NJC Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/njc

Assembly of indole fluorophore in situ for hydrogen sulfide signalling through substrate triggered intramolecular reduction/cyclization cascade: A sensitive and selective in aqueous solution

Ji Zhou, Yuanyuan Luo, Qiang Li, Jiaoning Shen, Rui Wang, Yufang Xu* and Xuhong Qian*

The fluorescence enhancement is due to the formation of the indole fluorophore through reduction by $\rm H_2S$ and cyclization.

1	A response to the comments made by the reviewers.
2	A revised manuscript in native format
3	A PDF version of my complete revised manuscript
4	Numbered figures
5	Revised Electronic Supplementary Information
6	A table of contents entry

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Assembly of indole fluorophore in situ for hydrogen sulfide signaling through substrate triggered intramolecular reduction/cyclization cascade: A sensitive and selective probe in aqueous solution

Ji Zhou, Yuanyuan Luo, Qiang Li, Jiaoning Shen, Rui Wang, Yufang Xu* and Xuhong Qian*

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

A novel probe of azide-coumarin-aldehyde triad (S1) for hydrogen sulfide (H₂S) was developed. The fluorophore for signaling is assembled in situ through H₂S triggered 10 intramolecular reduction/cyclization cascade, and has a concomitant 10-fold enhancement of the fluorescent intensity at 520 nm. Fluorescence imaging of H₂S in living cells proved its potential for biological application.

Hydrogen sulfide (H₂S), an important member of endogenous ¹⁵ gaseous signaling family¹, plays pivotal roles in a wide range of physiological processes, such as oxygen sensing², vasodilation³, inflammation⁴ and cardiovascular protection⁵. The concentration of H₂S ranges from 10 to 100 μ M in blood^{4, 6}, and may reach 600 μ M in the brains of rat, bovine and human⁷. The abnormal H₂S ²⁰ levels in human bodies have been associated with various

- ²⁰ levels in human bodies have been associated with various diseases, such as Alzheimer's disease⁸, Down's syndrome⁹, chronic kidney disease¹⁰ and liver cirrhosis¹¹. It was also reported that H₂S can act as a scavenger for reactive oxygen species (ROS) and up-regulate brain antioxidant level¹². Therefore, ²⁵ reliable methods for H₂S monitoring or detection can greatly
- promote the related biomedical research, have implications in disease diagnosis and therefore have been actively sought after.¹
- Methods based on metal-induced sulfide precipitation,¹³ electrochemistry¹⁴, colorimetry¹⁵ and gas chromatography¹⁶ are ³⁰ robust, though limited with low through-put. Fluorescence-based methods have attracted much attention because of the paramount sensitivity, selectivity and instrumental versatility. In addition, they are particularly suitable for in vitro and in vivo studies¹⁷. Existing fluorescent probes for H₂S are based on either its
- ²⁵ capability of reducing the electron withdrawing azido¹⁸, nitro¹⁹ or hydroxyamino²⁰ groups into electron donating amine, or its high nucleophilicity towards soft electrophiles such as various Michael acceptors²¹, disulfide²², aryl halide²³ and more^{7d, 24}. The common theme of the existing H₂S probes is that H₂S triggers a

⁴⁰ transformation, which regenerates the push-pull scaffold of the pertinent fluorophores and hence mediates the signal transduction. Most fluorescent probes based on the dual nucleophilicity of H₂S often involve the initial nucleophilic attack of H₂S, the cyclization resulting from a second nucleophilic 45 attack as well as the release of the fluorophore in the end^{21d, 22a, 23b}.

^{24a}. Herein, we report a novel H₂S probe, which, upon detection, exhibits an expansion in the conjugated system of a fluorophore and a desired fluorescence increase. Inspired by the work of Sames et al in developing probes for monoamine oxidases,²⁵ we ⁵⁰ design the assembly of indole fluorophore in situ²⁶ for hydrogen sulfide signaling through substrate triggered intramolecular reduction/cyclization cascade, which results in conjugation-expansion and showed a favorable fluorescence enhancement. Besides a red-shift can also be observed which is advantageous ⁵⁵ compared to a simple "turn-on" or "turn-off" signal since a false positive is less likely. Sames reported the "*in situ assembly*" probe design based on an oxidative deamination-cyclization sequence, whereas our work expands the scope of the substrates of this design and should be meaningful to the field of molecular ⁶⁰ probe community.

In this report, we designed and synthesized the probe S1 (Scheme 1), which has an azido group and a formylmethyl group in close proximity. Reduction of the azido group by H_2S gives 7-formylmethyl-6-aminecoumarin (I_1), which spontaneously ⁶⁵ condensates to yield a conjugation-expanded fluorophore (8).

Scheme 1 The mechanism for H₂S detection.

The probe was prepared in seven steps (Scheme 2). Compounds 1-6 were synthesized according to the reported ⁷⁰ literature^{25, 27} (Scheme S1, ESI[†]). Compound 6 could undergo diazotization reaction to afford compound 7. The target molecule S1 was obtained by oxidation of compound 7 with PCC. The reaction product 8 was prepared by hydrogenation of compound 4 using PtO₂ (Scheme S2, ESI[†]). Their structures were confirmed ⁷⁵ by ¹H NMR, ¹³C NMR, and HRMS spectra (Section 4, ESI[†]).

Shanghai Key Laboratory of Chemical Biology, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China. Fax: +86 21 6425 2603; Tel: +86 21 6425 3589;

E-mail: xhqian@ecsut.edu.cn.; yfxu@ecust.edu.cn;

[†] Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

First we investigated the spectroscopic properties of **S1** in the absence and presence of NaSH. Data were acquired at 37°C in ⁵ water containing 5% CH₃CN as co-solvent. Free probe **S1** displayed a fluorescence band at 460 nm with the excitation maximum at 340 nm. The probe solution (15 μ M in pure H₂O) was treated with 100 μ M of NaHS solution (a common H₂S donor) and the emission was recorded. To our delight, an obvious

¹⁰ fluorescence increase was observed at 520 nm with a 10-fold enhancement (Fig. 1a), which was in agreement with the spectroscopic data of independently synthesized compound **8**. Formation of **8** upon H₂S is also confirmed by ESI-MS experiment (Section 3, ESI[†]), with a peak at 186.1, which is ¹⁵ [**8**+H]⁺. This supports our proposed detection mechanism (Scheme 1).

Fig. 1 (a) The emission spectra of S1 (15 μ M) with H₂S (100 μ M) in the water ²⁰ with 5% CH₃CN as co-solvent at 25°C. The data were recorded every 10 min. (b) Fluorescence responses (I_{520 nm}) of S1 (15 μ M) to H₂S (100 μ M). Excitation wavelength was 340 nm. Slit: 10 nm, 10 nm.

Next we investigated the sensitivity of probe S1 toward H₂S. Reaction of S1 with H₂S at an increasing concentration results in ²⁵ a gradual enhancement in fluorescent intensity. Then 15 μ M concentration of the probe was used to determine the sensitivity of the probe. A good linearity between the fluorescent intensity at 520 nm and the H₂S concentration in the range of 10-80 μ M was observed, as shown in Fig.2b. The detection limit of the probe ³⁰ was calculated to be 0.22 μ M (S/N=3) according to the method of the previous procedure^{24c}, indicating that the probe is sensitive and may be potentially useful in the detection of the physiological relevant H₂S whose concentration ranges from nano- to millimolar levels^{18j, 24a}.

Fig. 2 (a) The emission spectra of the probe S1 (15 μ M) upon addition of H₂S (10 μ M-80 μ M) in the water (containing 5% CH₃CN as cosolvent). The data were recorded after 2.5 h. Excitation wavelength was 340 nm. Slit: 10 nm, 10 ⁴⁰ nm. (b) A liner calibration graph of the fluorescence responses (I_{520 nm}) of S1 (15 μ M) to H₂S (10 μ M-80 μ M).

To examine the selectivity of the reaction for H₂S, the probe S1 was treated with various species in the water, including Cl⁻, F⁻, Br⁻, I⁻, SO₃²⁻, NO₃⁻, HCO₃⁻, H₂O₂, S₂O₃²⁻, glutathione, cysteine ⁴⁵ and homocysteine (Fig. 3). Addition of these species did not give rise to the fluorescence enhancement at 520 nm, whereas 150 μM H₂S could lead to a 13-fold fluorescence enhancement, which indicated that S1 had a high selectivity for H₂S over other species.

⁵⁰ Fig. 3 Fluorescence responses of the probe S1 (15 μM) to various relevant species in the water (with 5% CH₃CN) at room temperature. Excitation wavelength was 340 nm. Slit: 10 nm, 10 nm. Bars represent the final fluorescence intensity of S1 with the following analytes over the original probe. (1) blank (2) Cl⁻ (2 mM) (3) F⁻ (2 mM) (4) Br⁻ (2 mM) (5) Γ (2 mM) (6) SO₃²⁻
⁵⁵ (2 mM) (7) NO₃⁻ (2 mM) (8) HCO₃⁻ (2 mM) (9) H₂O₂ (2 mM) (10) Na₂S₂O₃ (2

mM) (11) GSH (2 mM) (12) Hcy (2 mM) (13) Cys (2 mM) (14) NaSH (150 $\mu M)$

We also investigated whether our probe can sense H_2S in the living cells. HeLa cells were incubated with the probe S1 (15 μ M) s in culture medium for 20 min at 37 °C and washed with phosphate buffer (pH 7.4). Then the cells were treated with NaHS (250 μ M) for another 40 min at 37 °C and washed three times with phosphate buffer (pH 7.4). As shown in Fig. 4b and 4d, HeLa cells without NaHS showed very weak fluorescence,

¹⁰ whereas the cells treated with NaHS showed strong fluorescence in green channels (535-600 nm). This result indicates that the probe **S1** has the potential for biological application.

Fig. 4 Fluorescence and bright-field images of HeLa cells. (a) Bright-field ¹⁵ image of HeLa cells incubated with S1 (15 μ M) for 20 min. (b) Fluorescence image of HeLa cells incubated with S1 (15 μ M) for 20 min. (c) Bright-field image of HeLa cells first incubated with S1 for 20 min and then with NaHS (250 μ M) added for another 40 min. (d) Fluorescence image of HeLa cells first incubated with NaHS (250 μ M) added for another 40 min. (d) Fluorescence image of HeLa cells first 20 min and then with NaHS (250 μ M) added for another 40 min. (d) Fluorescence image of HeLa cells first incubated with S1 for 20 μ M) added for another 20 40 min. The figures at the top right and the bottom right were collected at 535-

600 nm (green channel).

In summary, we have developed a fluorescent probe for the detection of H_2S based on a conjugation expansion mechanism with good sensitivity and selectivity. The indole fluorophore for

- $_{25}$ signaling is assembled in situ through substrate triggered intramolecular reduction/cyclization cascade. Moreover, the detection limit of the probe was calculated to be 0.22 $\mu M.$ Fluorescence imaging of HeLa cells showed that the probe **S1** can be used in living cell imaging.
- ³⁰ We are grateful for the financial support from the State Key Program of National Natural Science of China (21236002), the National Basic Research Program of China (2010CB126100), the National High Technology Research and Development Program of China (2011AA10A207).

35 Notes and references

1.C. Szabó, Nat. Rev. Drug Discov., 2007, 6, 917.

- 2.Y.-J. Peng, J. Nanduri, G. Raghuraman, D. Souvannakitti, M. M. Gadalla, G. K. Kumar, S. H. Snyder and N. R. Prabhakar, *Proc. Natl. Acad. Sci. U.S.A.*, 2010, **107**, 10719.
- ⁴⁰ 3.G. Yang, L. Wu, B. Jiang, W. Yang, J. Qi, K. Cao, Q. Meng, A. K. Mustafa, W. Mu, S. Zhang, S. H. Snyder and R. Wang, *Sci.*, 2008, **322**, 587.

4.L. Li, M. Bhatia, Y. Z. Zhu, Y. C. Zhu, R. D. Ramnath, Z. J. Wang, F. B. M. Anuar, M. Whiteman, M. Salto-Tellez and P. K. Moore, *FASEB J.*, 45 2005, **19**, 1196.

5.G. Szabó, G. Veres, T. Radovits, D. Gerő, K. Módis, C. Miesel-Gröschel, F. Horkay, M. Karck and C. Szabó, *Nitric Oxide*, 2011, **25**, 201.

- 6.C. Ya-Hong, Y. Wan-Zhen, G. Bin, D. Yan-Ling, L. Ming, Z. Ming-Wu ⁵⁰ and T. Ghao-Shu, *CHEST*, 2005, **128**, 3205.
- 7.(a) J. C. Savage and D. H. Gould, J. Chromatogr. B Biomed. Sci. Appl., 1990, 526, 540; (b) K. Abe and H. Kimura, J. Neurosci., 1996, 16, 1066; (c) A. Papapetropoulos, A. Pyriochou, Z. Altaany, G. Yang, A. Marazioti, Z. Zhou, M. G. Jeschke, L. K. Branski, D. N. Herndon, R. Wang and C.
- 55 Szabó, Proc. Natl. Acad. Sci. U.S.A., 2009, **106**, 21972; (d) Y. Chen, C. Zhu, Z. Yang, J. Chen, Y. He, Y. Jiao, W. He, L. Qiu, J. Cen and Z. Guo, Angew. Chem., Int. Ed., 2013, **52**, 1688.
 8 K. Eta, T. Asada, K. Arima, T. Makifuchi and H. Kimura, Biocham.
- 8.K. Eto, T. Asada, K. Arima, T. Makifuchi and H. Kimura, *Biochem. Biophys. Res. Commun.*, 2002, **293**, 1485.
- 60 9.P. Kamoun, M.-C. Belardinelli, A. Chabli, K. Lallouchi and B. Chadefaux-Vekemans, *Am. J. Med. Genet. A*, 2003, **116A**, 310. 10.A. F. Perna and D. Ingrosso, *Nephrol. Dial. Transplant.*, 2012, **27**, 486.
- 11.S. Fiorucci, E. Antonelli, A. Mencarelli, S. Orlandi, B. Renga, G. 65 Rizzo, E. Distrutti, V. Shah and A. Morelli, *Hepatology*, 2005, **42**, 539.
- 12.(a) M. Whiteman, J. S. Armstrong, S. H. Chu, S. Jia-Ling, B.-S. Wong, N. S. Cheung, B. Halliwell and P. K. Moore, *J. Neurochem.*, 2004, 90, 765; (b) J. W. Calvert, S. Jha, S. Gundewar, J. W. Elrod, A. Ramachandran, C. B. Pattillo, C. G. Kevil and D. J. Lefer, *Circ. Res.*, 70 2009, 105, 365.
 - 13.A. E. Lewis, Hydrometallurgy, 2010, 104, 222.

14.J. E. Doeller, T. S. Isbell, G. Benavides, J. Koenitzer, H. Patel, R. P. Patel, J. R. Lancaster Jr, V. M. Darley-Usmar and D. W. Kraus, *Anal. Biochem.*, 2005, **341**, 40.

⁷⁵ 15.D. Jiménez, R. Martínez-Máñez, F. Sancenón, J. V. Ros-Lis, A. Benito and J. Soto, *J. Am. Chem. Soc.*, 2003, **125**, 9000.

16.R. V. Kartha, J. Zhou, L. B. Hovde, B. W. Y. Cheung and H. Schröder, *Anal. Biochem.*, 2012, **423**, 102.

- 17.(a) L. Yuan, W. Lin, Y. Yang and H. Chen, J. Am. Chem. Soc., 2011,
- 134, 1200; (b) A. Bender, Z. R. Woydziak, L. Fu, M. Branden, Z. Zhou, B. D. Ackley and B. R. Peterson, *ACS Chem. Biol.*, 2012, 8, 636.
 18.(a) A. R. Lippert, E. J. New and C. J. Chang, *J. Am. Chem. Soc.*, 2011, 133, 10078; (b) H. Peng, Y. Cheng, C. Dai, A. L. King, B. L. Predmore, D. J. Lefer and B. Wang, *Angew. Chem., Int. Ed.*, 2011, 50, 9672; (c) M.
 C. T. Hurtman and M. M. Daona, *Anglust* 2012, 137, 4010; (d) K. Zhang,
- ⁸⁵ C. T. Hartman and M. M. Dcona, *Analyst*, 2012, **137**, 4910; (d) K. Zheng, W. Lin and L. Tan, *Org. Biomol. Chem.*, 2012, **10**, 9683; (e) Z. Wu, Z. Li, L. Yang, J. Han and S. Han, *Chem. Commun.*, 2012, **48**, 10120; (f) S. K. Das, C. S. Lim, S. Y. Yang, J. H. Han and B. R. Cho, *Chem. Commun.*, 2012, **48**, 8395; (g) F. Yu, P. Li, P. Song, B. Wang, J. Zhao and K. Han,
- ⁹⁰ Chem. Commun., 2012, **48**, 2852; (h) V. S. Lin, A. R. Lippert and C. J. Chang, *Proc. Natl. Acad. Sci. U.S.A.*, 2013, **110**, 7131; (i) W. Sun, J. Fan, C. Hu, J. Cao, H. Zhang, X. Xiong, J. Wang, S. Cui, S. Sun and X. Peng, *Chem. Commun.*, 2013, **49**, 3890; (j) Q. Wan, Y. Song, Z. Li, X. Gao and H. Ma, *Chem. Commun.*, 2013, **49**, 502.
- ⁹⁵ 19.(a) J. Bae, M. G. Choi, J. Choi and S.-K. Chang, *Dyes Pigm.*, 2013, **99**, 748; (b) R. Wang, F. Yu, L. Chen, H. Chen, L. Wang and W. Zhang, *Chem. Commun.*, 2012, **48**, 11757; (c) L. A. Montoya and M. D. Pluth, *Chem. Commun.*, 2012, **48**, 4767.

20.W. Xuan, R. Pan, Y. Cao, K. Liu and W. Wang, *Chem. Commun.*, 100 2012, **48**, 10669.

21.(a) Y. Qian, J. Karpus, O. Kabil, S.-Y. Zhang, H.-L. Zhu, R. Banerjee,
J. Zhao and C. He, *Nat Commun*, 2011, 2, 495; (b) Y. Qian, L. Zhang, S.
Ding, X. Deng, C. He, X. E. Zheng, H.-L. Zhu and J. Zhao, *Chem. Sci.*,

2012, 3, 2920; (c) M.-Y. Wu, K. Li, J.-T. Hou, Z. Huang and X.-Q. Yu, Org. Biomol. Chem., 2012, 10, 8342; (d) C. Liu, B. Peng, S. Li, C.-M. Park, A. R. Whorton and M. Xian, Org. Lett., 2012, 14, 2184; (e) Y. Qian, B. Yang, Y. Shen, Q. Du, L. Lin, J. Lin and H. Zhu, Sens. Actuator 5 B, 2013, 182, 498.

- 22.(a) C. Liu, J. Pan, S. Li, Y. Zhao, L. Y. Wu, C. E. Berkman, A. R. Whorton and M. Xian, *Angew. Chem., Int. Ed.*, 2011, **50**, 10327; (b) Z. Xu, L. Xu, J. Zhou, Y. Xu, W. Zhu and X. Qian, *Chem. Commun.*, 2012, **48**, 10871.
- ¹⁰ 23.(a) L. A. Montoya, T. F. Pearce, R. J. Hansen, L. N. Zakharov and M. D. Pluth, *J. Org. Chem.*, 2013, **78**, 6550; (b) J. Zhang, Y. Q. Sun, J. Liu, Y. Shi and W. Guo, *Chem Commun (Camb)*, 2013, **49**, 11305.
 24.(a) X. Wang, J. Sun, W. Zhang, X. Ma, J. Lv and B. Tang, *Chem. Sci.*, 2013, **4**, 2551; (b) J. Liu, Y.-Q. Sun, J. Zhang, T. Yang, J. Cao, L. Zhang
- ¹⁵ and W. Guo, *Chem. Eur. J.*, 2013, **19**, 4717; (c) T. Liu, Z. Xu, D. R. Spring and J. Cui, *Org. Lett.*, 2013, **15**, 2310.
 25.G. Chen, D. J. Yee, N. G. Gubernator and D. Sames, *J. Am. Chem. Soc.*, 2005, **127**, 4544.
 26.Q. Zhang, Z. Zhu, Y. Zheng, J. Cheng, N. Zhang, Y.-T. Long, J.
- ²⁰ Zheng, X. Qian and Y. Yang, *J. Am. Chem. Soc.*, 2012, **134**, 18479.
 ²⁷.(a) M. Alajarín, J. Cabrera, A. Pastor and J. M. Villalgordo, *Tetrahedron Lett.*, 2007, **48**, 3495; (b) H. Cheng, J. Wan, M.-I. Lin, Y. Liu, X. Lu, J. Liu, Y. Xu, J. Chen, Z. Tu, Y.-S. E. Cheng and K. Ding, *J. Med. Chem.*, 2012, **55**, 2144.
- 25 28. Experimental section: (1) Synthesis of 7-hydroxyethyl-6-azidecoumarin (compound 7) To a 0 °C solution of compound 6 (400 mg, 1.95 mmol) in EtOAc (1 mL) and water (1 mL) was added concentrated hydrochloric acid (2 mL). The mixture was stirred for 15 min. To this solution was added a solution of sodium nitrite (245 mg, 3.51
- $_{30}$ mmol) in water (0.74 mL) over 5 min. After completion of the addition, the reaction was stirred for an additional 1.5 h. A solution of sodium azide (230 mg, 3.51 mmol) in water (0.7 mL) was added over 5 min. After 1 h, the reaction mixture was diluted with water (100 mL), extracted with ethyl acetate (2×50 mL). The combined organic layer was washed with
- ³⁵ dilute sodium hydroxide solution, then with brine, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel flash chromatography with 1:30 EtOAc/ CH₂Cl₂ to give the title compound (225 mg, 50%). ¹H NMR (400 MHz, DMSO- d_6): δ 8.07 (d, J = 9.6 Hz, 1H), 7.67 (s, 1H), 7.32 (s, 1H), 6.50 (d, J = 9.6 Hz, 1H), 4.73 (t, J
- 40 = 5.2 Hz, 1H), 3.61 (q, J = 6.4 Hz, 2H), 2.77 (t, J = 6.8 Hz, 2H). ¹³C NMR (100 MHz, DMSO- d_6): δ 160.32, 150.89, 143.75, 135.91, 134.90, 118.99, 118.40, 117.77, 116.78, 60.70, 34.81. HRMS (EI): Calcd for C₁₁H₉N₃O₃ 231.0644; Found, 231.0646. (2) Synthesis of 7-formylmethyl-6azidecoumarin (compound S1) To a solution of compound 7 (231 mg, 1
- ⁴⁵ mmol) in anhydrous CH₂Cl₂ (30 mL) was added PCC (323 mg, 1.5 mmol). Then the mixture was stirred at room temperature for 4 h and filtered on diatomite. Then the diatomite cake was washed with CH₂Cl₂. To the filtrate was added water (100 mL). The organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The
- ⁵⁰ residue was purified by silica gel flash chromatography with 1:2 PE/ CH₂Cl₂ to give the title compound (45 mg, 20%). ¹H NMR (400 MHz, CDCl₃): δ 9.78 (s, 1H), 7.70 (d, J = 9.6 Hz, 1H), 7.27 (s, 1H), 7.20 (s, 1H), 6.50 (d, J = 9.6 Hz, 1H), 3.81 (br, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 196.90, 160.04, 150.96, 141.93, 135.55, 128.71, 120.09,
- $_{55}$ 119.06, 117.86, 116.19, 46.11. HRMS (EI): Calcd for $C_{11}H_7N_3O_3$ 229.0487; Found, 229.0486.