This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Cadmium toxicity in *Mus musculus* mice based on metallomic study. Antagonistic interaction between Se and Cd in the bloodstream

M.A. García-Sevillano\(^{a,b,c}\), T. García-Barrera\(^{a,b,c}\), F. Navarro\(^d\), J.L. Gómez-Ariza\(^{a,b,c}\)

\(^{a}\) Department of Chemistry and Materials Science, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, 21007-Huelva, Spain

\(^{b}\) Research Center on Health and Environment (CYSMA). University of Huelva, Spain

\(^{c}\) International Campus of Excellence on Agrofood (ceiA3). University of Huelva, Spain

\(^{d}\) Department of Environmental Biology and Public Health, Cell Biology. Faculty of Experimental Sciences. University of Huelva, Campus El Carmen. 21007-Huelva, Spain

AUTHOR E-MAIL ADDRESS: J.L., Gómez-Ariza (ariza@uhu.es); T. García-Barrera (tamara@dqcm.uhu.es)

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX

Cadmium (Cd) is an important inorganic toxicant in the environment with impact on human health. A metallomic approach based on size-exclusion chromatography (SEC) coupled to inductively coupled plasma-mass spectrometry (ICP-MS) and multidimensional chromatography separation based on SEC coupled to affinity chromatography 2D-SEC-AF-ICP-MS have been applied to achieve a better understanding of the function, detoxification processes and regulation of metals in mice (*Mus musculus*) under controlled exposure to both Cd and Cd plus \(^{77}\)Se. Isotopic dilution analysis (IDA) was performed to quantify selenium containing proteins in mice plasma with ICP-qMS as multielemental detector.

Additionally, isotope pattern deconvolution (IPD) was applied to study the fate of enriched \(^{77}\)selenenite in mice subjected to cadmium exposure and the effect selenoproteins production in plasma. Moreover, the affinity of Cd for SeP in plasma of mice was corroborated using anion exchange chromatography (AEC) after AF separation and identified by organic mass spectrometry. This work illustrates the high reliability of the integrated use of inorganic and organic mass spectrometry to get a metallomic approximation, which provides a good alternative to deep insight into the fate of elements in exposed organisms, providing information about metals trafficking, interactions and homeostasis.

Introduction

Cadmium is a widespread, highly toxic, environmental pollutant from natural and industrial source, which is known to be accumulated in the human body. Several studies have indicated the carcinogenic potential of Cd in humans\(^{5,6}\) and experimental animals, such as mice\(^{7,8}\). Another major source of Cd is tobacco smoke, resulting in higher blood Cd concentrations in smokers\(^6\). Cd has a long half-life in the body, and adverse effects of chronic Cd exposures on kidneys and bone are well documented\(^{9,10}\). Recently, Cd exposure has been associated with several endocrine effects\(^{11-13}\). On the other hand, it is well known that selenium (Se) presents numerous antagonistic interactions with Cd, such as prevention of oxidative stress induced by this element\(^{14}\), protection against Cd-induced nephotoxicity and hepatotoxicity\(^{15}\), and antagonistic action against Cd-induced inhibition of hepatic drug metabolism\(^{16}\).

Nonetheless, the toxicological effects of Cd in metabolism still remain unclear. For this reason, the use of analytical methods for massive information, such as metallomic and metabolomic approaches is of great interest to evaluate the effects of controlled exposure of *Mus musculus* to Cd and Cd plus \(^{77}\)Se, which has been considered previously\(^{17}\). Nowadays, using omics methodologies different authors have obtained a lot of information about the biological function of elements, although most of methods are focused on only one element or very well-defined chemical species related to it. However, actual biological mechanisms and metabolic pathways are based on the interactions of several elements or their species that can counteract the action of others in cooperation or availability mechanisms\(^{18}\).

Irrespective of the intake route of an element into a living organism, particularly mammals, the bloodstream plays a fundamental role in the transport of species among different organs\(^{17}\), in which metal assembly with proteins and other
bimolecular occurs. This is the case of cadmium
metallothionein (Cd-MT), in which the element is bound to
sulfur\(^1\), or the coordination of cadmium and zinc in alcohol
dehydrogenase\(^2\).

Metalomic approaches usually combine inductively coupled
plasma mass spectrometer (ICP-MS)\(^3\) with a previous
chromatographic device (in single or multidimensional
arrangements), and mass spectrometry for parallel
bimolecular identification in integrated workflows\(^4\).

In addition, isotope dilution analysis (IDA) is a well-known
analytical technique based on the measurement of isotope ratios
in samples where isotopic composition has been altered by the
addition of a known amount of an isotopically enriched element
spike\(^5\). Post-column isotope dilution allows the accurate
determination of elemental species even if the structure of the
compounds is unknown while multiple isotopically enriched
species can be applied for the evaluation and correction of
species interconversion\(^6\). Finally, species-unspecific isotope
dilution mode (SUID) is especially useful when the
structure and composition of analysed species is not exactly
known or the corresponding isotopically labelled compound is
not commercially available\(^7\). Alternatively, when the
isotopically labeled compound is available, species-specific
isotopic dilution mode (SSID) is applied\(^8\). Moreover, enriched
stable isotopes are crucial to study the fate of trace elements in
biological systems, using an isotope pattern deconvolution
approach (IPD) for insulating distinct isotope signatures from
mixtures of natural abundance tracers (endogenous) and
enriched ones (exogenous)\(^9\).

The aim of the present study is to determine the toxicological
effects of Cd in mice Mus musculus during a 12-days exposure
experiment. For this purpose, cadmium chloride was
subcutaneously administered to the mice and liver, kidneys and
serum investigated by a metallomic approach. The coupling
SEC-ICP-MS was used to characterize the biological response to Cd exposure by the change of metallomolecules profiles,
and additionally, selenoproteins were quantified by in series
coupling of SEC with multihaftinity chromatography (AF) and
ICP-MS detection using IDA for quantification. Besides, \(^77\)Se
(in the form of selenite) was orally administered to evaluate the
antagonistic interaction between Cd/Se in the bloodstream.

Materials and methods

Instrumentation

A cryogenic homogenizer SPEX SamplePrep (Freezer/Mills 6770) was used for solid tissues disaggregation. Disaggregated
tissues were subsequently disrupted with a glass/teflon
homogenizer. The extraction was followed by
ultracentrifugation with an ultracentrifuge Beckman model L-9-
90 K (rotor 70 Ti). Polycarbonate bottles of 10 ml with cap assembly (Beckman Coulter) were used for this purpose. A
microwave oven (CEM Matthews, NC, USA, model MARS
was used for the mineralization of extracts.

Trace elements and heteroelements-containing biomolecules were
analyzed with an inductively coupled plasma mass
spectrometer Agilent 7500ce (Agilent Technologies, Tokyo, Japan) equipped with an octopole collision/reaction cell.

Chromatographic separations were performed using a Model
1100 HPLC pump with detector UV (Agilent, Wilmington, DE, USA) as delivery system.

Mass spectrometry measurements were performed on a nano-
electrospray ionization tandem mass spectrometer (API Qstar XL Hybrid system; Applied Biosystems, Foster City, CA, USA). To acquire MS/MS spectra, nitrogen was used as collision gas.

Standard solutions and reagents

All reagents used for sample preparation in the metallomic
approach were of the highest available purity. Phenylmethanesulfonfyl fluoride (PMSF) and tris(2-
carboxyethyl)phosphine hydrochloride (TCEP) (BioUltra
grade, >98%) were obtained from Sigma Aldrich (Steinheim, Germany).

Standards used for mass calibration of analytical SEC columns
(mass range 70-3 kDa) were: ferritin (440 kDa) (purity 95%),
bovine serum albumin (67 kDa) (purity 96%), superoxide dismutase containing Cu and Zn (32 kDa) (purity > 70%),
myoglobin (14 kDa) (purity > 98%), metallothionein I
containing Cd, Cu and Zn (7 kDa) (purity > 95%) and
arsenobetaine (179 Da) (purity > 98%). All these reagents were
purchased from Sigma-Aldrich (Steinheim, Germany). The
mobile phase used in SEC was 20 mM ammonium acetate (Suprapur grade) purchased from Merck (Darmstadt,
Germany), which was prepared daily with ultrapure water (18
MΩcm) from a Milli-Q system (Millipore, Watford, UK). The
pH was adjusted at pH 7.4 with ammonia solution, this later prepared by dilution of 20% (w/v) ammonia solution
(Suprapur, Merck) with ultrapure water. The void volume was
determined using blue ferritin (440kDa).

The human serum certified reference material BCR-637 was
purchased from the Institute for Reference Materials and Measurements (IRM, Geel, Belgium). Standard solutions of
1000 mg L\(^{-1}\) of Se stabilized with 5% (v/v) nitric acid Suprapur
and of 1000 mg L\(^{-1}\) of Br- stabilized with 5% (v/v) nitric acid
Suprapur were purchased from Merck (Darmstadt, Germany).
Enriched \(^74\)Se and \(^77\)Se were obtained from Cambridge Isotope
Laboratories (Andover, MA, USA) as elemental powder and it
was dissolved in the minimum volume of nitric acid (Suprapur
grade) and diluted to volume with ultrapure water. The concentration of this solution was established by reverse
isotope dilution analysis as described elsewhere\(^8\).

Amicon Ultra centrifugal filters (containing a 3000 Da
membrane of regenerated celulose) from Millipore (Billerica,
MA). The trypsin (EC 3.4.21.4) TPCK was obtained from
Sigma-Aldrich (Steinheim, Germany) and the urea,
dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP) (BioUltra
grade, >98%) were obtained from Sigma Aldrich (Steinheim, Germany) and the urea,
iodoacetamide and dithiotreitol from Bio-Rad (Madrid,
Spain).

Animals and exposure experiments

Mus musculus (inbred BALB/c strain) mice were obtained from
Charles River Laboratory (Spain). Mice of 7 weeks of age were fed ad libitum with feed selenium deficient pellets. The
animals were allowed to acclimate for 5 days with free access
to food and water under controlled condition (temperature (25-
30°C) and a 12 h light-dark cycle) before the exposure experiment.

Firstly, 32 specimens of Mus musculus mice were divided into
two groups, one used as control and the other exposed to Cd(II)
in the form of CdCl\(_2\), using subcutaneous injection of 100 µL of
a solution of 0.1 mg Cd per kg of body weight per day
during a total period of exposure of 12 days. The control mice
were subcutaneously injected with 100 µL of 0.9% NaCl in ultrapure water per day during 12 days. Mice were sacrificed after the 6th and 12th day of exposure.

Secondly, 60 specimens of Mus musculus were divided into four groups: GROUP A exposed to oral administration of 0.15 mg 77Se per kg of body weight per day during 15 days; GROUP B exposed to oral administration of 0.5 mg 77Se per kg of body weight per day during 15 days; GROUP C and GROUP D both exposed to oral administration of 0.5 mg 77Se per kg of body weight per day during 15 days and 0.1 mg Cd per kg of body weight per day by subcutaneous injection.

Mice were individually anesthetized by isoflurane inhalation and exsanguinated by cardiac puncture, then they were dissected using a ceramic scalpel and finally the organs transferred rapidly to dry ice. Individual organs were excised, weighed in Eppendorf vials, cleaned with 0.9% NaCl solution, frozen in liquid nitrogen and stored at -80 ºC until their use for extract preparation. Mice were handled according to the norms stipulated by the European Community. The investigation was performed after approval by the Ethical Committee of the University of Huelva (Spain).

Metallomic approaches based on analytical scale SEC-ICP-MS and 2D/SEC-AF-ICP-MS for the analysis of plasma, liver and kidney of mice (Mus musculus) exposed to both Cd and Cd/77Se

Pools of organs from male mice of different groups of exposure were treated following a procedure described elsewhere35. Plasma collection was carried out by centrifugation (4000 g, 30 min, 4°C) after addition of heparin (ANTICLOT) as anticoagulant for separation into plasma and red blood cells (RBCs). In addition, 10 mg of 100 mM of PMSF and 100 mM of TCEP mixture were added as proteases inhibitor and reductant agents, respectively. Chromatographic conditions are previously by our research in Garcia-Sevillano et al.35

The retention times corresponding to the peaks of standards used for Superdex75 column calibration were the following: ferritin 11.5 min, bovine serum albumin (BSA) 13.7 min, superoxide dismutase containing Cu and Zn (Cu,Zn-SOD) 16.3 min, myoglobin (an iron containing protein) 18.9 min, metallothionein I containing Cd, Cu and Zn (Cd,Cu,Zn-MT1) 21.0 min, and arsenobetaine (AsB) 26.1 min.

In addition, a metallomic approach based on a multidimensional chromatography SEC-AF-ICP-MS was applied to mice plasma from mice exposed to Cd/77Se during 15 days. To avoid changes in metalloproteins, plasma samples were directly injected into the column, without prior dilution. The fractionation of selenium containing proteins by two-dimensional chromatographic separations, based on SEC prior to the use of a double affinity column, was carried out following a procedure described elsewhere35. Briefly, it is based on in series stacking of two 5 ml HiTrap® Desalting Column (GE Healthcare, Uppsala, Sweden), in which in turn are in series connected with a dual affinity column arrangement comprising by a 1 ml heparin-sepharose column (HEP-HP) (GE Healthcare, Uppsala, Sweden) and a 1 ml blue-sepharose column (BLU-HP) (GE Healthcare, Uppsala, Sweden), the components of the arrangement are interconnected by a six-way column switching valve. The HiTrap column is based on size exclusion principle allowing separate low molecular mass chemical species (MW<1000Da) from high molecular mass molecules, such as DNA, proteins or peptides (MW>5000Da), the combination of two columns increase the resolution of separation. On the other hand, HEP-HP column is able to retain selectively selenoprotein P (SeP), and numerous non-containing Se-proteins, whereas BLU-HP column retains both SeP and selenoalbumin (SeAlb), which has been previously described35. The isotopes monitored were the same as those discussed in SEC-ICP-MS metallomic approach.

Identification of SeP in plasma of Mus musculus by AF-AEC-ICP-MS and nanoESI-QTOF-MS after tryptic digestion

The application of two different chromatographic methods was applied to confirm the association of Cd to selenoprotein P. In this sense, the same sample was analysed by anionic exchange chromatography (AEC), after AF separation, because of the presence of other proteins than SeP with high affinity to heparin (HEP-HP column) in the multidimensional approach proposed.

For this purpose, mice plasma was submitted to AF separation (Heparin-Sepharose), and Se containing fraction was collected and loaded onto an AMICON filter to preconcentrate and remove the salts. This procedure was carried out by triplicate using ultrapure water to resuspend the filter content and decrease the concentration of salts. Finally, the fraction excluded from the desalting filter was collected and lyophilized. The lyophilizate was dissolved in ultrapure water and purified by AEC (Protein-Pak DEAE 5PW 7.5 x 75 mm, 10 µm, Waters, Milford, MA, USA) using a buffer of ammonium acetate with a gradient from 2 to 500 mM at flow rate of 1.5 ml min⁻¹, and injection volume of 50 µL. After analysis, 2 mM of ammonium acetate buffer was switched on for 15 min in order to re-equilibrate the column before the next injection. A total volume of 500 µl of the fraction isolated by AEC (retention time between 10.5 min to 11.5 min) was desalted using AMICON filters and lyophilized.

The lyophilized fraction was re-dissolved with 100 µL of 6M urea and 50 mM ammonium bicarbonate (pH 8.3). An aliquot of 50 µL of this solution was separated and 5 µL of 180 mM DTT was added to reduce disulfide bonds in the proteins. After 30 min at 37°C, 5 µL of 400 mM iodoacetamide (IAA) was added to the reaction mixture and kept it in dark at room temperature for 30 min. Finally, the sample was dissolved in 290 µL of water to reduce the urea concentration to 2 M, to retain the activity of trypsin. Then, 50 µL of trypsin (0.1 µg µL⁻¹) was added and the mixture incubated at 37°C overnight. The reaction was then stopped by addition of 10 µL of glacial acetic acid. After tryptic digestion, the peptides were desalted, preconcentrated and purified using ZipTips C18 (Millipore, Massachusetts, USA). The TOF mass analyzer was calibrated immediately prior to sample analysis using glufib as standard. ESI-TOF-MS data acquisition was performed in positive ion mode and the MS spectra of peptides were acquired in the range 400 -1600 m/z. The values for ion spray voltage, electron multiplier voltage, curtain gas and declustering potential were set to: 900 V, 2200 V, 20 psi and 90 V. Data analyses were performed using the Analyst QS software (Applied Biosystems). After recording the MS spectra, doubly charged peptide ions were selected, and MS/MS spectra obtained with collision energy of 15 V. Peptide sequences were then searched by database (NCBI) using Mascot searching engine.

This is an Accepted Manuscript, which has been through Royal Society of Chemistry peer review. Accepted Manuscripts are published online shortly after editorial acceptance, before typesetting, hence the page numbers do not yet add up to the total.

Journal Name, [year], [vol], 00–00 | 3
Quantification of selenium containing proteins by SEC-AF-SUID-ICP-ORS-qMS for selenium speciation in plasma from mice (Mus musculus) under Cd exposure.

Species-unspecific isotopic dilution analysis (SUID) was applied to quantify the concentrations of selenium containing proteins a low molecular selenium species using the procedure previously published by García-Sevillano et al25,26,29.

Total determination of endogenous and exogenous Se concentration by IPD-ICP-ORS-qMS of plasma from mice (Mus musculus) under Cd77Se exposure

For human serum reference materials (BCR-637), samples of 100 mg were directly weighted into 10-mL glass vials. Then an appropriate amount of the 77Se spike and 800 \textmu L of water were added. The samples were incubated during 8 hours at 80\textdegree C and then diluted with ultrapure water to 5 g. Finally, the digested certified reference materials and samples were filtered using 0.45 \mu m PTFE syringe filters before the analysis by IPD-ICP-ORS-MS. Mice plasma were digested using the previous procedure but without addition of 77Se spike.

For isotope ratio determination of endogenous and exogenous selenium, individual aqueous solutions enriched in 77Se were used to obtain the maximum signal for these masses. A solution of 5% (w/w) HNO\textsubscript{3} was used to correct the background level caused by polyatomic argon interferences. In addition, the corrections for the formation of SeH2- and BrH2- were carried out using mathematical equations, monitoring additionally the signals at masses 76, 82 and 83 (for SeH2-) and 79 and 81 (for BrH2-). On the other hand, the optimum spike to sample ratio was calculated as previously described by García-Alonso30. Finally, the concentration of analytes was calculated using the isotope dilution analysis described previously26. Selenium determination in mice plasma by IPD-ICP-ORS-MS was carried out using the operating conditions summarized in Table 1. All the analyses were performed using two replicates.

Metalomic approach for mice plasma (Mus musculus) under Cd77Se exposure. Use of SEC-AF-IPD-ICP-ORS-qMS

To validate the SEC-AF-HPLC-IPD-ICP-ORS-MS methodology for quantitative selenium speciation in plasma samples, a human serum certified reference material (BCR-637) was used. The CRM was spiked with optimum amounts of 77selenite. After online separation, the quantification of selenium in chromatographic peaks was performed by post-column isotope dilution analysis using a solution of enriched 77Se for quantification of the endogenous and exogenous selenium species in plasma of mice under exposure to both enriched 77Se and Cd. Finally, the IPD technique was applied to each point of chromatogram to obtain the mass flow chromatograms for endogenous and exogenous Se25.

Table 1. Operating conditions of IPD-ICP-ORS-MS detection

<table>
<thead>
<tr>
<th>ICP-MS conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward power</td>
<td>1500 W</td>
</tr>
</tbody>
</table>

Results and discussion

SEC-ICP-ORS-MS profiles from liver and plasma of mice (Mus musculus) under cadmium exposure

To check the presence and potential interactions of metal-biomolecules in organs of Mus musculus exposed to Cd the coupling SEC-ICP-MS was used, obtaining Cu, Zn and Cd-traced peaks from cytosolic fractions of liver, kidney and plasma (Fig. 1). The distribution, accumulation and transference of zinc, copper and cadmium in living organisms have been considered in detail in the literature. Several facts such as the modulation of zinc concentration by homeostatic mechanisms31 and the importance of transport mechanisms on copper distribution32 are relevant issues to explain the relative presence of metal-binding molecules in the different organs of exposed organisms. In relation to this, the induction of Cd and Zn-metallothioneins in mice (Mus musculus) exposed to higher concentrations of Cd has been reported33, and these experimental data confirm the antagonistic interactions among Cd, Zn, Cu, as well as the differential rate of excretion of these elements from kidney/liver under increasing exposure34.

It is well known that Cd exposure causes change in the distribution of endogenous Zn and Cu in tissues and biological fluids, since both metals play a protective role against Cd toxicity, due to their contribution in MTs induction (Fig. 1A)35-37. Therefore, in Fig. 1B can be seen that Cd intake causes increasing intensity of Cu-traced peak in plasma at about 67 kDa, that can be related with two important copper transport proteins in bloodstream, such as BSA and transferrin (Tf) with 67kDa and 79kDa molecular mass, respectively38-39.

The Figs. 1C and 1D show peaks traced by Cd and Zn bound to MT fraction in liver, which increases consistently with Cd exposure. The induction of MTs is accompanied by a small increase of the intensity of Zn associated with MT fraction (Fig. 1D), fact previously observed by Srivastava et al40. The same effect was observed for Zn associated with the HMM protein fractions.

On the other hand, higher intensity of signals from Cd associated to MT is observed in kidney when compared with liver and plasma (Fig. 1E). This fact confirms the role of urine
as main route for excretion of MTs41. Finally, it is interesting to observe the presence of Cu-peaks (Fig. 1F) in kidney extract at about 7 kDa which is in contrast with the absence of the equivalent peak for Zn (data not shown). Decreased levels associated to this fraction are observed along the exposure time (Fig. 1F). Possibly, the difference in binding affinity of MTs for metal ions can contribute to this result, since Cd, Hg or Cu can displace Zn from metal-MT complex42. This hypothesis is supported by the experiment of Liu et al43 that exposes rats to Cu after subcutaneous injection of Cd-MT, which results in decreasing concentration of Cd-MT in kidney, this effect is not observed when the experiment is repeated with exposure to Zn.

![Fig. 1. Up/down regulation of metal-biomolecule complexes in plasma (a, b), liver (c, d) and kidney (e, f) of Mus musculus exposed to cadmium assessed by molecular mass distribution with SEC-ICP-MS. Chromatographic conditions: column, SuperdexTM 75 (10x300x13 µm); mobile phase, ammonium acetate 20 mM (pH 7.4); flow rate 0.7 ml min-1; injection volume, 20 µL.]

Additionally, multidimensional chromatography 2D-SEC-AF-ICP-MS have been applied to achieve a better understanding of the function of SeP, detoxification processes and regulation of Cd in mice (Mus musculus) under controlled exposure to Cd using the chromatography conditions previously published by García-Sevillano et al27. The Fig. 2 shows the 2D-SEC-AF-ICP-MS chromatogram obtained for Cd and Se in plasma from mice exposed to Cd. In Fig. 2 can be observed, with the use of affinity column (2D-SEC-AF-ICP-MS), that Cd is present in plasma in two remarkable peaks, one close to void volume and other more intense at retention time matching with SeP peak, which increase along the exposure time. Additionally, the chromatogram obtained by SEC-ICP-MS (Fig. 1) shows a Cd-peak with high molecular mass proteins (HMM) (about 55 kDa), corresponding to the molecular mass of SeP, and other peak eluting with the MTs fraction at 19 min, as has been previously discussed. However, peaks traced by Cd are not observed in control samples or their intensities are significantly lower (Fig. 1A and Fig. 2). Therefore, these results show that the accumulation of Cd in plasma along the exposure time in the fraction of 55 kDa is related with selenoprotein P due to its high affinity for Cd44.

![Fig. 2. Up/down regulation of Cd-biomolecule complexes in plasma of Mus musculus exposed to cadmium assessed by molecular mass distribution with 2D-SEC-AF-ICP-MS.]

15
To confirm the association of Cd to Se-P peak, it was collected from plasma of Mus musculus mice using an affinity column as first chromatography dimension (Fig. 3A-3B). Then, the fraction was desalted, lyophilized, and analyzed by a second chromatographic dimension based on AEC (Fig. 3C). In this later chromatogram it is possible to observe a predominant peak traced by exogenous 77Se and cadmium about 10 min, which can be collected with an analytical AEC column, lyophilized, desalted and submitted to tryptic digestion for identification by nESI-QqQqTOF/MS. The mass spectrum of peptides (Fig. 4) was used for protein identification, using the doubly charged peptide ions of m/z 528.75 and 915.94 for MS/MS analysis and protein identification in MASCOT database. The results confirm the presence of Se-P associated to Se and Cd containing peak, Fig. 3C.

Fig. 3. A) Se-biomolecule complexes in plasma of Mus musculus exposed to 77Se and Cd assessed by AF-ICP-MS; B) Cd-biomolecule complexes in plasma of Mus musculus exposed to 77Se and Cd assessed by AF-ICP-MS; C) Se/Cd-biomolecule in plasma of Mus musculus exposed to 77Se and Cd assessed by AEC-ICP-MS after AF separation.

Fig. 4. Mass spectrum obtained by nano-ESI-MS of the fraction collected by AEC after tryptic digestion.

Speciation of selenium in plasma of mice (Mus musculus) under cadmium exposure by SEC-AF-HPLC-SUID-ICP-ORS-MS

Quantification of Se containing proteins and low molecular weight Se species has been performed in mice plasma using the proposed speciation method. Selenium concentration in selenoproteins is in good accordance with total Se concentrations determined by IDA-ICP-ORS-MS after acid digestion (table 2).

Mass flow chromatograms of selenium species in plasma from each group of Cd exposed mice are plotted in Fig. 5. It has been documented that Cd and Se interact in the body of mammals, and the co-administration of both elements reduces the toxicity of each other\(^4\). On the other hand, it is well known that Se level in plasma decreases under Cd exposure in rats subjected to oral administration\(^4\).

In mammalian plasma, Se is incorporated mainly into three selenium containing proteins -SeP, eGPx (especially abundant in plasma\(^3\)) and SeAlb. However, SeP is the unique selenoprotein that contains several selenocysteine (SeCys) and cystine (Cys) residues, which increase its availability to transport Se that can be bound to cadmium for excretion. For this reason, increased levels of SeP have been found with the exposure (Fig. 5). In addition, the peak of Cd at about 55 kDa in Fig. 1A shows a significant increase of this element with exposure, since as previously commented, SeP plays an important role in the traffic of cadmium between the organs. Nevertheless, Se metabolites and SeAlb are required for the synthesis of selenoproteins in liver that are then transported to plasma\(^7\). Therefore, decreased levels of selenium metabolites have been observed in mice after the administration of Cd, as well as a little reduction of SeAlb levels along the exposure (Table 2), which support this hypothesis (Fig.5). In addition, eGPx are a family of antioxidant enzymes that reduce the...
presence of lipid hydroperoxides in plasma48, therefore, the increased levels of eGPx in plasma observed in our results can be related with the transport of this enzyme from liver to plasma to neutralize lipid peroxidation.

Table 2. Quantification of selenium species in mice plasma (\textit{Mus musculus}) under cadmium exposure.

<table>
<thead>
<tr>
<th>Selenium Species</th>
<th>Plasma from Mus musculus mice</th>
<th>DETECTION LIMITS (LD, ng g-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONTROL MICE (n=5)</td>
<td>Cad MICE Day 6 (n=5)</td>
</tr>
<tr>
<td></td>
<td>MICE</td>
<td>MICE Day 12 (n=5)</td>
</tr>
<tr>
<td>GPx (ng g-1)</td>
<td>5.5±0.3</td>
<td>14±0.6</td>
</tr>
<tr>
<td>SeP (ng g-1)</td>
<td>132±9</td>
<td>146±8</td>
</tr>
<tr>
<td>SeAlb (ng g-1)</td>
<td>16.2±0.4</td>
<td>10.4±0.7</td>
</tr>
<tr>
<td>Se metabolites (ng g-1)</td>
<td>38.4±8</td>
<td><LOD</td>
</tr>
<tr>
<td>Se content in species (ng g-1)</td>
<td>193</td>
<td>170.4</td>
</tr>
</tbody>
</table>

48 Quantification of total selenium by IDA-ICP-ORS-MS.

Antagonistic interaction between Cd/Se in plasma mice (\textit{Mus musculus}) under 77Se and cadmium controlled exposure

When mice is only exposed to cadmium during 12 days results show increase of Se requirement in plasma (Table 2), since Se levels are reduced about 20 \% along the exposure time. This fact is in agreement with previous results by other authors in rats under exposure experiments to cadmium45, as the study of Suzuki et al47 about \textit{in vitro} experiments in blood, using the SeP fraction isolated from rat serum41.

On the other hand, IPD was applied to blood samples to deep insight into the mechanism underlying the \textit{in vivo} interactions between Cd and Se in mice bloodstream. For this purpose, \textit{77}Se was orally administrated to evaluate the behavior of natural (endogenous) and enriched Se (exogenous) in mice, simultaneously exposed to cadmium, and to check the effect of this element on plasma selenoproteins biosynthesis. Thus, the analytical methodology for Se speciation was validated using a CRM of human serum spiked with enriched \textit{77}selenite (Table 3).

The results show the increase of exogenous Se in bloodstream when Cd is simultaneously supplied to mice (Fig. 6A), this effect is more pronounced for higher doses of selenium (Fig. 6A, Group D). In addition, the concentration of cadmium in the bloodstream decreases when high levels of enriched Se are administrated (Table 3). Additionally, when the instrumental coupling SEC-AF-IPD-ICP-ORS-qMS is applied to serum of exposed mice, an increase in the concentration of \textit{77}SeP is observed (Fig. 6B and 6C) under enriched Se exposure. Similar results were obtained by Kobayashi et al49 by intravenous injection of enriched \textit{77}selenite to rats. Nevertheless, this fact is more pronounced when Cd is simultaneously administrated (Fig. 6C), possibly induced by this toxic element. In summary, the results confirm that SeP plays a fundamental role in Cd detoxification. Correlatively, decline in the concentration of endogenous \textit{77}SeP is obtained, especially when Cd is simultaneously ingested, since endogenous \textit{77}SeP is consumed in the interaction with Cd but not replaced by the intake of \textit{77}SeP. The Figs. 6A, Group B, support this hypothesis.
Fig. 6. A) Endogenous and exogenous selenium in plasma of mice under 77selenite and cadmium administration by IPD-ICP-ORS-MS; B) Mass flow chromatogram of Se exogenous (77Se supplemented) of plasma from *Mus musculus* mice exposed to 0.5 mg 77Se during 15 days (GROUP C), studied by SE-AF-HPLC-IPD-ICP-ORS-MS; C) Mass flow chromatogram of Se exogenous (77Se supplemented) using plasma from *Mus musculus* mice exposed to 0.5 mg 77Se and 0.1 mg Cd simultaneously during 15 days (GROUP D), studied by SE-AF-HPLC-IPD-ICP-ORS-MS.

Table 4. Quantification of cadmium in mice plasma under 77Se/Cd exposure by ICP-ORS-MS and selenium species in human serum (BCR-637) and BCR-637 spiked samples (50 ng of 77Se g$^{-1}$; as sodium selenite) by IPD-ICP-ORS-MS.

<table>
<thead>
<tr>
<th>Selenium Species</th>
<th>Certified Human serum BCR-637 (ng g$^{-1}$ SD)</th>
<th>Human serum BCR-637 (SEC-AF) (ng g$^{-1}$ SD)</th>
<th>Human serum BCR-637 (SEC-AF) (ng g$^{-1}$ SD)</th>
<th>Cadmium concentrations Plasma GROUP B 0.15 mg of 77Se and 0.1 mg Cd (ng g$^{-1}$ SD)</th>
<th>Cadmium concentrations Plasma GROUP D 0.50 mg of 77Se and 0.1 mg Cd (ng g$^{-1}$ SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Endogenous Se</td>
<td>Endogenous Se</td>
<td>Endogenous Se</td>
<td>SD (n=5)</td>
<td>SD (n=5)</td>
</tr>
<tr>
<td>EGPx</td>
<td>15 ± 4</td>
<td>12 ± 2</td>
<td>< LOD</td>
<td>Day 1 12.36 ± 1.1 11.72 ± 0.9</td>
<td>Day 1 12.36 ± 1.1 11.72 ± 0.9</td>
</tr>
<tr>
<td>SeP</td>
<td>60 ± 7</td>
<td>53 ± 2</td>
<td>< LOD</td>
<td>Day 2 38.24 ± 5.4 24.66 ± 4.9</td>
<td>Day 2 38.24 ± 5.4 24.66 ± 4.9</td>
</tr>
<tr>
<td>SeAlb</td>
<td>13 ± 4</td>
<td>14 ± 2</td>
<td>< LOD</td>
<td>Day 5 52.22 ± 3.7 38.51 ± 3.2</td>
<td>Day 5 52.22 ± 3.7 38.51 ± 3.2</td>
</tr>
<tr>
<td>77Selenite spiked</td>
<td>-----</td>
<td>-----</td>
<td>< LOD</td>
<td>Day 10 132.2 ± 7.8 60.54 ± 7.1</td>
<td>Day 10 132.2 ± 7.8 60.54 ± 7.1</td>
</tr>
<tr>
<td>Se content in the species</td>
<td>79 ± 3</td>
<td>79 ± 2</td>
<td>51 ± 3</td>
<td>Day 15 162.2 ± 11 88.21 ± 9.4</td>
<td>Day 15 162.2 ± 11 88.21 ± 9.4</td>
</tr>
<tr>
<td>TOTAL Se</td>
<td>-----</td>
<td>82 ± 1</td>
<td>52 ± 1</td>
<td>LOD (ng g$^{-1}$)</td>
<td>LOD (ng g$^{-1}$)</td>
</tr>
<tr>
<td>Certified value (ng mL$^{-1}$)</td>
<td>81 ± 7</td>
<td>81 ± 7</td>
<td>50 -----</td>
<td>0.012</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Conclusions

This work illustrated the high reliability of inorganic and organic mass spectrometry based on metallomic approach to study the biochemical effects induced by cadmium chloride in exposed mice and their effects on liver, kidney and plasma metals homeostasis. The application of size exclusion chromatography coupled to ICP-MS to cytosolic extracts of metabolic active organs and biological fluids from the...
laboratory mice *Musculus* exposed to Cd, allows deciphering the changes of metal-binding biomolecules, such as induction of Cd-MT and Cd-transporting proteins, as well as the traffic of this element from liver to kidney mediated by the bloodstream for final excretion as Cd-MT by urine. In addition, selenium speciation in plasma by SEC-AF-HPLC-SUID-ICP-ORIS-MS confirms the role of SeP in Cd detoxification/excretion and the need for selenium intake after Cd exposure. In addition, the use of enriched stable isotopes is crucial to study the fate of trace elements in biological systems, employing IPD measurements, which shows unequivocally the importance of SeP for Cd protection.

On the other hand, the study of metals interactions with proteins, such as SeP and Cd, require the combined use of complementary chromatographic separations as is the case of affinity and anion exchange chromatography. Therefore, these multidimensional metallomic approaches allow to deep insight into homeostasis and interactions of metals in living organisms involving metal-biomolecules. This provides a valuable experimental approximation to get overall information and conclusions in relation to toxicological studies.

Acknowledgements

The authors thank the projects CTM2012-38720-C03-01 (Ministerio de Economía y Competitividad-Spain), P08-FQM-03554 and P09-FQM-04659 (Consejería de Innovación, Junta de Andalucía). Miguel Ángel García Sevillano thanks the Ministerio de Educación for a predoctoral scholarship. We want to thank the group of Prof. Sanz-Medel at the University of Oviedo, in particular to Dr. M.L. Fernández-Sánchez and S. Fernández, for introducing and training in isotope dilution analysis and isotopic pattern deconvolution techniques.

References
