
383	than that of S70P20PU10, which was due to the decomposition of PCLPU. The
384	degradation of the PU of urethane hard segment exactly occurred between the
385	temperatures of 350 and 390 °C. ³⁸ The third stage, the primary one, occurred between
386	350 and 500 °C, which corresponded to the thermal degradation of PCL. ³⁹ This was
387	exactly consistent with the PCL soft segments in PCLPU. ⁴⁰ As shown in the DTG
388	curves, the maximum degradation temperatures (T_{max}) of starch for S70P30 and
389	S70P20PU10 were 310 °C and 320 °C, respectively. This indicated that S70P20PU10
390	exhibited better thermal stability than S70P30. Since the PCLPU enhanced the
391	interphase interactions between PCL and starch, the thermal stability of S70P20PU10
392	was improved.
393	
394	Conclusion
205	

In this work, PU as a novel compatibilizer was successfully synthesized using PCL diol and MDI, then subjected for preparing starch-PCL composites in an intensive mixer. PU microparticles with multifunctional NCO groups reacted with starch through urethane linkages, which led to improved compatibility between starch and polyurethane. In addition, PCLPU was also compatible with PCL matrix, which

400	was attributed to the common components of PCL. Therefore, the compatibility of
401	starch-PCL composites was improved. The mechanical properties and the thermal
402	properties of the composites were improved compared to starch-PCL composites.
403	SEM observation also showed that interface between PCL and starch was enhanced
404	when PCLPU was mixed in the blends. Therefore, the multifunctional PCLPU was a
405	novel effective compatible interface to improve the compatibility of starch-PCL
406	composites.
407	
408	Acknowledgments
409	The authors would like to express their appreciation for the financial support
410	from the National Natural Science Foundation of China under grant No. 50803024.
411	
412	
413	
414	
415	
416	References
417	1 C. J. Pérez, V. A. Alvarez and A. Vázquez, Mater. Sci. Eng., A, 2008, 480, 259-
418	265.

- 419 2 E. Pérez, C. J. Pérez, V. A. Alvarez and C. Bernal, *Carbohydr. Polym.*, 2013, 97,
- 420 269-276.
- 421 3 X. S. Wu, J. Polym. Environ., 2011, 19, 912-917.
- 422 4 A. R. Oromiehie, T. T. lari and A. Rabiee, J. Appl. Polym. Sci., 2013, 127, 1128-
- 423 1134.
- 424 5 E. Landreau, L. Tighzert, C. Bliard, F. Berzin and C. Lacoste, Eur. Polym. J., 2009,
- **4**25 **45**, 2609-2618.
- 426 6 L. Vertuccio, G. Gorrasi, A. Sorrentino and V. Vittoria, *Carbohydr. Polym.*, 2009, 75,
- 427 172-179.
- 428 7 P. Liu, L. Yu, H. S. Liu, L. Chen and L. Li, *Carbohydr. Polym.*, 2009, 77, 250-253.
- 429 8 N. Wang, J. G. Yu and X. F. Ma, Polym. Int., 2007, 56, 1440-1447.
- 430 9 H. T. Liao and C. S. Wu, Mater. Sci. Eng., A, 2009, 515, 207–214.
- 431 10 M. Joubert, C. Delaite, E. B. Lami and P. Dumas, *New J. Chem.*, 2005, 29, 1601432 1609.
- 433 11 Z. Q. Shen and J. L. Wang, *Bioresour. Technol.*, 2011, **102**, 8835–8838.
- 434 12 Q. X. Zhang, Z. Z. Yu, X. L. Xie, K. Naito and Y. Kagawa, *Polymer*, 2007, **48**,
- 435 7193–7200.
- 436 13 Y. Ikeo, K. Aoki, H. Kishi, S. Matsuda and A. Murakami, Polym. Adv. Technol.,
- 437 2006, **17**, 940-944.

- 438 14 S. Kalambur and S. S. H. Rizvi, Polym. Eng. Sci., 2006, 46, 650-658.
- 439 15 L. Chen, Z. Zhang, X. L. Zhuang, X. S. Chen, X. B. Jing, J. Appl. Polym. Sci.,
- 440 2010, **117**, 2724-2731.
- 441 16 M. A. Huneault and H. B. Li, J. Appl. Polym. Sci., 2012, 126, E96-E108.
- 442 17 J. F. Zhang and X. Z. Sun, *Biomacromolecules*, 2004, **5**, 1446-1451.
- 443 18 L. Yu, K. Dean, Q. Yuan, L. Chen and X. M. Zhang, J. Appl. Polym. Sci., 2007,
- 444 **103**, 812-818.
- 445 19 A. K. Sugih, J. P. Drijfhout, F. Picchioni, L. P. B. M. Janssen and H. J. Heeres, J.
- 446 Appl. Polym. Sci., 2009, **114**, 2315-2326.
- 447 20 E. J. Choi, C. H. Kim and J. K. Park, J. Polym. Sci., Part B: Polym. Phys., 1999,
- 448 **37**, 2430-2438.
- 449 21 R. Mani, J. Tang and M. Bhattacharya, *Macromol. Rapid Commun.*, 1998, 19,
 450 283-286.
- 451 22 Y. Peng, Z. Zheng, P. Y. Sun, X. L. Wang and T. K. Zhang, *New J. Chem.*, 2013,
 452 **37**, 729-734.
- 453 23 M. Ö. Seydibeyoğlu, M. Misra, A. Mohanty, J. J. Blaker, K.Y. Lee, A. Bismarck
- 454 and M. Kazemizadeh, J. Mater. Sci., 2013, 48, 2167-2175.
- 455 24 H. X. Chen, M. S. Zheng, H. Y. Sun and Q.M. Jia, Mater. Sci. Eng., A, 2007, 445,
- 456 725-730.

- 457 25 D. K. Chattopadhyay and K. V. S. N. Raju, Prog. Polym. Sci., 2007, 32, 352-418.
- 458 26 Y. Zhang, Y. M. Leng, M. Zhu, B. B. Fan, R. X. Yan and Q. X. Wu, Carbohydr.
- 459 *Polym.*, 2012, **88**, 1208-1213.
- 460 27 Z. M. Luo, Y. Zhang, H. B. Zhou, J. J. Liao, X. Zhang, Q. X. Wu, New J. Chem.,
- 461 2013, **37**,3109-3115.
- 462 28 Y. Zhang, Y. Huang, X. X. Chen, Z. S. Wu and Q. X. Wu, Ind. Eng. Chem. Res.,
- 463 2011, **50**, 11906-11911.
- 464 29 S. H. Lv, R. Gong and Y. F. Ma, *Polym. Adv. Technol.*, 2012, 23, 1343-1349.
- 465 30 S. R. Yang, O. J. Kwon, D. H. Kim and J. S. Park, *Fiber. Polym.*, 2007, **8**, 257–
- 466 262.
- 467 31 J. S. Kim, T. S. Pathak, J. H. Yun, K. P. Kim, T. J. Park, Y. Kim and K. J. Paeng, J.
- 468 Polym. Environ., 2013, 21,224-232
- 469 32 W. L. Xie and L. Shao, *Starch/Stärke*, 2009, **61**, 702–708.
- 470 33 J. J. G. Van Soest and J. F. G. Vliegenthart, *Trends. Biotechnol.*, 1997, **15**, 208–213.
- 471 34 E. G. Kim, B. S. Kim and D. S. Kim, J. Appl. Polym. Sci., 2007, 103, 928-934.
- 472 35 H. C. Tsai, P. D. Hong and M. S. Yen, Text. Res. J., 2007, 77, 710-720.
- 473 36 L. Averous, L. Moro, P. Dole and C. Fringant, *Polymer*, 2000, **41**, 4157-4167.
- 474 37 X. X. Liu, L. Yu, H. S. Liu, L. Chen and L. Li, Polym. Degrad. Stab., 2008, 93,
- 475 260-262.

476	38 F. S. Chuang, Polym. Degrad. Stab., 2007, 92, 1393–1407.
477	39 A. Larrañaga and J. R. Sarasua, Polym. Degrad. Stab., 2013, 98, 751-758.
478	40 H. M. Jiang, Z. Zheng, W. H. Song, Z. M. Li and X. L. Wang, Polym. Bull., 2007,
479	59 , 53–63.
480	
481	
482	
483	
484	
485	
486	
487	
488	
489	
490	
491	
492	
493	
494	

495 Figure captions

- **Fig.1 (a).** Schematic diagram of extracting PCL using acetone.
- **(b).** Schematic diagram of degrading CSPU using enzyme.
- **Fig.2.** FTIR spectra of CS, DS, PCL, EPCL, APCL, CSPU and SPU.
- **Fig.3.** Solid state ¹³C-NMR spectrum of CSPU and CSPW.
- 500 Fig.4. WXRD patterns of S70P30, S70P29M1, S70P25PU5 and S70P20PU10.
- 501 Fig.5. SEM micrographs of S70P30, S70P29M1, S70P20PU10, D-S70P30 and D-
- 502 S70P20PU10.
- **Fig.6.** DSC thermogram for S70P30 and S70P20PU10.
- **Fig.7.** Tan δ and storage modulus (E') curves of S70P30 and S70P20PU10.
- **Fig.8.** TGA and DTG thermograms of S70P30 and S70P20PU10.
- 506 Scheme 1. Schematic diagram of the formation of compatible interface between PCL
- 507 and starch filler

Table.1. Specifications of the sample abbreviations

Abbreviation	Specification	Abbreviation	Specification
PCL	Polycaprolactone	PCLPU	PCL-based polyurethane prepolymer
PW	PU powder	MDI	4, 4'-methylenedi- <i>p</i> -phenyl diisocyanate
CS	Corn starch	DS	Degraded starch
PUP	Polyurethane	S70P30	Composite of starch/PCL (Mass ratio of
	prepolymer		CS and PCL is 70:30)
	Residue of S70P30		Composite of starch/PCL uses MDI as
EPCL	degraded by enzyme	S70P29M1	compatilizer (Mass ratio of CS, PCL and
			MDI is 70:29:1)
	PCL extracted by		Composite of starch/PCL uses PCLPU as
APCL	acetone from	S70P25PU5	compatilizer (Mass ratio of CS, PCLPU
	S70P20PU10		and PCL is 70:25:5)
	Residue of		Composite of starch/PCL uses PCLPU as
CSPU	S70P20PU10 extracted	S70P20PU10	compatilizer (Mass ratio of CS, PCLPU
	by acetone		and PCL is 70:20:10)
	Residue of		
CSPW	S70P20PW10 extracted	D-S70P30	Residue of S70P30 extracted by NaOH
	by acetone	2 270120	
SPU	Residue of CSPU	D-S70P20PU10	Residue of S70P20PU10 extracted by
	degraded by enzyme		NaOH

524 Table.2. Formulations of PCL/starch composites and the mechanical properties of

525 molded composites sheet

		H	Formula	ations for c	composites	Tensile properties Impact strength
	Sample	Starch (g)	PCL (g)	PCLPU (g)	MDI (g)	$\begin{array}{ccc} \sigma_{b} & \boldsymbol{\epsilon}_{b} & \alpha_{iu} \\ (MPa) & (\%) & (KJ/M^{2}) \end{array}$
_	S70P30	49	21	0	0	3.8 ± 0.5 2.4 ± 1.2 1.5 ± 0.1
	S70P29M1	49	20.3	0	0.7	13.8 ± 0.2 5 ± 0.5 4.6 ± 0.9
	S70P25PU5	49	17.5	3.5	0	12.9 ± 0.6 7.5 ± 0.5 6.8 ± 0.5
	S70P20PU10	49	14	7	0	17.8 ± 0.5 11.3 ± 2.8 12.7 ± 0.4
527						
528						
529						
530						
531						
532						
533						
534						
535						
536						
537						
538						
539						
540						
541						
542						
543						
544						

546

547 Fig.1(a). Schematic diagram of extracting PCL using acetone. APCL and CSPU 548 represent extracted PCL with acetone and the residue after extracting PCL, 549 respectively.

550

552

553

554 Fig.1(b). Schematic diagram of degrading CSPU using enzyme. S and P represent 555 supernatant and precipitate, SPU and DS represent separated PU and degraded starch, 556 respectively. HTA represents high-temperature amylase.

566 **Fig.2.** FTIR spectra of CS, DS, PCL, APCL, EPCL, CSPU, and SPU.

Fig.4. WXRD patterns of S70P30, S70P29M1, S70P25PU5 and S70P20PU10.

- 644
- Fig.5. SEM micrographs of S70P30, S70P29M1, S70P20PU10, D-S70P30 and D-
- 646 S70P20PU10.
- 647

(e)

649

650

651

SEM images of: a) S70P30 (10.0KV, ×1000); b) S70P29M1 (10.0KV, ×1000); c)
S70P20PU10 (10.0KV, ×600); d) D-S70P30 (10.0KV, ×1000); and e) D-S70P20PU10
(10.0 KV, ×1000).

(d)

- 657
- 658
- 659
- 660
- 661

Fig.6. DSC thermogram for S70P30 and S70P20PU10.

Figure.8. TGA and DTG thermograms of S70P30 and S70P20PU10.

- 748
 749
 750
 751 Scheme 1. Schematic diagram of the formation of compatible interface between PCL and starch filler.
 753
 754
- 755

