NJC

Accepted Manuscript

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

$\underset{10.1039 / \text { C3njiooooox }}{\text { this: }}$ DOI: Effect of \boldsymbol{N}-Donor Ancillary Ligands on Structural
 Received 00th XXXXX 2013,
 Accepted 00th XXXXX 2013
 DOI: 10.1039/c3nj00000x
 www.rsc.org/nje and Magnetic Properties of Oxalate Copper(II) Complexes

Anna Świtlicka-Olszewska ${ }^{\text {a }}$, Barbara Machura ${ }^{\text {a }}$, Jerzy Mroziński ${ }^{\text {b }}$, Bożena Kalińska ${ }^{\text {b }}$, Rafał Kruszynski ${ }^{\text {c }}$, Mateusz Penkala ${ }^{\text {d }}$

Abstract

Through varying the auxiliary N -donor ligands under similar synthetic conditions nine new compounds: $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{pz})\right]_{\mathrm{n}}(\mathbf{1}),\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{apz})_{2}\right]_{\mathrm{n}} \cdot\left(3 \mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}(\mathbf{2}),\left[\mathrm{Cu}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{ampz})_{4}\right](\mathbf{3}),\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{mpz})_{2}\right]_{\mathrm{n}}$ (4), $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\text { aind })_{2}\right]_{\mathrm{n}}(5),\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}(\mathrm{bpzm})_{2}\right]_{\mathrm{n}} \cdot\left(3.5 \cdot \mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}(6),\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{ampy})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}}(7)\left\{\left[\mathrm{Cu}_{2}(\mu-\right.\right.$ $\left.\left.\left.\mathrm{C}_{2} \mathrm{O}_{4}\right)(\text { aepy })_{2}\right]\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\right\}_{\mathrm{n}} \cdot\left(2 \mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}(\mathbf{8})$ and $\left[\mathrm{Cu}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}(\text { aepy })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}(9)((\mathrm{pz}=$ pyrazole, $\mathrm{apz}=3(5)$-aminopyrazole, $\mathrm{mpz}=3(5)$-methylpyrazole, $\mathrm{ampz}=3(5)$-amino-5(3)-methylpyrazole, aind $=$ 7-azaindole, bpzm $=$ bis(pyrazol-1-yl)methane, ampy $=2$-aminomethylpyridine and aepy $=2$-(2pyridyl)ethylamine) have been synthesized and characterised structurally (by single X-Ray analysis) and spectroscopically. On the basis of structural data, the influence of neutral N -donor ligands on the control of the final complex structures and the role of weak intermolecular interactions in the creation of molecular architectures have been discussed in detail. The two independent oxalate anions in 1, adopting μ_{3}-oxalato- $1 \kappa^{2} O^{I}, O^{2}: 2 \kappa O^{I}: 3 \kappa O^{2 a}$ and a relatively rare μ_{4}-oxalato- $1 \kappa^{2} O^{I}, O^{2}: 2 \kappa O^{I}: 3 \kappa O^{I a}, \mathrm{O}^{2 \mathrm{a}}: 4 \kappa \mathrm{O}^{2 \mathrm{a}}$ coordination modes, connect the Cu centers into two-dimensional net extending along crystallographic plane (100). Simultaneous existence of both amino and methyl group in ampz ligand results in formation of and 0 D dimeric structure of $\mathbf{3}$. Compounds $\mathbf{2}$ and 4-8 display one-dimensional coordination structures, and the most significant differences between these structures concern the geometry around the copper(II) center and coordination mode of the oxalate bridge. The structures of 2-9 are stabilized by the extensive hydrogen-bonding interactions that give rise to the supramolecular architectures. Additionally, the magnetic properties of the complexes $\mathbf{1 - 9}$ have been investigated and discussed in context their structures.

Introduction

The crystal engineering of inorganic-organic hybrid coordination polymers is currently one of the most active fields in coordination chemistry, supramolecular and materials chemistry. These compounds attracts significant attention for their intriguing architectures and topologies and due to the diverse promising applications. The inorganic component is a source of useful magnetic or optical properties, mechanical hardness, and thermal stability, while the organic component may offer processability, structural diversity and luminescent properties. The combination of the characteristics of the organic and inorganic components allows to obtain new materials with potential applications to catalysis, separation, sorption, luminescence, biological chemistry etc ${ }^{1}$.

The common strategy for synthesis of inorganic-organic hybrid coordination polymers is based upon the self-assembly strategy of organic ligands and metal ions. In this method a final structure and topology of a coordination polymer is a result of combination of various forces including strong and directional interactions (metal-ligand coordination bond) and much weaker interactions such as hydrogen bonds, $\pi-\pi$ stacking, halogen-halogen and $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{X}$ ($\mathrm{X}=\mathrm{O}, \mathrm{N}, \mathrm{Cl}$ or I etc.) contacts. To some extent, the coordination network assembly process can be also affected by counter anions, ligand-metal molar ratio, coexisting neutral ligands,
temperature, pH , and solvents used for crystallization. So far a variety of metal coordination frameworks with various topologies and properties have been synthesized and notable advances have been made in understanding the factors that influence network topology.

However, rational control in the construction of polymeric networks remains a great challenge in crystal engineering and much more work is required to extend our knowledge of cooperative interactions between metal atoms and organic ligand moieties ${ }^{2}$.

Oxalate ions have been proven to be good connectors to bind to metal joints and play a key role in design of new functional coordination networks. They have presented highly versatile binding modes (Scheme 1) and also serve as a good hydrogen-bonding participant to give rise to higher dimensional structures. On the other hand, oxalate bridges act as an efficient mediator for the magnetic interaction between the paramagnetic transition metal centers providing a great opportunity to develop new magnetic materials and explore systematically magneto-structural correlations ${ }^{3}$.

The aim of this research was to examine the role of N -donor ligands in structure formation of oxalate copper(II) complexes. For the study, we choose pyrazole derivatives and chelating ligands with aromatic N -heterocycle ring and aliphatic amine donor (Scheme 2). Except for bis(pyrazol-1-yl)methane, all these ligands contain hydrogen-bonding functionalities which can arise to a broad variety of supramolecular networks.

μ-oxalato- $\kappa^{2} O^{\prime}, O^{2}$	$\begin{gathered} \begin{array}{c} \mu-\text { oxalato- } \\ 1 \kappa^{2} O^{l}, O^{2}: 2 \kappa^{2} O^{I a}, O^{2 a} \end{array} \end{gathered}$	$\begin{gathered} \mu-\text { oxalato- } \\ 1 \kappa^{2} O^{I}, O^{2}: 2 \kappa O^{I a} \end{gathered}$
$\begin{gathered} \mu-\text { oxalato- } \\ 1 \kappa^{2} O^{l}, O^{2}: 2 \kappa O^{I a} \end{gathered}$	$\begin{gathered} \mu_{3} \text {-oxalato- } \\ 1 \kappa^{2} O^{I}, O^{2}: 2 \kappa O^{I}: 3 \kappa O^{2 a} \end{gathered}$	$\begin{gathered} \mu_{3} \text {-oxalato- } \\ 1 \kappa^{2} O^{l}, O^{2}: 2 \kappa O^{l}: 3 \\ \kappa O^{l a} \end{gathered}$
$\begin{aligned} & \mu-\text { oxalato- } \\ & 1 \kappa O^{l}: 2 \kappa O^{2} \end{aligned}$	$\begin{gathered} \mu_{4}-\text { oxalato- } \\ 1 \kappa^{2} O^{I}, O^{2}: 2 \kappa O^{I}: 3 \kappa O^{l a}: \\ 4 \kappa O^{2 a} \end{gathered}$	$\begin{gathered} \mu_{4} \text {-oxalato- } \\ 1 \kappa^{2} O^{l}, O^{2}: 2 \kappa O^{I}: 3 \kappa O \\ 1 a, \mathrm{O}^{2 \mathrm{a}}: 4 \kappa \mathrm{O}^{2 \mathrm{a}} \\ { }^{2} \end{gathered}$

Scheme 1. Coordination modes observed for the oxalate groups in copper(II) complexes.

Herein, nine oxalate copper(II) complexes, namely $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{pz})\right]_{\mathrm{n}}$ (1), $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{apz})_{2}\right]_{\mathrm{n}} \cdot\left(3 \mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}$ (2), $\left[\mathrm{Cu}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{ampz})_{4}\right]$ (3), $\quad\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{mpz})_{2}\right]_{\mathrm{n}} \quad$ (4), $\quad\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\text { aind })_{2}\right]_{\mathrm{n}} \quad$ (5), $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}(\mathrm{bpzm})_{2}\right]_{\mathrm{n}} \cdot\left(3.5 \mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}(6),\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{ampy})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}}(7)$, $\left\{\left[\mathrm{Cu}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)(\text { aepy })_{2}\right]\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\right\}_{\mathrm{n}} \cdot\left(2 \mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}} \quad$ (8) and $\left[\mathrm{Cu}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}(\text { aepy })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}$ (9) (pz = pyrazole, apz $=3(5)-$ aminopyrazole, $\mathrm{mpz}=3(5)$-methylpyrazole, ampz $=3(5)$-amino5 (3)-methylpyrazole, aind $=7$-azaindole, bpzm $=\operatorname{bis}($ pyrazol-1yl)methane, ampy $=2$-aminomethylpyridine and aepy $=2$-(2pyridyl)ethylamine), are reported. On the basis of synthesis and structural characterization, the influence of neutral N -donor ligands on the control of the final complex structures and the role of weak intermolecular interactions in the creation of molecular architectures are discussed. Moreover, the magnetic properties of the complexes 1-9 have been investigated and discussed in context their structures.

pz	apz	mpz	ampz
aind	bpzm	ampy	aepy

Scheme 2. Molecular structure of ligands used in this work.

Result and discussion

Preparation and General Characterization

Synthesis and isolation of $\left.\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{pz})\right]_{\mathrm{n}} \quad(\mathbf{1})$, $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{apz})_{2}\right]_{\mathrm{n}}\left(3 \mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}$ (2), $\left[\mathrm{Cu}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{ampz})_{4}\right]$ (3), $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{mpz})_{2}\right]_{\mathrm{n}} \quad$ (4), $\quad\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\text { (aind })_{2}\right]_{\mathrm{n}} \quad$ (5), $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}(\mathrm{bpzm})_{2}\right]_{\mathrm{n}} \cdot\left(3.5 \mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}(6),\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{ampy})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}}$ (7), $\left\{\left[\mathrm{Cu}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)(\text { aepy })_{2}\right]\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\right\}_{\mathrm{n}} \cdot\left(2 \mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}(\mathbf{8})$ and $\left[\mathrm{Cu}_{4}(\mu-\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}(\text { aepy })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}(9)$ were carried out through the selfassembly reactions of aqueous solution of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ with methanolic solution of copper salt and suitable N -heterocyclic ligand $(\mathrm{pz}=$ pyrazole, $\mathrm{apz}=3(5)$-aminopyrazole, $\mathrm{mpz}=3(5)$ methylpyrazole, ampz $=3(5)$-amino-5(3)-methylpyrazole, aind $=7-$ azaindole, bpzm $=\operatorname{bis}($ pyrazol-1-yl)methane, ampy $=2$ aminomethylpyridine and aepy $=2$-(2-pyridyl)ethylamine), followed by a solvent evaporation at room temperature. The reactions with pyrazole, 3(5)-aminopyrazole, 3(5)-methylpyrazole, 3(5)-amino-5(3)-methylpyrazole and 7-azaindole were carried out in molar ratio of copper(II) chloride to ligand equal $1: 2$. In the reactions with potentially chelating ligands, the metal-to-ligand ratio was equal 1:1. Interestingly, the choice of copper(II) salt $\left(\mathrm{CuCl}_{2}\right.$ and $\left.\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\right)$ turned out to be crucial only in complex formation with 2-(2pyridyl)ethylamine. $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ reacted with aepy and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ to give $\quad\left\{\left[\mathrm{Cu}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)(\text { aepy })_{2}\right]\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\right\}_{\mathrm{n}} \cdot\left(2 \mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}} \quad$ (8), whereas the reaction of CuCl_{2} with aepy and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ yielded $\left[\mathrm{Cu}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}(\text { aepy })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}(\boldsymbol{9})$.

To confirm the phase purity of the synthesized complexes, the PXRD patterns of these compounds were recorded. As shown in the Figure S1-S9 (Supporting Information), all the XRPD patterns measured for the as-synthesized samples were in good agreement with the XRPD patterns simulated from the respective single-crystal X-ray data using the Mercury 2.4 program ${ }^{4}$, demonstrating that the crystal structures are truly representative of the bulk materials.

The IR spectra of 1-9 show features attributable to each component of the complexes. In high frequency region the IR spectra of 1-9 show strong absorptions assignable to $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ stretching vibrations ($3480-3100 \mathrm{~cm}^{-1}$). Coordination of the oxalate group was confirmed by absorptions in the region 1710-1630 and $1430-1270 \mathrm{~cm}^{-1}$ assigned to the asymmetric and symmetric stretching vibration of $\mathrm{C}_{2} \mathrm{O}_{4}^{-}$group, respectively. These values agree well with those reported for the related oxalate complexes ${ }^{5}$. The characteristic bands assignable to $v(\mathrm{C}=\mathrm{C})$ and $v(\mathrm{C}=\mathrm{N})$ vibration of coordinated N -heterocyclic ligands are observed in the range 1610$1500 \mathrm{~cm}^{-1}$.

Crystal Structure Analysis

The crystallographic data of 1-9 are summarized in Tables 1 and 2. The intra- and intermolecular contacts ${ }^{7}$ detected in the structures 1-9 are collected in Table S1. The selected bond distances and angles and of 1-9 are listed in Tables S2-S10 (Supplementary Materials).

Structure of $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{pz})\right]_{\mathrm{n}}(\mathbf{1})$

The complex 1 crystallizes in the monoclinic space group $\mathrm{P} 2_{1} / \mathrm{c}$. The asymmetric unit contains a metal ion, pyrazole molecule and two halves of oxalate anions (Figure 1a). The mid points of the $\mathrm{C}(4)-\mathrm{C}(4 \mathrm{~A})$ and $\mathrm{C}(5)-\mathrm{C} 4(5 \mathrm{C})$ bonds (symmetry codes as in Fig. 1) exist on the inversion centres (respectively the special positions a and c of the of the $P 2_{1} / c$ space group with the multiplicity 2). The pyrazole ligand is disordered over three positions with the 0.4:0.3:0.3 participation of partially occupied domains. The anisotropic displacement parameters (ADPs) of these disordered atoms show prolation and oblation effects, thus the atoms possessing
most different ADPs (C(2) C(1A) N(2A) C(2A) C(1B) N(2B)) were restrained to be equal with effective standard deviation 0.01 , and with the corresponding equivalent displacement parameters $U_{\text {eq }}$ free to refine. The one potential hydrogen bond donor (the $\mathrm{N}-\mathrm{H}$ group) and one type of acceptor group (oxalate oxygen atoms) exists in the asymmetric unit of compound 1 , however the restrains imposed by the rigid polymer net disallow formation of close contract between these group. The lack of hydrogen bonding and relative rotation freedom about $\mathrm{Cu}-\mathrm{N}$ coordination bond favours the disorder of the neutral ligand of the 1 . The two independent oxalate anions, situated on centers of inversion, adopt different coordination modes $\mu-$ oxalato- $1 \kappa^{2} O^{l}, O^{2}: 2 \kappa^{2} O^{I a}, O^{2 a} \quad$ and $\quad \mu_{4}$-oxalato$1 \kappa^{2} O^{l}, O^{2}: 2 \kappa O^{I}: 3 \kappa O^{1 a}, \mathrm{O}^{2 \mathrm{a}}: 4 \kappa \mathrm{O}^{2 \mathrm{a}}$ (Figure 1b) and connect the Cu centers into two-dimensional net extending along crystallographic plane (100) with $\mathrm{Cu} \cdots \mathrm{Cu}$ separations equal to $4.237(2), 5.546(2)$ and $5.553(2) \AA$ (Figure 1 b and Figure 1c). The pyrazole ligands alternatively extrude above and below the $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]_{\mathrm{n}}$ layer.
$\mathrm{C}(5)-\mathrm{O}(3)$, as expected from the polarisation of the charge density towards the metal-bonded oxygen atoms ${ }^{8}$.

To get better insight into the framework structure of $\mathbf{1}$, topological analysis was carried out and revealed that the metal centres create the 7-c uninodal net (Fig. 1c), described by $\left\{3^{9} ; 4^{9} ; 5^{3}\right\}$ Schläfli symbol and [3.3.3.3.3.3.3.3.3.4.4.4.4.4.4.4.4.4.5.5(2).5(2)] extended point vertex symbol ${ }^{9}$. This means that the net if formed by alternating hexa- and tetra-functional oxalate ions (coordinating to four metal ions in two bidentate-chelating modes and two monodentate modes, and to two metal ion in two bidentate-chelating modes, Fig. 1c).

Structure of $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{apz}_{2}\right]_{\mathrm{n}} \cdot\left(\mathbf{3} \mathrm{H}_{\mathbf{2}} \mathrm{O}\right)_{\mathrm{n}}(\mathbf{2})\right.$

The structure 2 consists of $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{apz})_{2}\right]$ and solvated water molecules. The $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{apz})_{2}\right]$ units are linked by alternating amino nitrogen atoms of $a p z$ ligand and oxygen atoms of oxalate ion to give an infinite one-dimensional zig-zag chain propagated along the [010] direction (Figure 2).

Figure 1. a) The perspective drawing of the coordination entity of the compound 1, the symmetry generated atoms are indicated by A, B and C letters (symmetry codes $-\mathrm{x},-\mathrm{y},-\mathrm{z} ;-\mathrm{x}, \mathrm{y}+0.5,-\mathrm{z}+0.5$ and $-\mathrm{x},-\mathrm{y}+1,-\mathrm{z}$,

The centrosymmetric μ-oxalato- $1 \kappa^{2} O^{l}, O^{2}: 2 \kappa^{2} O^{I a}, O^{2 a}$ oxalate bridge (containing the $\mathrm{O}(3), \mathrm{O}(4), \mathrm{C}(5)$ atoms) is attached to the copper centers with two short $\mathrm{Cu}-\mathrm{O}$ bond distances of $1.9850(18)$ and $1.984(2) \AA$ leading to an almost planar $\mathrm{Cu}-\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-}$ Cu framework. The oxalate ligands incorporating $\mathrm{O}(1), \mathrm{O}(2), \mathrm{C}(4)$ atoms coordinate to metal centers in two different modes, forming asymmetric chelate bis-bidentate linkage with a bond distance (2.3404(19) \AA) significantly longer than the other one (1.9589(18) \AA) and in monodentate ways with bond lengths of $2.4984(18) \AA$. As a result, the coordination environment around each $\mathrm{Cu}(\mathrm{II})$ ion is a tetragonally elongated octahedron with the equatorial plane defined three oxalate oxygen atoms $O(1), O(3)$ and $O(4)^{i}[(i)-x,-y+1,-z]$ and one pyrazole nitrogen atom. The axial coordination sites are occupied by the oxalate oxygen atoms with $\mathrm{Cu}-\mathrm{O}$ bond lengths of 2.3404(19) and 2.4984(18) \AA, which are significantly longer than the equatorial ones (Table S2).
The $\mathrm{Cu}-\mathrm{O}_{\mathrm{ox}}$ distances and $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ bond angles of $\mathbf{1}$ fall within the range typical for oxalate bridged $\mathrm{Cu}(\mathrm{II})$ complexes. The $\mathrm{C}(5)-\mathrm{C}(5)^{\mathrm{i}}$ $[(i)-x,-y+1,-z]$ and $\mathrm{C}(4)-\mathrm{C}(4)^{\text {ii }}$ [(ii) $\left.-\mathrm{x},-\mathrm{y},-\mathrm{z}\right]$ bond lengths are $1.525(5)$ and $1.551(6) \AA$, which corresponds to a single bond. The $\mathrm{C}(4)-\mathrm{O}(1)$ and $\mathrm{C}(5)-\mathrm{O}(4)$ (which oxygen atoms are engaged in both bidentate and monodentate bridges) are longer than $\mathrm{C}(4)-\mathrm{O}(2)$ and

The $\mathrm{Cu}{ }^{\cdots \cdots \cdot \mathrm{Cu}}$ distances separated by 5 -aminopyrazole and $\mu-$ oxalato $-1 \kappa^{2} O^{l}, O^{2}: 2 \kappa O^{I a}$ ligands are 4.583(2) and 5.533(2) \AA, respectively.

The coordination geometry around $\mathrm{Cu}(\mathrm{II})$ ion can be described as a tetragonally elongated octahedron with the oxygen atom from $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ ion $\left(\mathrm{Cu}(1)-\mathrm{O}(2)^{\mathrm{i}}=2.921(3) \AA[(\mathrm{i}):-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}]\right)$ and amino nitrogen atom of the apz ligand $\left(\mathrm{Cu}(1)-\mathrm{N}(3)^{\mathrm{ii}}=2.445(2)\right.$ \AA [(ii): $-\mathrm{x}, 2-\mathrm{y}, 1-\mathrm{z})$ in the axial positions. The equatorial plane is constituted by two nitrogen atoms of pyrazole molecules $(\mathrm{Cu}(1)-$ $\mathrm{N}(1)=2.004(2) \AA, \mathrm{Cu}(1)-\mathrm{N}(4)=1.977(2) \AA$) and two oxygen atoms of the oxalate ion $(\mathrm{Cu}(1)-\mathrm{O}(1)=1.9836(18) \AA, \mathrm{Cu}(1)-\mathrm{O}(3)=$ 1.9551(18) \AA). The two tri-functional bridging oxalate ions (coordinating to two metal ions in bidentate-chelating and monodentate mode, Fig. 2b) alternating in the polymeric chain with the two di-functional bridging pyrazole molecules (coordinating to two metal ions in monodentate mode, Fig. 2b) form the 1D coordination polymer possessing the double bridged copper ions.
The $\mathrm{Cu}(1)-\mathrm{O}(2)^{i}[(\mathrm{i})-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}]$ bond length exceeds the $\mathrm{Cu}-$ O_{eq} ones by ca. $0.96 \AA$, and it is similar to that in $\left[\mathrm{Cu}_{2}(\mathrm{BIBM})_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O} \quad(\mathrm{BIBM} \quad=\quad \operatorname{bis}(2-$ imidazolyl)bis(methoxycarbonyl)methylmethane), where the

a)

b)

Figure 2. a) The perspective drawing of the coordination entity of the compound $\mathbf{2}$, the symmetry generated atoms are indicated by A and B letters (symmetry codes $-\mathrm{x},-\mathrm{y}+2,-\mathrm{z}+1$ and $-\mathrm{x},-\mathrm{y}+1,-\mathrm{z}+1$ respectively); b) the part of the 1 D coordination network, the ligand molecules not involved into formation of the chain and hydrogen atoms were omitted.
oxalate groups also act in a monodentante-bidentate mode ${ }^{10}$. According to Hathaway's criterion the axial oxalate oxygen atom is in the borderline to be considered as semicoordinated ${ }^{11}$. The pyrazole rings are close to planarity (maximum deviation of $0.0030(16) \AA$ exists for $\mathrm{N}(1)$ atom in one of the plane and $0.0013(16) \AA$ for atom $\mathrm{N}(4)$ in the second plane) and they are inclined at $74.52(13)^{\circ}$. The oxalate group is approximately planar with deviations up to $0.064(4) \AA$ from the least-squares plane and makes a dihedral angle of $7.71(15)^{\circ}$ with the equatorial plane of $\mathrm{Cu}(1)$ center formed by $\mathrm{N}(1), \mathrm{N}(4), \mathrm{O}(1)$ and $\mathrm{O}(3)$ atoms. The $\mathrm{C}(7)-$ $\mathrm{C}(8)$ bond distance of 1.543(4) Å reflects carbon-carbon single bond character. The $\mathrm{C}-\mathrm{O}$ bond lengths satisfy the trend $\mathrm{C}-\mathrm{O}_{\text {coord }}>\mathrm{C}-$ $\mathrm{O}_{\text {semicoord }}>\mathrm{C}-\mathrm{O}_{\text {uncoord }}$, as expected from the polarization of the charge density toward the metal-bonded oxygen atoms. The presence of multiple $\mathrm{N}-\mathrm{H}$ (complex molecule) and $\mathrm{O}-\mathrm{H}$ (water molecules) hydrogen bond donors in different environment leads to the complex scheme of intramolecular interactions. The unitary basic graph set is composed from $\operatorname{DDDDC}(11)\left[\mathrm{R}_{2}{ }^{2}(14)\right] \operatorname{DDDDs}(5) \mathrm{S}(8) \mathrm{DD}$ basic motifs, respectively for bonds listed in Table S1. These interactions expand the molecules to the three-dimensional supramolecular network.

Structure of $\left[\mathrm{Cu}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)_{\mathbf{2}}\left(\mathrm{H}_{\mathbf{2}} \mathrm{O}\right)_{\mathbf{2}}(\mathbf{a m p z})_{4}\right]$ (3)

The structure 3 is built up of centrosymmetric dimeric $\left[\mathrm{Cu}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{ampz})_{4}\right]$ entities which are linked through hydrogen bonds involving water molecules and 5 -amino-3methylpyrazole/oxalato moieties. A view of dimeric unit $\left[\mathrm{Cu}_{2}(\mu-\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{ampz})_{4}\right]$ is depicted in Figure 3, and its relevant bond distances and angles are reported in Table S4. The dinuclear units are constructed via oxalate ions analogously to linkage observed in compound 2, i.e. the two tri-functional bridging oxalate ions
(coordinating to two metal cations in bidentate-chelating and monodentate mode, Fig. 3) join two copper ions.

Figure 3. The perspective drawing of the dimeric coordination unit of the compound $\mathbf{3}$, the symmetry generated atoms are indicated by A letter (symmetry code $-\mathrm{x}+1,-\mathrm{y},-\mathrm{z}$).

The dinuclear complex results from the pairing of two mononuclear units $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{ampz})_{2}\right]$ related by a crystallographic center of inversion. Two centrosymmetrically related copper(II) centers are bridged by two oxalate groups which act in a monodentante-bidentate mode. The resulting intradinuclear $\mathrm{Cu}{ }^{\cdots \mathrm{Cu}}$ separation of $5.424(2) \AA$ falls in the range reported for the related $\mathrm{Cu}(\mathrm{II})$ species ${ }^{12}$. Taking the semi-coordinated oxygen atom into consideration, the coordination about the copper(II) ions can be described as an elongated octahedron. The equatorial plane is comprised of two oxygen atoms belonging to an oxalate group and two nitrogen atoms from two ampz molecules. The four equatorial atoms are nearly coplanar within $\pm 0.002(12) \AA$, and copper atom is displaced $0.100(2) \AA$ in the least-squares plane towards the ligand in apical site. The pyrazole mean planes make dihedral angles of $56.26(10)^{\circ}$ and $52.12(10)^{\circ}$ with the equatorial plane, and the dihedral angle between the two pyrazole rings is $66.64(13)^{\circ}$. The oxalate group is bound to the copper atom in an approximately symmetrical manner with the $\mathrm{Cu}(1)-\mathrm{O}(1)$ and $\mathrm{Cu}(1)-\mathrm{O}(3)$ bond lengths amounting $1.962(2)$ and $1.968(2) \AA$, respectively. It is approximately planar with deviations up to $0.0383(3) \AA$ from the least-squares plane and makes a dihedral angle of $4.28(15)^{\circ}$ with the equatorial plane of $\mathrm{Cu}(1)$ atom. The axial coordination sites are occupied by oxygen atoms belonging to water molecule and oxalate group, with a $\mathrm{Cu}-\mathrm{O}$ bond lengths of $2.404(2)$ and $2.915(3) \AA$, which are significantly longer than the equatorial ones. Both uncoordinated and semicoordinated oxygen atoms are also affected by H -bonding. The dimer is internally linked by four $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds forming two $\mathrm{N}_{1} \mathrm{R}_{2}{ }^{2}(14)$ motifs and two pairs of $\mathrm{N}_{2} \mathrm{R}_{1}{ }^{2}(5) \mathrm{R}_{2}{ }^{2}(14)$ motifs. The dinculear units are assembled via the intermolecular N $\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table S1) to the three-dimensional supramolecular network. These bonds motifs form the $\mathrm{C}(7) \mathrm{R}_{2}{ }^{2}(10) \mathrm{R}_{2}{ }^{2}(10) \mathrm{C}(7)$ unitary basic graph set. The two of above mentioned interactions ($\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$) create a double hydrogen bond. Additionally in the structure can be found several $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ short contacts (Table S1), which can be considered as weak hydrogen bonds. These interactions provide an additional stabilization to the supramolecular architecture.

Structure of $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{mpz})_{2}\right]_{\mathrm{n}}(4)$

The crystal structure of $\mathbf{4}$ is built of $\left[\mathrm{Cu}(\mathrm{mpz})_{2}\right]^{2+}$ units joined sequentially by μ-oxalato- $1 \kappa^{2} O^{l}, O^{2}: 2 \kappa O^{l a}$ ligands to zig-zag chains parallel to [010] direction with intrachain separations $\mathrm{Cu}{ }^{\cdots} \mathrm{Cu}$ of 6.300 (2) \AA (Figure 4). The each tri-functional bridging oxalate ion coordinate to two metal ions (in bidentate-chelating and monodentate mode, Fig. 4b) forming the 1D coordination polymer, with in-chain linkage the same as in compound 7. Each copper(II) is five-coordinate by two oxygen atoms $(\mathrm{Cu}(1)-\mathrm{O}(1), 1.9345(16) \AA$; $\mathrm{Cu}(1)-\mathrm{O}(3), 1.9651(15) \AA)$ from the oxalate ligand and two nitrogen atoms $(\mathrm{Cu}(1)-\mathrm{N}(1), 1.9708(19) \AA ; \mathrm{Cu}(1)-\mathrm{N}(2), 1.9766(19) \AA)$ of mpz ligands to form the basal plane and the coordination sphere is completed by an apical oxygen atom from another oxalate with a longer bond ($\mathrm{Cu}(1)-\mathrm{O}(4), 2.4157(17) \AA$) (Table S5).

a)

b)

Figure 4. a) The perspective drawing of the coordination entity of the compound $\mathbf{4}$, the symmetry generated atoms are indicated by A and B letters (symmetry codes $-\mathrm{x}-0.5, \mathrm{y}-0.5,-\mathrm{z}+0.5$ and $-\mathrm{x}-0.5$, $y+0.5,-z+0.5$ respectively); b) the part of the 1 D coordination network, the ligand molecules not involved into formation of the chain were omitted.

The coordination geometry at the copper center can be described as a distorted square pyramid with a parameter τ equal $0.22(1){ }^{13}$. The pyrazole rings are close to planarity (maximum deviation of $0.0032(14) \AA$ exists for $\mathrm{N}(1)$ atom in one of the plane and 0.0024 (18) for atom $C(5)$ in the second plane) and are inclined at $61.50(8){ }^{\circ}$. The oxalate group is approximately planar with deviations up to 0.024 (3) \AA from the least-squares plane and makes a dihedral angle of $5.83(12)^{\circ}$ with the equatorial plane of $\mathrm{Cu}(1)$ center formed by $\mathrm{N}(1), \mathrm{N}(3), \mathrm{O}(1)$ and $\mathrm{O}(3)$ atoms. The $\mathrm{C}(9)-\mathrm{C}(10)$ bond distance of 1.554(3) \AA reflects carbon-carbon single bond character.

The $\mathrm{C}-\mathrm{O}$ bond lengths satisfy the trend $\mathrm{C}-\mathrm{O}_{\text {coord }}>\mathrm{C}-\mathrm{O}_{\text {semicoord }}>\mathrm{C}-$ $\mathrm{O}_{\text {uncoord }}$, as expected from the polarization of the charge density toward the metal-bonded oxygen atoms.

The chains of $\mathbf{4}$ are internally linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Such type of bond also interlinks the neighboring chains to the $C(5)$ unitary graph motif of lowest degree and $C(7+2 n)$ motif of higher degrees (where $\mathrm{n} \subset \aleph_{0}$). These interactions forms a layer extending along crystallographic (001) plane. In the structure of 4 exists also two types of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ short contacts (one interchain and one intra-chain, Table S1), which can be classified as weak hydrogen bonds.

Structure of $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \text { (aind) } \mathbf{2}_{\mathbf{2}}\right]_{\mathrm{n}}(\mathbf{5})$

The structure 5 consists of cis- $\left[\mathrm{Cu}(\text { aind })_{2}\right]^{2+}$ units bridged sequentially by bis-bidentate, oxalate ligands to form zigzag polymeric chain parallel to [001] (Figure 5). The mid point of the $\mathrm{C}(8)-\mathrm{C}(8 \mathrm{~A})$ bond (symmetry code as in Fig. 5) exists on the inversion centre (the special positions b of the $C 2 / c$ space group with the multiplicity 4). The each tetra-functional bridging oxalate ion coordinate to two metal ions (each in bidentate-chelating mode, Fig. 5 b) forming the 1 D coordination polymer, with in-chain linkage the same as in compounds 6 and 8 . The $\mathrm{Cu} \cdots \mathrm{Cu}$ separation across the bridging oxalate group is $5.541(2) \AA$, typical of bis-bidentate oxalate-bridged copper(II) complexes, namely $5.411(2) \AA$ in $\left[\mathrm{Cu}_{2}(\mu-\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}(\mathrm{ampy})_{3}\right]_{\mathrm{n}}{ }^{14}$ and in $5.419(2)$ and $5.544(2) \AA$ in $\left[\mathrm{Cu}_{3}(\mu-\right.$ $\left.\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}(\mu-4,4 \text { '-bipy })_{2}(4,4$-bipy $\left.)\right]_{\mathrm{n}}{ }^{15}$. The $\mathrm{Cu}($ II $)$ centres, placed on a crystallographic 2-fold axis (the special positions e of the $C 2 / c$ space group with the multiplicity 4), are coordinated to four oxygen atoms from two symmetry related bridging oxalate ligands and the pyridine-type nitrogen atoms of two symmetry related, cis-arranged 7 -azaindole ligands. The metal coordination geometry is well described as Jahn-Teller distorted octahedral with four short bonds formed by the imine nitrogen atoms, from two crystallographically related aind molecules $(\mathrm{Cu}(1)-\mathrm{N}(1) 2.0254(18) \AA)$ and two oxygen atoms from two asymmetrically ligated oxalate ions $(\mathrm{Cu}(1)-\mathrm{O}(1)$ $1.9936(14) \AA$). The axial coordination sites are occupied by the two remaining oxalate oxygen atoms, with $\mathrm{C}-\mathrm{O}$ bond length (2.3053(15) \AA) that is significantly longer than the equatorial one (Table S6). The difference between the $\mathrm{Cu}-\mathrm{O}_{\mathrm{ax}}$ and $\mathrm{Cu}-\mathrm{O}_{\mathrm{eq}}$ distances $(0.31(1) \AA)$ correlates with those observed in the related $\left[\mathrm{Cu}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}(\mathrm{ampy})_{3}\right]_{\mathrm{n}}$ ${ }^{14}$ and $\left[\mathrm{Cu}_{3}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}(\mu-4,4 \text { '-bipy })_{2}(4,4 \text {-bipy })\right]_{\mathrm{n}}{ }^{15}$. The oxalate and aind ligands form dihedral angles of 79.29(3) ${ }^{\circ}$ and 68.7(3) ${ }^{\circ}$, respectively, with the equatorial coordination plane.

a)

b)

Figure 5. a) The perspective drawing of the coordination entity of the compound $\mathbf{5}$, the symmetry generated atoms are indicated by A, B and C letters (symmetry codes $-x,-y+1,-z+1 ;-x, y,-$ $z+1 / 2$ and $x,-y+1, z-1 / 2$ respectively); b) the part of the $1 D$ coordination network, the ligand molecules not involved into formation of the chain were omitted.

Similarly to $\mathbf{4}$, the chains of $\mathbf{5}$ are internally linked by N $\mathrm{H} \cdots \cdot \mathrm{O}$ hydrogen bonds, but, in opposition to 4 , there are no hydrogen bonds between the chains (even the weak ones).

Structure of $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{\mathbf{2}}(\mathbf{b p z m})_{2}\right]_{\mathrm{n}}\left(\mathbf{(3 . 5} \cdot \mathrm{H}_{\mathbf{2}} \mathrm{O}\right)_{\mathrm{n}}(\mathbf{6})$

The asymmetric unit of 6 (Figure 6a) contains of noncentrosymmetric dinuclear units $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}(\mathrm{bpzm})_{2}\right]$ and crystallization water molecules. The dinuclear $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}(\mathrm{bpzm})_{2}\right]$ entities are further linked into zigzag polymeric chain parallel to [1-1-1] (Figure 6b). The each tetra-functional bridging oxalate ion coordinate to two metal ions (each in bidentate-chelating mode, Fig. 6 b) forming the 1 D coordination polymer, with in-chain linkage the same as in compounds 5 and $\mathbf{8}$. The coordination environment around ions $\mathrm{Cu}(1)$ and $\mathrm{Cu}(2)$ is a tetragonally elongated octahedron with four short bonds formed by nitrogen atoms of bpzm ligand and two oxygen atoms from ozalate ions. The axial coordination sites are occupied by the two remaining oxalate oxygen atoms, with $\mathrm{C}-\mathrm{O}$ bond lengths longer than the equatorial ones (Table S7). The $\mathrm{Cu}(1) \cdots \mathrm{Cu}(1)$ and $\mathrm{Cu}(1) \cdots \mathrm{Cu}(2)$ separations through the bidentate oxalate bridges are $5.507(4)$ and $5.464(4) \AA$, respectively.

Figure 6. a) The perspective drawing of the coordination entity of the compound $\mathbf{6}$, the symmetry generated atoms are indicated by A and B letters (symmetry codes $-x,-y+1,-z+1$ and $-x+1,-y,-z$ respectively), the hydrogen atoms and water molecules were omitted for clarity; b) the part of the 1D coordination network, the ligand molecules not involved into formation of the chain were omitted.

In the structure 7, the molecules $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(a m p y)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ are associated through $\mathrm{Cu}-\mathrm{O}$ semi-coordination bond of 2.830(2) \AA to form zig-zag chains running along [100] direction with intrachain $\mathrm{Cu} \cdots \mathrm{Cu}$ separation of $5.085(2) \AA$ (Figure 7). The each tri-functional bridging oxalate ion coordinate to two metal ions (in bidentatechelating and monodentate mode, Fig. 7b) forming the 1D coordination polymer, with in-chain linkage the same as in compound 4. These chains are internally stabilized by two hydrogen bonds, one $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and one $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$, both forming $\mathrm{C}(4)$ motifs of basic unitary graph set composed from molecules considered as separated ones (Table S1). Taking the semi-coordinated oxygen atom into consideration, the copper(II) ion of 7 displays a tetragonally elongated octahedron. The equatorial coordination positions involve two oxalate oxygen atoms and two nitrogen atoms of ampy coordinated to the central ion in chelating way. The axial coordination sites are occupied by the oxalate and water oxygen atoms with $\mathrm{Cu}-\mathrm{O}$ bond length of $2.830(2)$ and $2.487(2) \AA$ which are significantly longer than the equatorial ones $1.9438(18)$ and 1.9549(18) Å (Table S8).

a)

b)

Figure 7. a) The perspective drawing of the coordination entity of the compound 7 , the symmetry generated atoms are indicated by A and B letters (symmetry codes $x+0.5, y,-z+0.5$ and $x-0.5, y,-z+0.5$ respectively); b) the part of the 1D coordination network, the ligand molecules not involved into formation of the chain were omitted.

The above mentioned chains are assembled via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds (both creating $\mathrm{C}(6)$ motifs of basic unitary graph set) to the two dimensional supramolecular network extending along crystallographic (001) plane. The one $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ short contact (Table S1), which can be considered as weak hydrogen bond, provides additional linkage between the chains of supramolecular network. Additionally the molecules of 7 contain the intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 3) which can be classified as weak intramolecular hydrogen bond.

Table 1. Crystal data and structure refinement for 1-5 complexes incorporating monodentate ligands.

	1	2	3	4	5
Empirical formula	$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cu}$	$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{Cu}$	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{Cu}$	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Cu}$	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Cu}$
Formula weight	219.64	371.81	363.83	315.78	387.8
Crystal system	monoclinic	triclinic	orthorhombic	monoclinic	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$	P-1	Pben	$\mathrm{P} 21 / \mathrm{n}$	C2/c
Unit cell dimensions $\left[\AA,{ }^{\circ}\right]$	$\mathrm{a}=8.5694(6)$	$\mathrm{a}=9.0343$ (5)	$\mathrm{a}=19.4230$ (5)	$\mathrm{a}=7.2518(2)$	$\mathrm{a}=15.9790$ (10)
	$\mathrm{b}=9.3227(4)$	$\mathrm{b}=9.2812(6)$	$\mathrm{b}=8.6184(2)$	$\mathrm{b}=8.3493(3)$	$\mathrm{b}=11.3100(8)$
	$\mathrm{c}=8.4631(9)$	$\mathrm{c}=10.1736(6)$	$\mathrm{c}=16.8313(5)$	$\mathrm{c}=20.4560(7)$	$\mathrm{c}=8.5968(5)$
		$\alpha=63.807(6)$			
	$\beta=92.100(9)$	$\beta=92.100(9)$		$\beta=90.762(3)$	$\beta=94.620(6)$
		$\gamma=82.407(5)$			
Volume [\AA^{3}]	675.66(9)	737.05(8)	2817.48(13)	1238.45(7)	1548.59(17)
Z	4	2	8	4	4
Density (calculated) [$\left.\mathrm{Mg} / \mathrm{m}^{3}\right]$	2.159	1.675	1.715	1.694	1.663
Absorption coefficient [mm^{-1}]	3.202	1.527	1.586	1.780	1.441
F(000)	436	382	1496	644	788
Crystal size [mm]	$0.120 \times 0.070 \times 0.003$	0.246x0.065x0.063	$0.420 \times 0.288 \times 0.097$	$0.199 \times 0.102 \times 0.025$	$0.682 \times 0.064 \times 0.056$
θ range for data collection [${ }^{\circ}$]	3.98 to 29.27	3.36 to 25.05	3.38 to 25.05	3.72 to 25.04	3.60 to 25.04
Index ranges	$-11 \leq \mathrm{h} \leq 11$	$-10 \leq h \leq 10$	$-23 \leq h \leq 23$	$-8 \leq h \leq 8$	$-18 \leq \mathrm{h} \leq 18$
	$-12 \leq \mathrm{k} \leq 12$	$-11 \leq \mathrm{k} \leq 11$	$-10 \leq \mathrm{k} \leq 10$	$-9 \leq \mathrm{k} \leq 9$	$-13 \leq \mathrm{k} \leq 11$
	$-10 \leq 1 \leq 10$	$-11 \leq 1 \leq 12$	$-20 \leq 1 \leq 20$	$-24 \leq 1 \leq 24$	$-10 \leq 1 \leq 10$
Reflections collected	5717	5566	21909	11694	4532
Independent reflections	$1669\left[\mathrm{R}_{\text {int }}=0.0400\right]$	$2604\left[\mathrm{R}_{\text {int }}=0.0305\right]$	$2497\left[\mathrm{R}_{\text {int }}=0.0443\right]$	2187 ($\mathrm{R}_{\text {int }}=0.0298$)	$1361\left[\mathrm{R}_{\mathrm{int}}=0.0338\right]$
Completeness to 2theta [\%]	99.7	99.8	99.8	99.8	99.7
Max. and min. transmission	1.000 and 0.715	1.000 and 0.878	1.000 and 0.749	1.000 and 0.811	1.00 and 0.785
Data / restraints / parameters	1669 / $36 / 181$	2604 / 0 / 199	2497 / 0 / 201	2187 / 0 / 174	1361 / 0 / 114
Goodness-of-fit on F^{2}	1.020	1.056	1.036	1.067	1.057
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0363$	$\mathrm{R} 1=0.0325$	$\mathrm{R} 1=0.0329$	$\mathrm{R} 1=0.0265$	$\mathrm{R} 1=0.0287$
	$\mathrm{wR} 2=0.0660$	wR2 $=0.0695$	wR2 $=0.0858$	wR2 $=0.0700$	wR2 $=0.0708$
R indices (all data)	$\mathrm{R} 1=0.0619$	$\mathrm{R} 1=0.0404$	$\mathrm{R} 1=0.0401$	$\mathrm{R} 1=0.0316$	$\mathrm{R} 1=0.0337$
	$\mathrm{wR} 2=0.0714$	wR2 $=0.0725$	$\mathrm{wR} 2=0.894$	wR2 $=0.0723$	wR2 $=0.0724$
Largest diff. peak and hole [$\mathrm{e} \AA^{-3}$]	0.529 and -0.593	0.298 and -0.267	0.326 and -0.316	0.306 and -0.260	0.301 and -0.227

Structure of $\left\{\left[\mathrm{Cu}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)(\text { aepy })_{2}\right]\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\right\}_{\mathrm{n}} \cdot\left(2 \mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}$

(8)

The crystal structure of $\mathbf{8}$ is comprised of zig-zag chains built of the centrosymmetric binuclear $\left[\mathrm{Cu}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)(\text { aepy })_{2}\right]^{2+}$ cations joined sequentially by $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2-}$ anions and solvated water molecules (Figure 8). The each tetra-functional bridging oxalate ion coordinate to two metal ions (each in bidentate-chelating mode, Fig. 8 b) forming the 1 D coordination polymer, with in-chain linkage the same as in compounds $\mathbf{5}$ and $\mathbf{6}$. There are two different copper centers in crystal structure $8, \mathrm{Cu}(1)$ in the cationic unit and $\mathrm{Cu}(2)$ in the anionic unit. The coordination environment around both $\mathrm{Cu}(1)$ and $\mathrm{Cu}(2)$ ions is a tetragonally elongated octahedron. The equatorial coordination positions of $\mathrm{Cu}(1)$ involve two oxalate oxygen atoms $\mathrm{O}(1), \mathrm{O}(10)^{i}[(\mathrm{i})-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+1]$ and two nitrogen atoms of chelating aepy ligand. The axial coordination sites are occupied by the oxalate oxygen atoms with $\mathrm{Cu}-\mathrm{O}$ bond length greater than the $\mathrm{Cu}-\mathrm{O}_{\mathrm{eq}}$ by ca. $0.3 \AA$ (Table S9). The $\mathrm{Cu}(2)$ atom occupies special position (the special positions a of the $P-1$ space group with the multiplicity 1), and its basal plane of $\mathrm{Cu}(2)$ ions is defined by four oxygen atoms from two crystallographically related bidentate oxalate ligands with almost equal $\mathrm{Cu}-\mathrm{O}$ bond distances $1.946(2)$ and $1.9556(18) \AA$. The mid point of the $\mathrm{C}(10)-\mathrm{C}(10 \mathrm{~A})$ exist on the inversion centre (the special position h of the P-1 space group with the multiplicity 1 . The coordination sphere of $\mathrm{Cu}(2)$ is completed by
two water molecules occupying axial positions and symmetrically related. As expected the $\mathrm{Cu}-\mathrm{O}_{\text {water }}$ bond length $(2.531(3) \AA)$ is considerably greater than the $\mathrm{Cu}-\mathrm{O}_{\mathrm{eq}}$. The $\mathrm{Cu}(1) \cdots \mathrm{Cu}(1)$ and $\mathrm{Cu}(1) \cdots \mathrm{Cu}(2)$ separations through the bidentate oxalate bridges are $5.576(2)$ and $5.365(2) \AA$, respectively. Two crystallographically related oxalate ligands form dihedral angles of $3.3(3)^{\circ}$ with the equatorial coordination plane of $\mathrm{Cu}(2)$, whereas the dihedral angle between the oxalate ions and the equatorial plane of central ion $\mathrm{Cu}(1)$ are equal 88.5(3) and 87.6(3) ${ }^{\circ}$.

The polymeric chains and outer coordination sphere water molecules of compound $\mathbf{8}$ are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ to the three dimensional supramolecular network, and the basic unitary graph set consists of $\mathrm{DDR}_{2}{ }^{2}(4)[\mathrm{C}(6)] \mathrm{DD}$ motifs, respectively for interactions listed in Table S1. The one water molecule is involved in the $\mathrm{O}-\mathrm{H} \cdot \cdots \cdot \pi$ hydrogen bond formed between the $\mathrm{O} 7-\mathrm{H} 7 \mathrm{OA}$ donor and pyridine ring acceptor (containing N1/C1/C2/C3/C4/C5 atoms), with $D \cdots A$ distance of $3.351(2) \AA, H \cdots D$ distance of 2.388 \AA and $\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$ angle of 168.6°. The supramolecular network is crosslink by two different types of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ weak hydrogen bonds and the polymer chains are additionally stabilized by one $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ weak intramolecular hydrogen bond.

Structure of $\left[\mathrm{Cu}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}(\right.$ aepy $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}(\mathbf{9})$

The structure of 9 consists of tetranuclear complexes $\left[\mathrm{Cu}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}(\text { aepy })_{4}\right]^{2+}$ and chloride ions. The tetranuclear complex $\left[\mathrm{Cu}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}(\text { aepy })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ (Figure 9) results from the pairing of two dinuclear units $\left[\mathrm{Cu}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)_{1.5}(\text { aepy })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$related by a crystallographic center of inversion located in the middle of the $\mathrm{C}-\mathrm{C}$ bond of this central μ-oxalato bridge.

a)

b)

Figure 8. a) The perspective drawing of the coordination entity of the compound 8 , the symmetry generated atoms are indicated by A and B letters (symmetry codes $-x+1,-y+1,-z+1$ and $-x,-y,-z$ respectively); b) the part of the 1 D coordination network, the ligand molecules not involved into formation of the chain were omitted.

The tetramers are constructed via oxalate ions analogously to linkage observed in compounds 5,6 and 8 , i.e. the three tetrafunctional bridging oxalate ions (coordinating to two metal ions in bidentate-chelating mode), Fig. 9) join four copper ions. The two Cu atoms of the tetramer are coordinated by two oxalate and aepy ligands, which build up an elongated octahedral surrounding around $\mathrm{Cu}(1)$. Both bis-chelating oxalato bridges are asymmetrically coordinated to the $\mathrm{Cu}(1)$ atom with one $\mathrm{Cu}-\mathrm{O}$ bond distance [2.363(3) and 2.273(3) \AA for $\mathrm{Cu}(1)-\mathrm{O}(3)$ and $\mathrm{Cu}(1)-\mathrm{O}(7)$, respectively] significantly longer than the other one [2.088(3) and $1.0986(3) \AA$ for $\mathrm{Cu}(1)-\mathrm{O}(1)$ and $\mathrm{Cu}(1)-\mathrm{O}(6)$, respectively]. The oxygen atoms $\mathrm{O}(1), \mathrm{O}(6)$ involved in the short bond distances and nitrogen atoms $\mathrm{N}(1)$ and $\mathrm{N}(2)$ of aepy ligand define the equatorial plane of the octahedron around $\mathrm{Cu}(1)$. The apical positions are filled by the $\mathrm{O}(3)$ and $\mathrm{O}(7)$ atoms involved in the longest bond distances. The dihedral angle between the two bridging oxalato ligands around the $\mathrm{Cu}(1)$ is $88.6(4)^{\circ}$, and the oxalato bridges form dihedral angles of $87.8(4)$ and $75.1(4)^{\circ}$ with the best equatorial mean plane of $\mathrm{Cu}(1)$ center (Table S 10). The two outer Cu atoms have a square-pyramidal environment, with two oxygen atoms of the oxalate bridge and two nitrogen atoms of aepy occupying the base of the pyramid. The axial co-ordination site is occupied by the oxygen atom of water molecule

In contrast to $\mathrm{Cu}(1)$, the coordination of the bridging oxalato ligands to $\mathrm{Cu}(2)$ is almost symmetric, with two very short $\mathrm{Cu}-\mathrm{O}$ bond distances (1.988(3) and $1.971(3)) \AA$ for $\mathrm{Cu}(2)-\mathrm{O}(2)$ and $\mathrm{Cu}(2)-\mathrm{O}(4)$, respectively). The dihedral angle between the bridging oxalato ligand and the best equatorial mean plane of $\mathrm{Cu}(2)$ is $5.0(4)$ - The metal-metal distances across the two oxalato bridges are $5.434(3) \AA,[\mathrm{Cu}(1) \cdots \cdots \mathrm{Cu}(2)]$ and $5.525(3) \AA[\mathrm{Cu}(1) \cdots \cdots \mathrm{Cu}(1 \mathrm{a})]$. In the dimer, the oxalato bridge is asymmetrically coordinated to the copper atom which exhibits a tetragonally elongated CuO 4 N 2
environment, whereas it is linked to the five-coordinated copper atom by means of two short $\mathrm{Cu}-\mathrm{O}$ distances.

The tetranuclear complex cation is internally linked the four $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ weak hydrogen bonds (two bonds in each asymmetric unit). The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds links cation to the supramolecular rings $\left(\mathrm{R}_{2}{ }^{2}(20) \mathrm{R}_{2}{ }^{2}(24)\right.$ unitary graph motifs) and the $\mathrm{N} / \mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds forms the finite D motifs of the first level graph. On the higher levels all these interactions assemble the cations and anions to the two dimensional layer extending along crystallographic (102) plane. These layer are linked by the C$\mathrm{H} \cdots \mathrm{O} / \mathrm{Cl}$ intermolecular hydrogen bonds to the three dimensional supramolecular network.

Effect of N-Donor Ligand on the Structures

Through varying the auxiliary N -donor ligands under similar synthetic conditions nine new copper(II) oxalate compounds with different structures were successfully obtained. Depending on the features of the N -donor ligands (substituents and coordination groups, conformations, and flexibility), the resultant compounds

Figure 9. The perspective drawing of the tetranuclear coordination cation and asymmetric unit anion of the compound 9, the symmetry generated atoms are indicated by A letter (symmetry code $-\mathrm{x},-\mathrm{y}+1,-\mathrm{z}+1$), the hydrogen atoms were omitted for clarity, the bonds of disordered domains are drawn as hollow lines.
differ in dimensionality, metal coordination sphere or oxalate coordination modes. The two dimensional network is formed only in case of compound containing only one monofunctional organic N donor ligand, i.e. compound 1. In other studied compounds, two or three N -donor ligands exist the inner coordination sphere, or the one such ligand acts in the chelating mode. Thus in only $\mathbf{1}$, the five further coordination sites are available (instead of four less existing in compounds 2-9) after coordination of organic ligand, and 2D structure is achieved by very rare μ_{4}-oxalato$1 \kappa^{2} O^{l}, O^{2}: 2 \kappa O^{l}: 3 \kappa O^{l a}, \mathrm{O}^{2 \mathrm{a}}: 4 \kappa \mathrm{O}^{2 \mathrm{a}}$ coordination mode of oxalate ions. The pyrazole ligands alternatively extrude above and below the $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]_{\mathrm{n}}$ layer.

The introduction of additional substituents into pyrazole ring (3-amino in apz, methyl in mpz , amino and methyl in ampz) or existence of extended π-conjugated system (7-azaindole) increases the complexation properties of N -donor ligands, consequently leading to formation of more stable $\mathrm{M}: \mathrm{L}_{2}, \mathrm{M}: \mathrm{L}_{3}$, and $\mathrm{M}: \mathrm{L}_{\text {chelating }}$ coordination compounds, and finally results in the lower dimensional networks, 1 D for $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{apz})_{2}\right]_{\mathrm{n}} 3 \mathrm{nH}_{2} \mathrm{O}$ (2) $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{mpz})_{2}\right]_{\mathrm{n}}(4)$ and $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\text { aind })_{2}\right]_{\mathrm{n}}(5)$, and 0 D dimeric structure for $\left[\mathrm{Cu}_{2}(\mu-\mathrm{ox})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{ampz})_{4}\right]$ (3). The presence of the amino group in apz acts a key role in formation of the final structure of 2 being an infinite one-dimensional zig-zag chain with $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{apz})_{2}\right]$ units linked by alternating amino nitrogen atoms of
apz ligand and oxygen atoms of oxalate ion. Simultaneous existence of both amino and methyl group in ampz ligand results in formation of and 0 D dimeric structure of $\mathbf{3}$, stabilized by extensive hydrogenbonding interactions. The water molecules are built up to the inner coordination sphere of compounds in which exist a residual space around the metal after formation of the coordination bonds with the N -donor and oxalate ligands, and in which, both the steric hindrance

The thermal stability of compounds 1-9 was measured by TGA on polycrystalline samples in an air atmosphere with a heating rate of $20^{\circ} \mathrm{C} / \mathrm{min}$ The TG analyses of $\mathbf{2}, \mathbf{6}, 7$ and $\mathbf{8}$ show the first weight loss of $14.316 \%\left(50-113^{\circ} \mathrm{C}\right.$, calcd. $\left.14.54 \%\right)$ for $2,9.87 \%$ ($80-148{ }^{\circ} \mathrm{C}$, calcd. 9.52%) for $\mathbf{6}, 6.5 \%\left(165-209{ }^{\circ} \mathrm{C}\right.$, calcd. $\left.6.49 \%\right)$ for 7 and $9.43 \%\left(55-229.1^{\circ} \mathrm{C}\right.$, calcd. 9.35%) for 8 , corresponding to

Table 2. Crystal data and structure refinement for 6-9 complexes incorporating bidentate ligands.

	6	7	8	9
Empirical formula	$\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~N}_{16} \mathrm{O}_{23} \mathrm{Cu}_{4}$	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Cu}$	$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{Cu}_{3}$	$\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{~N}_{8} \mathrm{O}_{14} \mathrm{Cl}_{2} \mathrm{Cu}_{4}$
Formula weight	1327.06	277.72	771.08	1113.83
Crystal system	triclinic	orthorhombic	triclinic	monoclinic
Space group	P-1	Pbca	P-1	$\mathrm{P} 21 / \mathrm{c}$
Unit cell dimensions [\AA, ${ }^{\circ}$]	$\mathrm{a}=9.1374(6)$	$\mathrm{a}=7.1301$ (3)	$\mathrm{a}=7.6832(5)$	$\mathrm{a}=12.1604(6) \AA$
	$\mathrm{b}=11.7993(7)$	$\mathrm{b}=12.8192(5)$	$\mathrm{b}=8.8480(6)$	$\mathrm{b}=7.1869(4) \AA$
	$\mathrm{c}=12.2790(6)$	$\mathrm{c}=21.3279(7)$	$\mathrm{c}=10.4914(7)$	$\mathrm{c}=23.4200(15) \AA$
	$\alpha=87.214$ (4)		$\alpha=98.405$ (6)	
	$\beta=85.536(5)$		$\beta=90.733$ (5)	$\beta=93.407(5)^{\circ}$
	$\gamma=75.414(5)$		$\gamma=101.710(6)$	
Volume [\AA^{3}]	1276.73(13)	1949.42(13)	690.21(8)	2043.2(2) \AA^{3}
Z	1	8	1	2
Density (calculated) [$\left.\mathrm{Mg} / \mathrm{m}^{3}\right]$	1.726	1.893	1.855	$1.810 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient [mm^{-1}]	1.741	2.249	2.374	$2.262 \mathrm{~mm}^{-1}$
F(000)	676	1128	391	1132
Crystal size [mm]	$0.581 \times 0.234 \times 0.233$	$0.254 \times 0.206 \times 0.01$	0.189x 0.118×0.04	$0.254 \times 0.206 \times 0.003$
θ range for data collection [${ }^{\circ}$]	3.57 to 25.05	3.32 to 25.00	3.42 to 25.05	3.29 to $25.04{ }^{\circ}$
Index ranges	$-10 \leq \mathrm{h} \leq 10$	$-8 \leq h \leq 8$	$-9 \leq h \leq 9$	$-14 \leq \mathrm{h} \leq 14$
	$-13 \leq \mathrm{k} \leq 14$	$-15 \leq \mathrm{k} \leq 15$	$-10 \leq \mathrm{k} \leq 10$	$-8 \leq \mathrm{k} \leq 7$
	$-14 \leq 1 \leq 14$	$-25 \leq 1 \leq 25$	$-12 \leq 1 \leq 11$	$-27 \leq 1 \leq 23$
Reflections collected	13783	19304	5160	11007
Independent reflections	$4504\left(\mathrm{R}_{\mathrm{int}}=0.0340\right)$	1718 [$\left.\mathrm{R}_{\mathrm{int}}=0.0531\right]$	2441 ($\mathrm{R}_{\mathrm{int}}=0.0284$)	3615 [R(int) $=0.0417]$
Completeness to 2theta [\%]	99.5	99.9	99.7	99.9
Max. and min. transmission	1.000 and 0.382	1.000 and 0.567	1.000 and 0.701	1.00 and 0.891
Data / restraints / parameters	4504 / 0 / 358	1718 / 0 / 145	2441 / 0 / 196	3615 / 0 / 299
Goodness-of-fit on F^{2}	1.171	1.087	1.053	1.180
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	R1 $=0.0397$ wR2 $=0.1212$	$\mathrm{R} 1=0.0261$	$\begin{aligned} & \mathrm{R} 1=0.0315 \\ & \mathrm{wR} 2=0.0722 \end{aligned}$	$\begin{aligned} & \text { R1 }=0.0397 \\ & \text { wR2 }=0.1060 \end{aligned}$
R indices (all data)	wR2 $=0.1212$ R1 $=0.0547$	$\begin{aligned} & \mathrm{wR} 2=0.0717 \\ & \mathrm{R} 1=0.0320 \end{aligned}$	$\begin{aligned} & \mathrm{wR} 2=0.0722 \\ & \mathrm{R} 1=0.0381 \end{aligned}$	$\begin{aligned} & \mathrm{wR} 2=0.1060 \\ & \mathrm{R} 1=0.0487 \end{aligned}$
	wR2 $=0.1426$	wR2 $=0.0735$	wR2 $=0.0761$	wR2 $=0.1090$
Largest diff. peak and hole[e $\left.\AA^{3}\right]$	0.529 and -0.597	0.296 and -0.408	0.320 and -0.353	0.766 and $-0.449 \mathrm{e} \AA^{-3}$

of the N -donor and oxalate ligands and absence of the respect species in the reaction environments disallow formation subsequent $\mathrm{Cu}-\mathrm{N}$ and $\mathrm{Cu}-\mathrm{O}_{\text {oxalate }}$ bonds.

The substituents of pyrazole ring influence also the coordination modes of oxalate anions. The structures 2, 3 and 4 display rather unusual mono/bidentate coordination mode ($\mu-$ oxalato $-1 \kappa^{2} O^{l}, O^{2}: 2 \kappa O^{l a}$) of oxalate ligands, whereas the metal centers of 5 are typically bridged by bis-bidentate oxalate ions ($\mu-$ oxalato- $1 \kappa^{2} O^{l}, O^{2}: 2 \kappa^{2} O^{l a}, O^{2 a}$). The same oxalate coordination mode was confirmed for $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}(\mathrm{bpzm})_{2}\right]_{\mathrm{n}} \cdot\left(3.5 \mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}(6)$. In contrast to $\mathbf{5}$, however, the zigzag polymeric chain of $\mathbf{6}$ is built of dinuclear units. The structural difference of compounds $\mathbf{7}$ or 8 and 9 , noticeable in the metal coordination environments and oxalate coordination modes, is mainly attributed to the effect of the spacer length and flexibility of the N -donor ligand. Compared with the ampy ligand, the aepy ligand has an additional $-\mathrm{CH}_{2}-$ group. The role of coordinated and lattice water molecules as well as extensive hydrogen-bonding interactions is also important in these structures.

Thermal Analysis

the loss of coordinated or lattice water molecules per formula unit (Figure S10). After that, the weight loss occurs upon heating including three steps for $\mathbf{7}$ and $\mathbf{8}$ and four for $\mathbf{2}$ and $\mathbf{8}$. The weight losses in the range of $130-290^{\circ} \mathrm{C}$ for $2,205-289^{\circ} \mathrm{C}$ for 7 and 202$298^{\circ} \mathrm{C}$ for $\mathbf{8}$ correspond to the removal of the corresponding organic components, 44.91 \% (calcd. 44,70 \%) for 2, 37.5 \% (calcd. 38.94 $\%$) for 7 and 46.15% (calcd.47.53 \%) for 8. The anhydrous framework of 6 starts to decompose beyond $165.5^{\circ} \mathrm{C}$ in a series of complicated overlapped weight losses. The final mass remnant is of 25.1% for $\mathbf{2}, 10.5 \%$ for $\mathbf{6}, 25.4 \%$ for 7 and 28.0% for $\mathbf{8}$ of the total sample. The complex 1 remains intact until heating to $229.3^{\circ} \mathrm{C}$, and then suffers two consecutive weight losses that end at $430^{\circ} \mathrm{C}$. The $p z$ molecules are lost in the first step followed by degradation. Further heating to $800^{\circ} \mathrm{C}$ reveals no weight loss and the final solid holds a weight of 29.9% of the total sample. For 5, TG curve also displays two weight losses. The first weight loss of 60.89% from 190 to 245 ${ }^{\circ} \mathrm{C}$ corresponds to the loss of organic components (calcd. 60.92\%), while the second weight loss of 11.93% from 224.1 to $323.6{ }^{\circ} \mathrm{C}$ corresponds to the decomposition of copper oxalate. Complex 4 is thermally stable upon heating to ca. $180^{\circ} \mathrm{C}$ followed by three stages
of weight loss peaking at $198^{\circ} \mathrm{C}, 277^{\circ} \mathrm{C}$ and $334^{\circ} \mathrm{C}$, corresponding to the exclusion of mpz ligands and then degradation. For 9, the TG curve indicates that the coordinated water molecules and chloride anions are released in the range $75-188^{\circ} \mathrm{C}$ (found 9.08%, calcd 9.65 $\%$). The weight loss of 50.40% at $234^{\circ} \mathrm{C}$ (in the range $190-245^{\circ} \mathrm{C}$) (calcd 44.0%) corresponds to the loss of N-donor ligand. For 3, the TG curve indicates that the organic ligands are released in the range $140-260{ }^{\circ} \mathrm{C}$ (found 53.3%, calcd. 53.4%). The final mass remnant is of 23.43% of the total sample.

Magnetic properties and EPR spectra

Magnetic parameters and magnetization data as well as EPR results of the discussed compounds are presented in the Table 3. The variation of the magnetization M versus the magnetic field H have been measured for all complexes at 2 K . The EPR results of $\mathbf{1 -}$ 9 indicated signals typical for $\mathrm{Cu}(\mathrm{II})$ centers in different coordination spheres, like single, axial or rhombic type signals.

Magnetic susceptibilities studies indicated that five of compounds 2, 4, 7, 8 and 9 revealed the one-dimensional infinite chains of copper(II) centers.

Two methods calculation of exchange parameters have been used e.g. Ising (1) ${ }^{16}$ and Fisher (2) ${ }^{17}$ models.vThe Ising model with molecular field correction was solved for spin $S=1 / 2$ a linear chain system ${ }^{16}$ and the Hamiltonian used was:

$$
\mathrm{H}=-2 J \sum_{i=1}^{N} S_{i}^{z} S_{i+1}^{z}+g \beta \sum_{i=1}^{N} H S_{i}^{z}+g \beta \sum_{i=1}^{N} H_{i}^{S} S_{i}^{z}
$$

where J is the exchange parameter, N is the number of magnetic atoms, S_{i}^{z} is the projection of the spin angular momentum in the direction of quantization, β is the Bohr magneton, H is the external

Table 4. Magnetic parameters of infinite chains
magnetic field, and H_{i}^{S} is the molecular field on the i-th atom which describes the interactions between atoms in different chains.
The magnetic susceptibility for such a system is given by the relationship:

$$
\begin{equation*}
\chi_{M}=\frac{N \beta^{2} g^{2}}{4 k T} e^{J / k T} \tag{1}
\end{equation*}
$$

which is the one- dimensional Ising model for $\mathrm{S}=1 / 2$.
In order to obtain values for those exchange parameters, the present data have been fit using also Fisher's classical Heisenberg results ${ }^{17}$ for infinite linear chains. A molecular field approximation has been used to account for interaction between chains. Fisher's equation for the magnetic susceptibility of a classical spin S chain is:

$$
\begin{equation*}
\chi_{M}=\frac{N g^{2} \beta^{2} S(S+1)}{3 k T} \frac{1-u}{1+u} \tag{2}
\end{equation*}
$$

where
$u=\operatorname{coth}[2 J S(S+1) / k T]-k T /[2 J S(S+1)$
and J is the intrachain exchange parameter.
If there are interactions between chains, the actual observed susceptibility may then be obtained using the results of a molecular field correction ${ }^{18}$:

$$
\begin{equation*}
\chi_{M}^{\text {corr }}=\frac{\chi_{M}}{1-\frac{2 z J^{\prime} \chi_{M}}{N g_{a v}^{2} \beta^{2}}} \tag{3}
\end{equation*}
$$

where J^{\prime} is the interaction between chains and z is the number of nearest neighbor chains.
Results of magnetic parameters calculated are presented in Table 4.

Compounds	Intrachain parameter $J\left(\mathrm{~cm}^{-1}\right)$	Interchain interaction $\mathrm{zJ}^{\prime}\left(\mathrm{cm}^{-1}\right)$	Factors g
$\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{apz})_{2}\right]_{\mathrm{n}} \cdot\left(3 \mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}(\mathbf{2})^{\text {a }}$	$\begin{aligned} & -0.12^{\mathrm{c})} \\ & -0.11^{\mathrm{d}} \end{aligned}$	$\begin{aligned} & -0.10^{\mathrm{c})} \\ & -0.11^{\mathrm{d}} \end{aligned}$	$\begin{aligned} & 2.11_{3}{ }^{\mathrm{c})} \\ & 2.11_{3}{ }^{\mathrm{d})} \end{aligned}$
$\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{mpz})_{2}\right]_{\mathrm{n}}(4)^{\text {a }}$	$\begin{aligned} & -0.36^{\mathrm{c})} \\ & -0.37^{\mathrm{d})} \end{aligned}$	$\begin{aligned} & 0.83^{\text {c) }} \\ & 0.86^{\text {d) }} \end{aligned}$	$\begin{aligned} & 2.09_{7}^{\mathrm{c}} \\ & 2.09_{7}^{\mathrm{d}} \end{aligned}$
$\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{ampy})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}}(7)^{\text {a }}$	$\begin{aligned} & \left.0.00^{\mathrm{c}}\right) \\ & 0.00^{\mathrm{d}} \end{aligned}$	$\begin{aligned} & -0.19^{\mathrm{c}} \\ & -0.19^{\mathrm{d}} \end{aligned}$	$\begin{aligned} & 2.15_{8}{ }^{\text {c) }} \\ & \left.2.15_{8}{ }^{d}\right) \end{aligned}$
$\begin{aligned} & \left\{\left[\mathrm{Cu}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{aepy})_{2}\right]\right. \\ & \left.\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\right\}_{\mathrm{n}}^{\cdot}\left(2 \mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}(\boldsymbol{8})^{\mathrm{b})} \end{aligned}$	$\begin{aligned} & -58.9^{\text {c) }} \\ & -62.3^{\text {d) }} \end{aligned}$	$\begin{aligned} & 0.00^{\mathrm{c}}{ }^{\text {d }} \\ & 0.00^{\mathrm{d})} \end{aligned}$	$\begin{aligned} & 2.379{ }^{\text {c) }} \\ & 2.399^{\text {d }}{ }^{2} \end{aligned}$
$\underset{\text { a) }}{\left[\mathrm{Cu}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}(\text { aepy })\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}(\mathbf{9})}$	$\begin{aligned} & -0.35^{\text {c) }} \\ & -0.34^{\text {d) }} \end{aligned}$	$\begin{aligned} & -2.39^{\text {c) }} \\ & -2.42^{\text {d) }} \end{aligned}$	$\begin{aligned} & 1.92_{1}{ }^{\mathrm{c})} \\ & 1.92_{2}{ }^{\mathrm{d})} \end{aligned}$

${ }^{\text {a) }}$ - calculated in the temperature range $1.8-300 \mathrm{~K}$ and ${ }^{\text {b) }}$ - calculated in the temperature range $120-300 \mathrm{~K}$ using Ising ${ }^{\text {c) }}$ and Fisher ${ }^{d)}$ models.

Magnetic behavior of compound $\mathbf{8}$ indicates overall antiferromagnetic interactions among the $\mathrm{Cu}(\mathrm{II})$ centers. Upon the compound $\mathbf{8}$ being cooled $\chi_{\mathrm{M}} \mathrm{T}$ value shows linear decrease from $0.404 \mathrm{~cm}^{3}$ mole $^{-1} \mathrm{~K}$ ($\mu_{\text {eff }}=1.81$ B.M.) at 300 K up to $0.269 \mathrm{~cm}^{3}$ mole $^{-1} \mathrm{~K} \quad\left(\mu_{\text {eff }}=1.47\right.$ B.M.) at 120 K . The $\chi_{\mathrm{M}} \mathrm{T}$ value declines abruptly upon further cooling and reaches a minimal value of $0.058 \mathrm{~cm}^{3}$ mole ${ }^{-1} \mathrm{~K}$ ($\mu_{\text {eff }}=0.68$ B.M.) at 1.8 K . Ising and Fisher models were used for calculation of exchange parameters (Table 4).

The evaluated J for compound $\mathbf{8}$ well correlates with values reported for analogous compounds, $\left\{\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}(\mathrm{ampy})_{3}\right] \cdot(\mathrm{ampy})\right\}_{n}$ $\left(J=-66.6 \mathrm{~cm}^{-1} ; \quad \text { ampy }=2 \text {-amino-4-methylpyridine }\right)^{19}$, $\left[(\right.$ dien $) \mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}($ tmen $\left.)\right]\left(\mathrm{ClO}_{4}\right) \quad\left(J=-75.0 \mathrm{~cm}^{-1} ;\right.$ tmen $=$ $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}$ '-tetramethylethylenediamine, dien $=$ diethylenetriamine $)^{20}$ and $\left\{\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)(3 \text { Meade })\right] \cdot \mathrm{H} 2 \mathrm{O}\right\}_{\mathrm{n}}\left(J=-34 \mathrm{~cm}^{-1} ; 3\right.$ Meade $=3-$ methyladenine $)^{20}$. In all these compounds, the oxalato bridging ligand forms two short $\mathrm{Cu}-\mathrm{O}$ bonds at one copper atom and one short and one long at the other copper atom. As a result, one of the metal magnetic orbital $\left(\mathrm{d}_{\mathrm{x}-\mathrm{y}}{ }^{2}{ }^{2}\right.$ in a tetragonally elongated octahedral geometry) is coplanar with the oxalate bridge, whereas the other one is perpendicular to it. For this topology, the overlap between the magnetic orbitals occurs only via one of the two OCO fragments leading to antiferromagnetic coupling. The magnitude of magnetic coupling in such compounds is predicted to be about one-fourth of that observed for the topology with symmetric bis-bidentate bridging ligand coplanar with metal magnetic orbital and four short $\mathrm{Cu}-\mathrm{O}_{\mathrm{ox}}$ bond distances, which guarantees the strongest antiferromagnetic couplings (values of J ranging from -260 to -400 $\left.\mathrm{cm}^{-1}\right)^{23}$. To some extent the antiferromagnetic interactions in $\mathbf{8}$ is weakened by different coordination environments of copper of $\mathrm{Cu}(1)$ and $\mathrm{Cu}(2)$ ions ${ }^{22}$.

Results of magnetic measurements concern 2, $\mathbf{4}$ and 7 compounds contains infinite chains in the crystal structure and indicates a very weak intra- and interchain interactions between copper (II) centers. So far, only several μ-oxalato- $1 \kappa^{2} O^{I}, O^{2}: 2 \kappa O^{l a}$ bridged $\mathrm{Cu}(\mathrm{II})$ complexes have been magneto-structurally characterized and in almost all previously discussed compounds, including ours, the magnetic orbitals adopts the relative geometry shown in Scheme 3. This configuration is unfavourable for transmitting exchange coupling ${ }^{23}$.

Scheme 4. Orbital topology found in 2, 4 and 7 and related $\mu-$ oxalato- $1 \kappa^{2} O^{I}, O^{2}: 2 \kappa O^{1 a}$-bridged $\mathrm{Cu}(\mathrm{II})$ complexes.

Determination of exchange parameters of dinuclear complexes $\mathbf{1}$ and $\mathbf{6}$ were made by fitting the experimental results to the modified Bleaney- Bowers expression (4) ${ }^{24}$:

$$
\begin{equation*}
\chi_{\mathrm{Cu}}^{\text {corr }}=\frac{N \beta^{2} \mathrm{~g}_{\mathrm{av}}^{2}}{3 \mathrm{kT}}\left[1+\frac{1}{3}\left(\mathrm{e}^{-2 J / \mathrm{kT}}\right)\right]^{-1}(1-\mathrm{x})+\left(\frac{N \beta^{2} \mathrm{~g}_{\mathrm{mpp}}^{2}}{4 \mathrm{kT}}\right) \mathrm{x} \tag{4}
\end{equation*}
$$

where $\chi_{\mathrm{Cu}}^{\mathrm{corr}}$ is molar magnetic susceptibility corrected for diamagnetism and t.i.p., calculated per copper(II) magnetic center, N - Avogadros number, k - Boltzmann constant, $g_{a v}$-average g factor, x-percentage of monomeric form of a complex, $g_{\text {imp }}-\mathrm{g}$ factor of monomeric form of complex and J is the exchange parameter in the Hesisenberg-Dirac-Van Vleck Hamiltonian $\hat{H}=-2 J \hat{S}_{I} \hat{S}_{2}$.
Relation of magnetic susceptibility vs. temperature for $\mathbf{1}$ and $\mathbf{6}$ compounds indicated the presence of paramagnetic impurity (Table 5).

Although the coordination structure of the compounds $\mathbf{1}$ and $\mathbf{6}$ is two- and one-dimensional respectively, from a magnetic point of view, these systems can be considered as dimers. The zig-zag polymeric chain of $\mathbf{6}$ is built up of the $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}(\mathrm{bpzm})_{2}\right]$ entities. In turn, there are two independent oxalate anions adopting different coordination modes μ-oxalato- $1 \kappa^{2} O^{I}, O^{2}: 2 \kappa^{2} O^{I a}, O^{2 a}$ and $\mu_{4}-$ oxalato- $1 \kappa^{2} O^{I}, O^{2}: 2 \kappa O^{I}: 3 \kappa O^{I a}, \mathrm{O}^{2 \mathrm{a}}: 4 \kappa \mathrm{O}^{2 \mathrm{a}}$ in the structure 1 (Figure 1b). The first one, leading to almost planar $\mathrm{Cu}-\mathrm{C}_{2} \mathrm{O}_{4}-\mathrm{Cu}$ framework with four short $\mathrm{Cu}-\mathrm{O}$, favours strong antiferromagnetic interactions, whereas the exchange coupling through out-of-plane exchange pathway μ_{4}-oxalato- $1 \kappa^{2} O^{l}, O^{2}: 2 \kappa O^{l}: 3 \kappa O^{I a}, \mathrm{O}^{2 a}: 4 \kappa \mathrm{O}^{2 \mathrm{a}}$ is expected to be very weak ${ }^{25}$.

For calculation magnetic parameters for compound 5, Pad'e expression series $(5)^{26}$ for the ($\mathrm{S}=1 / 2$) Heisenberg model with a molecular field correction (3) ${ }^{18}$ was used:

$$
\begin{equation*}
\chi_{M}=\frac{N \beta^{2} g^{2}}{4 k T}\left(\frac{L}{M}\right)^{\frac{2}{3}} \tag{5}
\end{equation*}
$$

where
$\mathrm{L}=1+5.7979916 \mathrm{~K}+16.902653 \mathrm{~K}^{2}+29.376855 \mathrm{~K}^{3}+29.832959 \mathrm{~K}^{4}+$ $14.036918 \mathrm{~K}^{5}$
$\mathrm{M}=1+2.7979916 \mathrm{~K}+7.0086780 \mathrm{~K}^{2}+8.6538644 \mathrm{~K}^{3}+4.5743114 \mathrm{~K}^{4}$ $\mathrm{K}=\mathrm{J} / 2 \mathrm{kT}$
Relation of $\chi_{\mathrm{M}} \mathrm{T}$ vs. T of compound increase cooling up to maximal value equal
$0.678 \mathrm{~cm}^{3}$ mole $^{-1} \mathrm{~K}$ at 1.8 K .
Magnetic susceptibility data of compound $\mathbf{5}$ between 1.8 300 K to the Curie- Weiss expression, according Curie constant $\mathrm{C}=0.444 \mathrm{~cm}^{3}$ mole $^{-1} \mathrm{~K}$ and Weiss constant $\Theta=0.74 \mathrm{~K}$. The positive Weiss constant confirms existence of the ferromagnetic coupling between copper(II) centers. The least-squares fit of the experimental data using these equations were limited to the temperature range from 1.8 K up to 300 K and leads $J=1.17 \mathrm{~cm}^{-1} z J^{\prime}=-0.21 \mathrm{~cm}^{-1}$ and $\mathrm{g}=2.15_{1}$ with the agreement factor R is equal 2.73×10^{-5}.

The weak ferromagnetic coupling observed for compound 5 is in good agreement with the magnetic results reported for related one-dimensional $\mathrm{Cu}(\mathrm{II})$ structure based on asymmetric bischelating oxalate bridges with perpendicular topology (where the metalcentered magnetic orbitals are parallel to each other and perpendicular to the oxalato) and angle β (the bond angle $\mathrm{C}-\mathrm{O}-\mathrm{Cu}$ involving the apical oxalate-oxygen $)$ below $109.5^{\circ}(108.6$ ${ }^{\circ}$ in structure 5), for example in $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{bpa})\right]_{n}\left(J=+2.50 \mathrm{~cm}^{-1} ; \beta\right.$ $=106.9^{\circ} ; \quad$ bpa $=1,2$-bis $(4$-pyridyl)ethane $),\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(2 \text {-ampy })_{2}\right]_{n}$ $\left(J=+2.00 \quad \mathrm{~cm}^{-1} ; \quad \beta=107.8^{\circ} ; \quad 2\right.$-ampy $=2$-aminopyridine $)$; $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\text { bipy })\right]_{n}\left(J=+2.4 \mathrm{~cm}^{-1} ; \beta=108.4^{\circ}\right)^{25 \mathrm{a}}$. Relation of $\chi_{\mathrm{M}} \mathrm{T}$ vs. T of compounds 1,5 and 6 is presented on Figure 11.

Table 3. Magnetic parameters, magnetization data ${ }^{\text {a) }}$ and EPR data

Compounds	Diamagnetic corrections ${ }^{\text {b) }}$$\begin{gathered} \times 10^{6} \\ \left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right) \end{gathered}$	Effective magnetic moments ${ }^{\text {c) }}$ μ_{B} (B.M.)	$\begin{gathered} \text { Curie } \\ \text { constant }^{\mathrm{d})} \\ \mathbf{C} \\ \left(\mathrm{cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}\right) \end{gathered}$	Weiss constant ${ }^{\text {d) }}$ Θ (K)	Magnetization ${ }^{\text {e }}$ (B.M.)	Factors g					
						T $=77$		$\mathbf{T}=29$			
1	-18	1.38	-	-	0.01	$\mathrm{g}=2.16_{0}$	single line	$\mathrm{g}=2.145$	\qquad iso. sotropic line		
2	-111	1.84	0.419	-0.24	0.97	$\begin{aligned} \mathrm{g}_{\perp} & =2.07_{3} \\ \mathrm{~g}_{\\|} & =2.29_{3} \end{aligned}$	axial line	$\begin{aligned} \mathrm{g}_{\perp} & =2.07_{6} \\ \mathrm{~g}_{\\|} & =2.28_{8} \end{aligned}$	axial line		
3	-109	1.96	0.444	-0.46	0.97	$\begin{aligned} & \mathrm{g}_{1}=2.20_{6} \\ & \mathrm{~g}_{2}=2.11_{9} \\ & \mathrm{~g}_{3}=2.04_{6} \end{aligned}$	rhombic line	$\begin{gathered} \mathrm{g}=2.13_{4} \\ \delta_{\mathrm{Hpp}}= \\ 138 \mathrm{G} \end{gathered}$	single isotropic line		
4	-102	1.81	0.413	-0.01	0.98	$\begin{gathered} \mathrm{g}=2.16_{0} \\ \delta_{\mathrm{Hpp}}=215 \mathrm{G} \end{gathered}$	single isotropic line	$\begin{gathered} \hline \mathrm{g}=2.14_{3} \\ \delta_{\mathrm{Hpp}}= \\ 107 \mathrm{G} \end{gathered}$	single isotropic line		
. 5	-117	1.88	0.444	0.74	1.01	$\begin{aligned} & \mathrm{g}_{\perp}=2.05_{5} \\ & \mathrm{~g}_{\\|}=2.31_{9} \end{aligned}$	axial line	$\begin{aligned} & \mathrm{g}_{\perp}=2.07_{7} \\ & \mathrm{~g}_{\\|}=2.32_{2} \end{aligned}$	axial line		
6	-61	1.70	-	-	0.01	$\begin{aligned} & \mathrm{g}_{1}=2.31_{8} \\ & \mathrm{~g}_{2}=2.08_{1} \\ & \mathrm{~g}_{3}=2.03_{6} \end{aligned}$	rhombic line	$\begin{aligned} \mathrm{g}_{\perp} & =2.10_{8} \\ \mathrm{~g}_{\\|} & =2.28_{3} \end{aligned}$	axial line		
7	-75	1.90	0.437	-0.14	0.99	$\begin{gathered} \mathrm{g}=2.12_{5} \\ \delta_{\mathrm{Hpp}}=159 \mathrm{G} \end{gathered}$	$\begin{gathered} \text { Single } \\ \text { isotropic } \\ \text { line } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{g}=2.10_{3} \\ \delta_{\mathrm{Hpp}}= \\ 164 \mathrm{G} \end{gathered}$	$\begin{aligned} & \hline \text { single } \\ & \text { isotropic } \\ & \text { line } \\ & \hline \end{aligned}$		
8	-51	1.81	-	-	0.15	$\begin{gathered} \mathrm{g}=2.13_{9} \\ \delta_{\mathrm{Hpp}}=215 \mathrm{G} \end{gathered}$	single isotropic line	$\begin{gathered} \mathrm{g}=2.13_{2} \\ \delta_{\mathrm{Hpp}}= \\ 251 \mathrm{G} \\ \hline \end{gathered}$	single isotropic line		
9	-74	1.68	0.346	-2.29	0.56	$\begin{aligned} & \mathrm{g}_{\perp}=2.04_{0} \\ & \mathrm{~g}_{\\|}=2.30_{4} \end{aligned}$	axial line	$\begin{aligned} & \mathrm{g}_{\perp}=2.07_{4} \\ & \mathrm{~g}_{\\|}=2.31_{5} \end{aligned}$	axial line		

Table 5. Magnetic parameters of dinuclear-based compounds

Compounds	Exchange parameter $\mathbf{J}\left(\mathrm{cm}^{-1}\right)^{\mathrm{a})}$	$\begin{gathered} \text { Monomeric } \\ \text { form }^{\text {a) }} \\ \% \end{gathered}$	$\begin{gathered} \text { Factors }^{\text {b) }} \\ \mathbf{g} \end{gathered}$	Agreement factor R
$\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{pz})\right]_{\mathrm{n}}(\mathbf{1})$	-156	0.94	$\begin{aligned} & \mathrm{g}_{\mathrm{a}}=2.16_{0} \\ & \mathrm{~g}_{\mathrm{b}}=2.14_{5} \end{aligned}$	1.98×10^{-5}
$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}(\mathrm{bpzm})_{2}\right]_{\mathrm{n}}\left(3.5 \cdot \mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}(\mathbf{6})$	-41	0.75	$\begin{aligned} & \mathrm{g}_{\mathrm{a}}=2.16_{6} \\ & \mathrm{~g}_{\mathrm{b}}=2.08_{5} \end{aligned}$	2.72×10^{-5}
$\left[\mathrm{Cu}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{ampz})_{4}\right]$ (3)	-0.45	0.00	$\begin{aligned} & g_{a}=2.16, \\ & g_{b}=- \end{aligned}$	1.31×10^{-4}

${ }^{\text {a) }}$ - calculated in the temperature range $1.8-300 \mathrm{~K}$
${ }^{\text {b) }}-g_{a}-$ factor of dimeric form
g_{b} - factor of monomeric form

Figure 11. Thermal dependences of $\chi_{M} T$ for compounds 1 (O), 5 (o) and $\mathbf{6}(\bullet)$. Experimental magnetic data plotted as $\chi_{M} \mathrm{~T}(\mathrm{o})$ versus T. The solid line is the calculated curve for $\chi_{M} T$ vs. T.

The Bleaney- Bowers expression (4) ${ }^{24}$ of magnetic interaction was also used for calculation exchange parameter of semi-dimer 3 .

The compound $\mathbf{3}$ indicated a very weak antiferromagnetic coupling of Cu^{2+} centers $\mathrm{J}=-0.45 \mathrm{~cm}^{-1}, \mathrm{zJ}^{\prime}=0$ and $\mathrm{g}=2.16$, with the agreement factor R is equal 1.32×10^{-4} and indicated lack any monomeric impurities.

Analysis of magneto-structural data of 1-9 confirmed that the value and type of the magnetic coupling is essentially governed by the magnitude of the overlap between the metal-centered magnetic orbitals ($\mathrm{d}_{\mathrm{x}-\mathrm{y}}{ }^{2}{ }^{2}$ orbital in square pyramidal or elongated octahedral geometries) and the highest occupied molecular orbitals of the oxalato ligand. The strongest antiferromagnetic couplings occurs when the oxalato bridge is symmetrically coordinated with two short bond distances at neighboring copper(II) atoms and, and it is coplanar with the magnetic orbitals. The equatorial-axial coordination mode of the oxalate bridge with long $\mathrm{Cu}-\mathrm{O}_{\mathrm{ox}}$ bond substantially reduced the magnetic coupling of copper centers.

UV-Vis properties

Except for 3, the electronic reflectance spectra of the examined compounds are characterized by a very broad asymmetric band in the region $600-1000 \mathrm{~nm}$ typical for overlapping $\mathrm{d}_{\mathrm{xy}} \rightarrow \mathrm{d}_{\mathrm{x} 2-\mathrm{y} 2}$, $\mathrm{d}_{\mathrm{y} 2}, \mathrm{~d}_{\mathrm{xz}} \rightarrow \mathrm{d}_{\mathrm{x} 2-\mathrm{y} 2}$ and $\mathrm{d}_{22} \rightarrow \mathrm{~d}_{\mathrm{x} 2-\mathrm{y} 2}$ transitions between d orbitals in tetragonal six or five coordinate $\mathrm{Cu}(\mathrm{II})$ complexes with $\mathrm{d}_{\mathrm{x} 2-\mathrm{y} 2}$ ground state (Figure 12). The greater is tetragonality of the complex (the longer the axial bonds), more shifted to the blue is the low energy absorption maximum. The electronic diffuse reflectance spectrum of 3 exhibits two bands 742 and 626 nm assigned to $\mathrm{d}_{22} \rightarrow \mathrm{~d}_{x 2-y 2}$ and $\mathrm{d}_{\mathrm{xy}}, \mathrm{d}_{\mathrm{yz}}, \mathrm{d}_{\mathrm{xz}} \rightarrow \mathrm{d}_{\mathrm{x} 2-\mathrm{y} 2}$, respectively, and it is also consistent the elongated tetragonal distortion. Besides the d-d bands, the spectra display bands assigned to LMCT, LLMC and IL transitions. Electronic spectral data for the compounds 1-9 are summarized in Table 6.

Conclusions

In summary, we have successfully synthesized and characterized nine oxalate copper(II) complexes. X-ray analysis revealed a key role of N -containing auxiliary ligand in determination of the oxalate coordination mode and final complex architecture. The two dimensional network is formed only in case of compound containing the pyrazole ligand. The introduction of substituents into pyrazole ring increases the complexation properties of N -donor ligands leading to coordination of two ligand molecules and formation of the lower dimensional networks. The exchange interaction between the copper ions via the oxalate bridge has been shown to be strongly dependent on the geometry around the Cu ions, the orientation of the magnetic orbitals in respect to the oxalate plane
and the bridging mode of the oxalate group. The strongest antiferromagnetic couplings was confirmed for compound $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{pz})\right]_{\mathrm{n}}$ (1) in which the oxalato bridge is symmetrically coordinated with two short bond distances at neighboring copper(II) atoms and it is coplanar with the magnetic orbitals. The equatorialaxial coordination mode of the oxalate bridge with long $\mathrm{Cu}-\mathrm{O}_{\mathrm{ox}}$ bond, detected in the other examined structures, substantially reduced the magnetic coupling of copper centers.

Table 6. Electronic spectral data of $\mathrm{Cu}(\mathrm{II})$ complexes.

Complex	$\lambda_{\text {max }}[\mathrm{nm}]$
$\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{pz})\right]_{\mathrm{n}}$ (1)	725.0; 300.5; 257.0
$\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{apz})_{2}\right]_{\mathrm{n}} \cdot\left(3 \mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}$ (2)	680.0; 403.0; 362.5; 280.0
$\left[\mathrm{Cu}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{ampz})_{4}\right]$ (3)	$\begin{gathered} \hline 742.0 ; 626.0 ; 384.0 ; 294.0 ; \\ 260.0 \end{gathered}$
$\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{mpz})_{2}\right]_{\mathrm{n}}$ (4)	637.0; 373.0; 316.0; 255.0
$\begin{gathered} {\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{aind})_{2}\right]_{\mathrm{n}}} \\ (5) \end{gathered}$	697.5; 312.5; 288.5; 254.5
$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}(\mathrm{bpzm})_{2}\right]_{\mathrm{n}} \cdot\left(3.5 \cdot \mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}$ (6)	710.5; 317.0; 287.5; 255.0
$\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{ampy})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}}$ (7)	$\begin{gathered} \hline 611.0 ; 404.5 ; 285.0 ; 251.5 ; \\ 233.5 \end{gathered}$
$\begin{gathered} \left\{\left[\mathrm{Cu}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)(\text { aepy })_{2}\right]\right. \\ \left.\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\right\}_{\mathrm{n}} \cdot\left(2 \mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}} \\ (8) \end{gathered}$	647.0; 303.0; 256.0
$\underset{(\mathbf{9})}{\left[\mathrm{Cu}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}(\text { aepy })\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}}$	679.5; 293.5; 251.5

Experimental

Materials and General Methods

Bis(lpyrazol-1-yl)methane was synthesised according to the literature method ${ }^{27}$. The other reagents used to the synthesis were commercially available and were used without further purification. IR spectra were recorded on a Nicolet Magna 560 spectrophotometer in the spectral range $4000-400 \mathrm{~cm}^{-1}$ with the samples in the form of KBr pellets. The solid reflectance spectra UV-Vis spectra were recorded on Jasco V-630 spectrophotometer in range 200-1000 nm. EPR spectra were recorded at room temperature and 77 K on a Bruker Elexsys E 500 spectrometer equipped with an NMR teslameter (ER 036TM) and frequency counter (E 41 FC) at the Xband. Powder X-ray diffraction (PXRD) measurements were performed on a PANalytical Empyrean X-ray diffractometer using $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $(\lambda=1.5418 \AA)$, in which the X -ray tube was operated at 40 kV and 30 mA ranging from 5 to 80°. Thermogravimetric analysis (TGA) was performed on a Perkin Elmer Pyris1 instrument.

Preparation of 1-9

$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4} \mathrm{H}_{2} \mathrm{O}(0.085 \mathrm{~g}, 0.60 \mathrm{mmol})$ was dissolved in water (5 ml) and slowly added to the methanolic solution of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and suitable N -donor ligand. The resulting solution was kept for evaporation at room temperature, and after a few weeks crystals of 1-9 were obtained, filtered off and dried. Details concerning synthesis of 1-9 are gathered in Table below.
(1) $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{pz})\right]_{\mathrm{n}}$: Anal. Calc. for $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cu}: \mathrm{C}, 27.34 ; \mathrm{H}, 1.84$; $\mathrm{N}, 12.75 \%$. Found: C, 27.68; H,1.66; N, 12.55%. IR ($\mathrm{KBr} \mathrm{cm}^{-1}$):

3291(s), 3231(m) and 3146(m) $v(\mathrm{NH}) ; 1705(\mathrm{vs})$ and 1651 (vs) $v_{\mathrm{as}}(\mathrm{COO}) ; 1602(\mathrm{~s}) \mathrm{v}\left(\mathrm{C}=\mathrm{N}_{\mathrm{pz}}\right)$ and $\mathrm{v}\left(\mathrm{C}=\mathrm{C}_{\mathrm{pz}}\right) ; 1358(\mathrm{~s})$ and 1302(s) $v_{s}(\mathrm{COO})$.
(2) $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{apz})_{2}\right]_{\mathrm{n}} \cdot\left(3 \mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}$: Anal. Calc. for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{Cu}$: C, $25.84 ;$ H, 4.34 ; N, 22.60 \%. Found: C, 25.99 ; H,4.52; N, 22.71\%. IR $\left(\mathrm{KBr} ; \mathrm{cm}^{-1}\right): 3437(\mathrm{~s})$ and $3312(\mathrm{~s}) \mathrm{v}(\mathrm{NH}) ; 1678(\mathrm{vs}) \mathrm{v}_{\mathrm{as}}(\mathrm{COO}) ; 1592$ $(\mathrm{m}), 1552(\mathrm{~m})$ and $1531(\mathrm{~s}) v\left(\mathrm{C}=\mathrm{N}_{\mathrm{apz}}\right)$ and $\mathrm{v}\left(\mathrm{C}=\mathrm{C}_{\mathrm{apz}}\right) ; 1429(\mathrm{~s})$ and $1410(\mathrm{sh}) \mathrm{v}_{\mathrm{s}}(\mathrm{COO})$.
(3) $\left[\mathrm{Cu}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\text { ampz })_{4}\right]$: Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{12} \mathrm{O}_{10} \mathrm{Cu}_{2}$: C, 33.01 ; H, 4.43; N, 23.10%. Found: C, $33.40 ; \mathrm{H}, 4.55$; N, 23.49\%. IR (KBr; cm^{-1}): 3417(s), 3355(s), 3200(s) and 3146(m) v(NH) and $v(\mathrm{OH}) ; 1673(\mathrm{vs})$ and $1636(\mathrm{~s}) v_{\mathrm{as}}(\mathrm{COO}) ; 1595(\mathrm{~m}), 1578(\mathrm{~m})$ and $1502(\mathrm{~m}) v\left(\mathrm{C}=\mathrm{N}_{\mathrm{ampz}}\right)$ and $v\left(\mathrm{C}=\mathrm{C}_{\mathrm{ampz}}\right) ; 1427(\mathrm{~s})$ and $1285(\mathrm{~s}) v_{\mathrm{s}}(\mathrm{COO})$.
(4) $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathrm{mpz})_{2}\right]_{\mathrm{n}}$: Anal. Calc. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Cu}: \mathrm{C}, 38.04$; H , 3.83 ; N, 17.74 \%. Found: C, 38.39 ; H, 3.94; N, 17.86%. IR (KBr; $\left.\mathrm{cm}^{-1}\right): 3438(\mathrm{~m}), 3246(\mathrm{~m})$ and $3126(\mathrm{~m}) v(\mathrm{NH}) ; 1682(\mathrm{vs}) 1661(\mathrm{~s})$ and $1645(\mathrm{~s}) v_{\mathrm{as}}(\mathrm{COO}) ; 1567(\mathrm{~s})$ and $1521(\mathrm{w}) v\left(\mathrm{C}=\mathrm{N}_{\mathrm{mpz}}\right)$ and $v\left(\mathrm{C}=\mathrm{C}_{\mathrm{mpz}}\right)$; 1414(s) and 1297(s) $v_{\mathrm{s}}(\mathrm{COO})$.
(5) $\left.\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \text { (aind }\right)_{2}\right]_{\mathrm{n}}$: Anal. Calc. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Cu}$: C, 49.55; H, 3.12 ; N, 14.45 \%. Found: C, 49.82; H, 3.24; N, 14.66 \%. IR (KBr; $\left.\mathrm{cm}^{-1}\right): 3235(\mathrm{~s}) v(\mathrm{NH}) ; 1670(\mathrm{vs}) v_{\mathrm{as}}(\mathrm{COO}) ; 1594(\mathrm{~s}) v\left(\mathrm{C}=\mathrm{N}_{\text {aind }}\right)$ and $v\left(\mathrm{C}=\mathrm{C}_{\text {aind }}\right) ; 1335(\mathrm{~s})$ and $1311 \mathrm{v}_{\mathrm{s}}(\mathrm{COO})$.
(6) $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}(\mathrm{bpzm})_{2}\right]_{\mathrm{n}} \cdot\left(3.5 \mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}$: Anal. Calc. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{8} \mathrm{O}_{11.5} \mathrm{Cu}_{2}$: C, 32.63; H, 3.50; N, 16.91 \%. Found: C, 32.97; $\mathrm{H}, 3.39 ; \mathrm{N}, 17.05 \%$. IR (KBr; $\left.\mathrm{cm}^{-1}\right): 3473(\mathrm{br})$ and $3137(\mathrm{~s}) \mathrm{v}(\mathrm{OH})$; 1666(vs) $v_{\mathrm{as}}(\mathrm{COO})$; 1597(s), 1522(w) and 1512(w) $v\left(\mathrm{C}=\mathrm{N}_{\mathrm{bpzm}}\right)$ and $v\left(\mathrm{C}=\mathrm{C}_{\mathrm{bpzm}}\right) ; 1405(\mathrm{~s})$ and $1281(\mathrm{~s}) v_{\mathrm{s}}(\mathrm{COO})$.
(7) $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\text { ampy })\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}}$: Anal. Calc. for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Cu}$: C, $34.60 ; \mathrm{H}, 3.63$; N, 10.09 \%. Found: C, $34.95 ; \mathrm{H}, 3.73$; N, 10.49%. IR (KBr): 3402(s), 3290(s) and 3139(s) $v(\mathrm{NH})$ and $v(\mathrm{OH}) ; 1671(\mathrm{vs})$ and $1652(\mathrm{vs}) v_{\text {as }}(\mathrm{COO}) ; 1607(\mathrm{~s})$ and $1571(\mathrm{w}) v\left(\mathrm{C}=\mathrm{N}_{\mathrm{ampy}}\right)$ and $v\left(\mathrm{C}=\mathrm{C}_{\text {ampy }}\right) ; 1435(\mathrm{~s})$ and $1414(\mathrm{~s})$ and $1270(\mathrm{~s}) v_{\mathrm{s}}(\mathrm{COO})$.
(8) $\quad\left\{\left[\mathrm{Cu}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)(\text { aepy })_{2}\right]\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\right\}_{\mathrm{n}} \cdot\left(2 \mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}$: Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{Cu}_{3}$: C, 31.15; H, 3.66; N, 7.27 \%. Found: C, $31.42 ; \mathrm{H}, 3.79 ; \mathrm{N}, 7.51 \%$. IR (KBr): 3312(s), 3248(s) and 3149(s) $v(\mathrm{NH})$ and $v(\mathrm{OH}) ; 1676(\mathrm{vs})$ and $1649(\mathrm{vs}) v_{\mathrm{as}}(\mathrm{COO}) ; 1618(\mathrm{~m})$, 1595(s) and $1565(\mathrm{sh}) v\left(\mathrm{C}=\mathrm{N}_{\text {aepy }}\right)$ and $v\left(\mathrm{C}=\mathrm{C}_{\text {aepy }}\right) ; 1444(\mathrm{~s}), 1306(\mathrm{~s})$ and 1293(s) $v_{\mathrm{s}}(\mathrm{COO})$.
(9) $\left[\mathrm{Cu}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}(\text { aepy })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}$: Anal. Calc. for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{~N}_{8} \mathrm{O}_{14} \mathrm{Cl}_{2} \mathrm{Cu}_{4}$: C, 36.80; H, 3.63; N, 10.10 \%. Found: C, $37.08 ; \mathrm{H}, 3.56 ; \mathrm{N}, 10.43 \%$. IR (KBr): 3303(s), 3249(s) and 3149 $v(\mathrm{NH})$ and $v(\mathrm{OH}) ; 16775(\mathrm{vs})$ and $1648(\mathrm{vs}) \mathrm{v}_{\mathrm{as}}(\mathrm{COO}) ; 1595(\mathrm{~s})$ $v\left(\mathrm{C}=\mathrm{N}_{\text {aepy }}\right)$ and $v\left(\mathrm{C}=\mathrm{C}_{\text {aepy }}\right) ; 1444(\mathrm{~s}), 1306(\mathrm{~s}) v_{\mathrm{s}}(\mathrm{COO})$.

Crystal Structure Determination and Refinement

The X-ray intensity data of $\mathbf{1 - 9}$ were collected on an Gemini A Ultra Oxford Diffraction four-circle kappa geometry diffractometer with Atlas CCD detector graphite monochromated $\mathrm{Mo} K_{\alpha}$ radiation $(\lambda=0.71073 \AA)$ at $293.0(2) \mathrm{K}$. The unit cell determination and data integration were carried out using the CrysAlis package of Oxford Diffraction ${ }^{28}$. Intensity data were corrected for the Lorentz and polarization effects. The absorption correction was introduced by SCALE3 ABSPACK scaling algorithm ${ }^{28}$. The structure was solved by direct methods using SHELXS-97 and refined by full matrix least-squares on F^{2} with SHELXL-97 with anisotropic displacement parameters for non-hydrogen atoms ${ }^{29}$. The hydrogen atoms were treated as „riding" on their parent carbon atoms and assigned isotropic temperature factors equal 1.2 (nonmethyl) and 1.5 (methyl and water) times the value of equivalent temperature factor of the parent atom. The oxygen atom of one water molecule of compound 6 occupy the inversion centre and thus the hydrogen atoms of these molecule are disordered on two positions by symmetry. Because the local electron density maximum smaller
than $0.5 \quad \mathrm{e} \bullet \AA^{-3}$ cannot be reliably determined by X-ray diffractometry, this water molecule disordered hydrogen atoms were not included into refinement. The Cu 2 atom in compound 8 shows signs of prolation. The introduction of the multipositional disorder model to this atom does not lead improvement of the displacement parameters, i.e. all partially occupied domains also exhibits prolation with major axis pointing in the same dictation as existing for nondisordered one. Thus it can be supposed that the observed disorder is dynamic in character. It must be noted that major axis of prolating ellipsoid is located along the bonds elongated as a consequence of the Jahn-Teller effect, thus the longer and consequently weaker bonds allow larger displacement in their direction. The ethylamine moiety of the one 2-(2-pyridyl)ethylamine ligand of compound 9 is disordered equally over two sites. Crystal data collection and refinement parameters are summarized in Table 1. The hydrogen bonds and selected bond distances and angles and of 1-9 are listed in Tables S1-S10.

Magnetic Measurements

Magnetic measurements in the temperature range $1.8-300 \mathrm{~K}$ were performed using a Quantum Design SQUID-based MPMSXL-5type magnetometer. The SQUID magnetometer was calibrated with the palladium rod sample (Materials Research Corporation, measured purity 99.9985%). The superconducting magnet was generally operated at a field strength ranging from 0 to 5 T . Measurements were made at a magnetic field of 0.5 T . Corrections are based on subtracting the sample - holder signal and contribution χ_{D} estimated from the Pascal constants ${ }^{30}$. Magnetization measurements were conducted at 2 K in the magnetic field from 0 to 5 Tesla.

Acknowledgements

This research was supported by the National Science Centre (Poland) under grants No 2011/03/N/ST5/04421 and No 2011/01/B/ST5/01624

Notes

${ }^{a}$ Department of Crystallography, Institute of Chemistry, University of Silesia, $9^{\text {th }}$ Szkolna St., 40-006 Katowice, Poland, E-mail: basia@ich.us.edu.pl.
${ }^{b}$ Faculty of Chemistry, Wroclaw University, F. Joliot-Curie 14 St., 50-383 Wrocław, Poland, E-mail: jmroz@wchuwr.chem.uni.wroc.pl
${ }^{c}$ Department of X-ray Crystallography and Crystal Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, 116 Żeromski St., 90-924 Łódź, Poland, E-mail: rafal.kruszynski@p.lodz.pl
${ }^{d}$ Department of Inorganic, Organometallic Chemistry and Catalysis, Institute of Chemistry, University of Silesia, $9^{\text {th }}$ Szkolna St., 40-006 Katowice, Poland.
\dagger X-ray crystallographic data in CIF format, selected bond lengths and angles, Short intra- and intermolecular contacts and PXRD patterns of the compounds 1-9. Crystallographic data for the structures reported in this article have been deposited in the Cambridge Crystallographic Data Center with CCDC 951616-951624 reference numbers for compounds 1-9

References

(1) (a) S.A. Barnett.; N. R. Champness, Coord. Chem. Rev. 2003, 246, 145; (b) O. Kahn, Molecular Magnetism, VCH, New York, 1993; (c) A.M. Beatty, Coord. Chem. Rev. 2003, 246, 131; (d) B.-H. Ye,; M.-L.Tong; X.-M. Chen, Coord. Chem. Rev. 2005, 249, 545; (e) A.Y. Robin,; K.M. Fromm, Coord. Chem. Rev. 2006, 250, 2127; (f) S. Kitagawa; R.Matsuda, Coord. Chem. Rev.

2007, 251, 2490; (g) W. K. Chan, Coord. Chem. Rev. 2007, 251, 2104; (h) R. L. LaDuca, Coord. Chem.Rev. 2009, 253, 1759; (i) A. Morsali; M.Y. Masoomi, Coord. Chem. Rev. 2009, 253, 1882; (j) W. Lee Leong;; J.J. Vittal, Chem. Rev. 2011, 111, 688 (k) Ch.-L.Ho,.; W.-Y. Wong, Coord. Chem. Rev. 2011, 255, 2469;
(2) (a) L.Yi; X. Yang, T. Lu, P. Cheng, Cryst. Growth Des. 2005, 5, 1215 (b) T. Liu, J. Lu, R. Cao, CrystEngComm. 2010, 12, 1489; (c) W. Jia, J. Luo, M. Zhu, Cryst. Growth Des. 2011, 11, 2386; (d) Y.Y. Karabach, A.M. Kirillov; M. Haukka, J. Sanchiz, M.N. Kopylovich, A. J. Pombeiro, Cryst. Growth

Des. 2008, 8, 4100; (e) A.M. Kirillov, Coord. Chem. Rev. 2011, 255, 1603; (f) J. Tong, Yu, S.-Y.; Li, H. Chem. Commun. 2012, 48, 5343;
(3) (a) M. Hernández-Molina, P.A Lorenzo-Luis, C. Ruiz-Pérez; CrystEngComm. 2001, 16, 1; (b) P.S. Mukherjee, S. Konar; E. Zangrando, C. Diaz, J. Ribas; N.R. Chaudhuri, J. Chem. Soc., Dalton Trans. 2002, 3471; (c) X.-Y. Song, L.-C. Li, D.-Z. Liao, Z.-H. Jiang. S.-P. Yan,;Crystal Growth \& Design. 2007, 7, 1220; (d) A. Recio, J. Server-Carrió, E. Escrivá, R. Acerete, J. García-Lozano, A. Sancho, L.Soto, Crystal Growth \& Design. 2008, 8, 4075; (e) T.C. Stamatatos, S.P. Perlepes, C.P. Raptopoulou, V. Psycharis, C.S. Patrickios, A.J. Tasiopoulos, A.K. Boudalis, Inorg. Chem. Commun. 2009, 12, 402-405; (f) S. Youngme,G.A. van Albada, N. Chaichit, P. Gunnasoot, P. Kongsaeree, I. Mutikainen, O. Roubeau, J. Reedijk, U. Turpeinen, Inorg. Chim. Acta. 2003, 353, 119; (g) A. Bentama, O. Schott, J. Ferrando-Soria, S.-E. Stiriba, J. Pasán, C. Ruiz-Pérez, M. Julve, Inorg. Chim. Acta. 2012, 389, 52-59;
(4) C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edfinfton, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P.A. Wood, J.Appl.Crystallogr. 2008, 41, 466;
(5) (a) A. Gleizes, M. Julve, M. Verdaguer, J.A. Real, J. Faus, X.J. Solans, Chem. Soc. Dalton Trans. 1992, 3209; (b) Y. Akhriff, Y, J. Server-Carrió, A. Sancho, J. García-Lozano, E. Escrivá, J.V. Folgado, L. Soto, Inorg. Chem. 1999, 38, 1174;
(6) K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, $4^{\text {th }}$. Ed., Wiley-Interscience, New York, 1986;
(7) (a) G.A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological Structures, Springer-Verlag, 1994; (b) G.R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, 1999.
(8) A. Recio, J. Server-Carrió, E. Escrivà, R. Acerete, J. García-Lozano, A. Sancho, L. Soto, Cryst. Growth Des. 2008, 8, 4075;
(9). V.A. Blatov, A.P. Shevchenko, V.N. Serezhkin, J. Appl. Cryst. 2000, 33, 1193;
(10) H. Núñez, J.-J. Timor, J. Server-Carrió, L. Soto, E. Escrivá, Inorg. Chim. Acta. 2001, 318, 8 ;
(11) B.J. Hathaway in: G. Wilkinson (Ed.), Comprehensive Coordination Chemistry, Pergamon, Oxford, 1985, 5, 604;
(12) F.H. Allen, Acta Cryst. 2002, B58, 380;
(13) A.W.Addison, T.N. Rao, J. Reedijk, J. Rijn, G.C. Verschoor, J.Chem. Soc. Dalton Trans. 1984, 1349;
(14) O. Castillo, A. Luque, F. Lloret, P. Román, P.; Inorg. Chem. Commun. 2001, 4, 350;
(15) O. Castillo, J. Alonso, U. García-Couceiro, A. Luque, P. Román, Inorg. Chem. Comтип. 2003, 6, 803;
(16) (a) J.W. Stout, R.C. Chisholm, J. Chem. Phys. 1962, 36, 979; (b) B.C.

Gerstein, F.D. Gehring, R.D. Willett, J. Appl. Phys. 1972, 43, 1932;
(17) M.E. Fisher. Amer. J. Phys. 1964, 32, 343;
(18) J.S. Smart, Effective Field Theories of Magnetism, W.B. Saunders Comp., Philadelphia and London, 1966;
(19) O. Castillo, A. Luque; M. Julve, F. Lloret, P. Román, Inorg. Chim. Acta. 2001, 315, 9;
(20) M. Julve, M. Verdaguer, O. Kahn, A. Gleizes, O. Philoche-Levisalles, Inorg. Chem. 1984, 23, 3808;
(21) S. Pérez-Yáńez, O. Castillo, J. Cepeda, J.P. García-Terán, A. Luque, P. Román, Inorg. Chim. Acta. 2011, 365, 211;
(22) L. Zhang, W.-M. Bu, S.-P; Yan, Z.-H. Jiang, D.-Z. Liao, G.-L. Wang, G.-L. Polyhedron 2000, 19, 1105;
(23) T.D. Keene, H.R. Ogilvie, M. .B. Hursthouse, M. B, Price, D. J. Eur. J. Inorg. Chem. 2004, 1007;
(24) B. Bleaney, K.D. Bowers, Proc. Roy. Soc.1952, A214, 451;
(25) (a) U. García-Couceiro, O. Castillo, A. Luque, J.P. García -Terán, G. Beobide, P. Román, Crystal Growth \& Design, 2006, 8, 1839-1847; (b) García -Terán, J. P., Castillo, O.; Luque, A.; García-Couceiro, U.; Román, P.; Lloret, F. Inorg. Chem. 2004, 43, 5761;
(26) G.A. Baker Jr. G.S. Rushbrooke, H.E. Gilbert, Phys.Rev. 1964, 135 (5A), 1272;
(27) E. Díez-Barra, A. de la Hoz, A. Sánchez-Migallón, J. Tejeda, J. Heterocycles. 1992, 34, 1365;
(28) CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.29.2.G.M. Sheldrick, Acta Cryst. 1990, A46, 467;
(29) Sheldrick, G.M. Acta Cryst. 2008, A64, 112;
(30) König, E. Magnetic Properties of Coordination and Organometallic Transition Metal Compounds, Springer, Berlin, 1966.

