Medicinal Chemistry Communications

MedChemComm

Synthesis and synergistic antimycobacterial screening of chlorpromazine and its metabolites

Journal:	Medicinal Chemistry Communications
Manuscript ID:	MD-CAR-12-2013-000387.R1
Article Type:	Concise Article
Date Submitted by the Author:	27-Jan-2014
Complete List of Authors:	Chibale, Kelly; University of Capetown, Institute of Infectious Disease and Molecular Medicine Kigondu, Elizabeth M.; University of Cape Town, Department of Chemistry Njoroge, Mathew; University of Cape Town, Department of Chemistry Singh, Kawaljit; University of Cape Town, Department of Chemistry Njuguna, Nicholas; University of Cape Town, Department of Chemistry Warner, Digby F.; University of Cape Town, Department of Clinical Laboratory Sciences; University of Cape Town, Institute of Infectious Disease & Molecular Medicine

SCHOLARONE[™] Manuscripts

Graphical abstract

Synthesis and synergistic antimycobacterial screening of chlorpromazine and its metabolites

Elizabeth M. Kigondu, Mathew Njoroge, Kawaljit Singh, Nicholas Njuguna, Digby F. Warner, and Kelly Chibale*

Chlorpromazine (CPZ) metabolites naturally generated *in vivo* were synthesized via a non-classical Polonovskii reaction. CPZ and the synthesized metabolites exhibited clear synergy when tested in combination with a number of antituberculosis drugs suggesting that these could be potential partners that could be used for anti-TB drug development.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

CONCISE ARTICLE

Synthesis and synergistic antimycobacterial screening of chlorpromazine and its metabolites

Elizabeth M. Kigondu^a, Mathew Njoroge^a, Kawaljit Singh^a, Nicholas Njuguna^a, Digby F. Warner^{b,c}, and Kelly Chibale^{*^{a,b}}.

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Abstract

- ¹⁰ The antimycobacterial activities of chlorpromazine and its metabolites were evaluated alone and in combination with antitubercular drugs. Although associated with limited antimycobacterial activity when tested individually, chlorpromazine and its metabolites exhibited clear synergy
- ¹⁵ when tested in combination with a number of aminoglycosides as well as the active metabolite of rifampicin, 25-desaceteylrifampicin. The combination of chlorpromazine and spectinomycin was associated with the greatest synergy, yielding a fractional inhibitory concentration index (FICI) of
- 20 0.31. Synergistic interactions were also observed for combinations of 7-hydroxychlorpromazine or norchlorpromazine with kanamycin, streptomycin, spectinomycin and 25-desacetylrifampicin (FICI 0.19 -0.5).

Introduction

- ²⁵ Every year, approximately 9 million people develop active tuberculosis (TB), 30% of which reflect co-infection with HIV.^{1–} ³ However, the number of new TB drugs that make it into the market is very low which is of great concern for a disease whose global incidence remains elevated, resulting in almost 1.4 million
- ³⁰ deaths per annum.⁴ This problem is further compounded by the continued emergence of drug resistance, which severely limits the utility of existing drugs. Clinically, anti-TB drugs are administered in combination to maximize their efficacy and prevent resistance. However, most antimycobacterial drug
- ³⁵ discovery efforts are based on screening of single agents. An alternative and potentially more relevant strategy^{5–8} is the use of synergistic screening (so-called "checkerboard assays"^{6,9,10}) to investigate the activity of two agents in combination. Synergy is defined where the biological activity of a combination of two
- ⁴⁰ drugs against a given microorganism is greater than the sum of the individual activities of each member of that combination.¹¹ Practically, this is determined through the calculation of the fractional inhibitory concentration index (FICI).^{6,10} A key goal of any drug discovery programme, is to synthesise metabolically

⁴⁵ stable analogues of a lead compound, and this applies equally to antimycobacterial drugs. However, it has been recognized that pharmacologically active metabolites have in some instances been successfully developed as drugs, which often possess superior physicochemical, pharmacodynamics and ⁵⁰ pharmacokinetic properties compared to the parent drugs.¹² Accordingly, we have become interested in studying the relative contribution of metabolites to antimycobacterial activity.

Phenothiazines have been used for many years in the clinical management of psychosis. However, they have also been reported

- ⁵⁵ to have *in vitro* antimycobacterial activity specifically inhibiting NADH:menaquinone oxidoreductase which is responsible for aerobic respiration.¹³ Studies have demonstrated that thioridazine, a phenothiazine, has activity in mice and against multidrug resistant (MDR) and extensively drug resistant (XDR) strains of
- ⁶⁰ *Mycobacterium tuberculosis*.^{14–20} Thioridazine in combination with several antibiotics causes synergy. The phenothiazine inhibits protein synthesis necessary for bacteria cell wall leading to death of the mycobacteria.²¹ Chlorpromazine (CPZ), another phenothiazine, was selected as a proof-of-concept for this study.
- ⁶⁵ Previously, CPZ was reported to exhibit a 4-fold reduction of efflux pump activity in *M. avium.*¹⁸ In another study, CPZ in combination with some anti-TB drugs was shown to exhibit synergism.²² This makes CPZ a potential partner for combination studies with anti-TB drugs. The fast replicating non-pathogen *M. smegmatis* was used as a mycobacterial model in this study. This is consistent with other reports which have successfully applied *M. smegmatis* for the preliminary identification of hit compounds²³ as well as promising drug combinations.⁶
- Because of the relevance of metabolites to the activity of known ⁷⁵ clinical compounds,¹² the synergistic combination screening was also performed with CPZ metabolites. CPZ is metabolized to chlorpromazine sulfoxide (**M1**), 7-hydroxychlorpromazine (**M2**), chlorpromazine-*N*-oxide (**M3**), chlorpromazine-*N*-*S*-dioxide (**M4**), nor-chlorpromazine (**M5**) and nor-chlorpromazine ⁸⁰ sulfoxide (**M6**) (Fig 1), among others.^{24–26}

Fig 1. Chlorpromazine and its metabolites

Synthesis

- ⁵ CPZ- *N*-oxide (**M3**), CPZ sulfoxide (**M1**), nor-CPZ (**M5**), nor-CPZ sulfoxide (**M6**) and CPZ-*N*-*S*-dioxide (**M4**) were synthesized from CPZ via a non-classical Polonovski reaction (Scheme 1),²⁷ which involves oxidation of CPZ with *m*chloroperbenzoic acid (*m*-CPBA) to afford *N*-oxide derivative
- ¹⁰ M3 as a major product and CPZ sulfoxide (M1) as a minor product. Subsequent demethylation of M3 with ferrous sulphate in methanol yielded nor-CPZ (M5). CPZ-*N-S*-dioxide (M4) was obtained by reacting M1 with *m*-CPBA. Likewise, reaction of nor-CPZ (M5) with *m*-CPBA yielded nor-chlorpromazine ¹⁵ sulfoxide (M6). 7-hydroxyCPZ (M2) was purchased from Sigma Aldrich (SA).

Scheme 1: Synthesis of chlorpromazine metabolites

We confirmed the identities of the major CPZ metabolites by LC-

MS analysis following exposure of CPZ to liver microsomes (See ³⁰ supplementary information).

For further investigation of the contribution of drug metabolites to the biological activity, we included 25-desacetylrifampicin in these experiments since it is the major active metabolite of rifampicin, a frontline TB drug.²⁸

35 Results and discussion

Determination of MIC_{99} of Chlorpromazine and its metabolites

The minimum inhibitory concentrations (MIC₉₉) of CPZ and its metabolites are shown in table 1. The antimycobacterial activity ⁴⁰ of CPZ and its metabolites was generally low. Interestingly, the activity of CPZ metabolites, 7-hydroxyCPZ (**M2**) and nor-CPZ (**M5**) was comparable to that of chlorpromazine. CPZ-*N*-oxide (**M3**) has been reported to revert to CPZ in solution and this may contribute to some of its activity.²⁹ No antimycobacterial activity ⁴⁵ was observed for the other metabolites (**M1**, **M4**, **M6**) at the highest concentration tested.

Table 1: MIC₉₉ of Chlorpromazine and its metabolites

Compound	MIC99
	(μΜ)
CPZ	117.26
CPZ sulfoxide (M1)	>1990.89
7-hydroxyCPZ (M2)	124.44
CPZ-N-oxide (M3)	995.43
CPZ-N-S-dioxide (M4)	>1900.10
nor-CPZ (M5)	136.70
nor-CPZ sulfoxide (M6)	>2077.89

Synergistic/Matrix screening

⁵⁰ Table 2 and 3 summarize the MIC₉₉ of the individual compounds, the lowest MIC₉₉ achieved in the various combinations of CPZ and its metabolites with known anti-TB drugs, and the fractional inhibitory concentration indices (FICI). Synergy is assigned where the FICI ≤ 0.5 ; a FICI ≥ 4 is considered an antagonistic ⁵⁵ interaction, while any value falling in between is indicates no interaction.⁷ Generally, combinations of CPZ with known anti-TB drugs exhibited improved activity against *M. smegmatis*.

A combination of CPZ with spectinomycin exhibited a synergistic effect with a FICI of 0.31. Combinations of 7-60 hydroxyCPZ (**M2**) resulted in synergistic effects with kanamycin and spectinomycin (FICI 0.50 and 0.19 respectively).

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

CONCISE ARTICLE

Table 2: MIC₉₉ & FICI of CPZ and its active metabolites in combination with anti-TB drugs, in *M. smegmatis*

Compound	MIC ₉₉ (μM) Singly	MIC_{99} (μM) combination	FICI	Compound	MIC ₉₉ (μM) Singly	MIC_{99} (μM) combination	FICI
Rifampicin	2.53	0.32		Spectinomycin	84.12	5.25	0.19
CPZ	117.27	58.62	0.63	7-hydroxyCPZ (M2)	124.44	15.56	
Rifampicin	1.26	0.63		Chlorpromazine	117.27	29.32	0.75
25-Desacetylrifampicin	2.66	1.33	0.50	7-hydroxyCPZ (M2)	124.44	62.21	
25-Desacetylrifampicin	5.33	1.33		Rifampicin	1.26	0.63	1.00
CPZ	117.27	29.32	0.50	CPZ- <i>N</i> -oxide (M3)	995.43	497.73	
Ethambutol	0.76	NC		25-Desacetylrifampicin	2.66	0.67	0.75
CPZ	117.27		-	CPZ- <i>N</i> -oxide (M3)	995.43	497.73	
Kanamycin	7.16	3.57		Ethambutol	0.76	IAE	
CPZ	117.27	58.62	1.00	CPZ- <i>N</i> -oxide (M3)	995.43		-
Streptomycin	0.07	0.02		Kanamycin	1.79	0.89	
CPZ	58.62	29.32	0.79	CPZ- <i>N</i> -oxide (M3)	995.43	497.73	1.00
Spectinomycin	84.12	5.25		Streptomycin	0.29	0.07	
CPZ	117.27	29.32	0.31	CPZ-N-oxide(M3)	995.43	497.73	0.74
TMC207	0.05	0.01		Spectinomycin	168.22	84.12	0.63
CPZ	117.27	58.62	0.70	CPZ- <i>N</i> -oxide (M3)	995.43	124.44	
Nalidixic acid	1435.2	358.81		CPZ	117.27	58.62	
CPZ	117.27	58.62	-	CPZ- <i>N</i> -oxide (M3)	995.43	248.85	0.75
Ciprofloxacin	0.63	0.30		Rifampicin	1.26	0.32	
CPZ	117.27	29.32	0.73	Nor-CPZ (M5)	136.70	34.18	0.50
Levofloxacin	0.58	NC		25-Desacetylrifampicin	2.66	0.67	
CPZ	117.27		-	Nor-CPZ (M5)	136.70	34.18	0.50
Rifampicin	2.53	0.32		Ethambutol	1.51	IAE	
7-hydroxyCPZ(M2)	62.21	31.12	0.63	Nor-CPZ (M5)	63.33		-
25-Desacetylrifampicin	1.33	0.33		Kanamycin	3.57	0.89	
7-hydroxyCPZ (M2)	124.44	62.21	0.75	Nor-CPZ (M5)	136.70	34.18	0.50
Ethambutol	0.76	IAE		Streptomycin	0.29	0.07	
7-hydroxyCPZ (M2)	124.44		-	Nor-CPZ (M5)	136.70	34.18	0.49
Kanamycin	3.57	0.89		Spectinomycin	84.12	5.25	
7-hydroxyCPZ (M2)	124.44	31.12	0.50	Nor-CPZ (M5)	136.70	34.18	0.31
Streptomycin	0.07	0.02		CPZ	117.27	29.32	
7-hydroxyCPZ (M2)	124.44	62.21	0.79	Nor-CPZ (M5)	136.70	68.33	0.75

IAE – Inconsistent antagonistic effect; NC – No Change; Note: MIC_{99} of the two compounds in combination is less than the MIC_{99} of the individual compounds because in combination the compounds potentiate each other's activity

5 Interestingly, nor-CPZ (M5) was able to augment the antimycobacterial activity of anti-TB drugs to a greater extent compared to CPZ and M2. Its synergistic effect was observed for combinations with rifampicin and its metabolite, 25desacetylrifampicin, kanamycin, and streptomycin - all of which ¹⁰ yielded a FICI value of 0.5, with the best interaction observed with spectinomycin (FICI 0.31). It is worth noting that even in combinations that exhibited a FICI > 0.5, a clear drop in the MIC_{99} of several of the anti-TB drugs was observed. For instance, CPZ and its metabolites were able to cause a 4-8 fold drop in the MIC_{99} of rifampicin and its metabolite 25-desacetylrifampicin (table 2). As per the FICI definition, combinations that yield FICI

- $_{5} > 0.5$ but ≤ 4.0 indicate no interaction. However, for some of these (for example, CPZ plus rifampicin and CPZ-*N*-oxide plus streptomycin), the change in MIC₉₉ of the known anti-TB drug suggests the potential to identify compounds and/or metabolites which can potentiate activity. Notably, for CPZ-*N*-oxide (**M3**)
- ¹⁰ this effect is observed even where the metabolite itself is only very weakly active on its own. CPZ sulfoxide (**M1**), chlorpromazine-*N-S*-dioxide (**M4**) and nor-CPZ sulfoxide (**M6**) were all inactive hence FICI could not be calculated for the various combinations.

Table 3: MIC_{99} of inactive metabolites in combination with anti-TB drugs, in *M. smegmatis*

Drugs/Compound	MIC ₉₉ (μM)	MIC ₉₉ (μM)
	singly	combination
Rifampicin	2.53	NC
CPZ sulfoxide (M1)	>1990.89	
Ethambutol	0.76	IAE
CPZ sulfoxide (M1)	>1990.89	
Kanamycin	1.79	0.89
CPZ sulfoxide (M1)	>1990.89	1990.89
Streptomycin	0.29	0.14
CPZ sulfoxide (M1)	>1990.89	62.21
Spectinomycin	168.22	10.52
CPZ sulfoxide (M1)	>1990.89	1990.89
Rifampicin	2.53	NC
CPZ-N-S-dioxide (M4)	>1900.10	
Ethambutol	0.76	IAE
CPZ-N-S-dioxide (M4)	>1900.10	
Kanamycin	1.76	0.89
CPZ-N-S-dioxide (M4)	>1900.10	475.03
Streptomycin	0.29	0.14
CPZ-N-S-dioxide (M4)	>1900.10	237.50
Spectinomycin	84.12	42.05
CPZ-N-S-dioxide (M4)	>1900.10	1900.10
Rifampicin	1.26	NC
nor-CPZ sulfoxide (M6)	>2077.89	
Ethambutol	0.76	IAE
nor-CPZ sulfoxide (M6)	>2077.89	
Kanamycin	1.79	NC
nor-CPZ sulfoxide (M6)	>2077.89	
Streptomycin	0.14	0.07
nor-CPZ sulfoxide (M6)	>2077.89	519.48
Spectinomycin	84.12	21.04
nor-CPZ sulfoxide (M6)	>2077.89	64.92

- ²⁰ Nevertheless, as seen in table 3, inactive metabolites were still able to augment the antimycobacterial activity of some of the anti-TB drugs used in this study. For example, CPZ sulfoxide (M1) and nor-CPZ sulfoxide (M6) decreased the MIC₉₉ of spectinomycin 16-fold and 4-fold respectively. At least a 2-fold ²⁵ drop in MIC₉₉ was observed for the other combinations.
- Combinations of the parents (CPZ and rifampicin) with their metabolites yielded a FICI of ~1.00 which is expected of an additive interaction (table 2). Ethambutol with CPZ and its metabolites did not exhibit synergism but antagonism. This effect

- ³⁰ has been reported in previous studies.^{30,22} The results clearly indicate that CPZ and its metabolites are able to increase *M. smegmatis* susceptibility to anti-TB drugs. Spectinomycin which hardly has any antimycobacterial activity exhibited the highest drop in MIC₉₉. Similar interactions were observed for ³⁵ spectinomycin and other drugs in a recent study by Ramón-García *et al.*⁶ The basis for the propensity of spectinomycin to interact synergistically with a variety of different compound classes requires further investigation.
- Aminoglycosides appeared to interact most with CPZ and its ⁴⁰ metabolites. It has been reported that aminoglycosides which are known to target ribosomes leading to inhibition of protein synthesis do tend to display synergistic effects when used in combination with other drugs such as cell wall synthesis inhibitors, which help to increase accumulation of the drug within
- ⁴⁵ the mycobacterial cell.³¹ Elucidation of the molecular mechanism underlying those interactions that yielded FICI ≤ 0.5 would contribute significantly to the interpretation of these findings.

Conclusion

In conclusion, chlorpromazine and its metabolites can potentiate 50 the activity of a number of anti-TB drugs. The similarity in activity of the metabolites to CPZ may offer alternate paths to the investigation of these agents as potential antimycobacterial drugs.

Acknowledgement

⁵⁵ We are grateful to the University of Cape Town, the South African Medical Research Council, and the South African Research Chairs Initiative and Centres of Excellence program of the Department of Science and Technology administered through the NRF, for funding support.

60 Notes and references

a. Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.

- b. Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.
- 65 c. MRC/NHLS/UCT Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Rondebosch 7701, South Africa.
- A. Koul, E. Arnoult, N. Lounis, J. Guillemont, and K. Andries, *Nature*, 2011, 469, 483–90.
 - D. Almeida, C. Rodrigues, Z. F. Udwadia, A. Lalvani, G. D. Gothi, P. Mehta, and A. Mehta, *Clin. Infect. Dis.*, 2003, 36, e152–4.
- 75 3. WHO, *Global Tuberculosis Report 2012*, World Health Organisation, Geneva, Switzerland, 2012.
 - 4. A. Whitty and M. H. Gelb, *Curr. Opin. Chem. Biol.*, 2010, **14**, 437–9.
 - B. Lechartier, R. C. Hartkoorn, and S. T. Cole, *Antimicrob.* Agents Chemother., 2012, 56, 5790–3.

¹⁵

6.	S. Ramón-García, C. Ng, H. Anderson, J. D. Chao, X. Zheng,
	T. Pfeifer, Y. Av-Gay, M. Roberge, and C. J. Thompson,
	Antimicrob. Agents Chemother., 2011, 55, 3861–9.

- 7. F. C. Odds, J. Antimicrob. Chemother., 2003, 52, 1.
- B. Severyn, R. a Liehr, A. Wolicki, K. H. Nguyen, E. M. Hudak, M. Ferrer, J. S. Caldwell, J. D. Hermes, J. Li, and M. Tudor, ACS Chem. Biol., 2011, 6, 1391–8.
 - K. R. Caleffi-Ferracioli, F. G. Maltempe, V. L. D. Siqueira, and R. F. Cardoso, *Tuberculosis (Edinb).*, 2013, 93, 660–3.
- V. M. Reddy, L. Einck, K. Andries, and C. a Nacy, Antimicrob. Agents Chemother., 2010, 54, 2840–6.
- N. K. Dutta, S. Annadurai, K. Mazumdar, S. G. Dastidar, J. E. Kristiansen, J. Molnar, M. Martins, and L. Amaral, *Int. J. Antimicrob. Agents*, 2007, **30**, 242–9.
- 15 12. A. Fura, Y.-Z. Shu, M. Zhu, R. L. Hanson, V. Roongta, and W. G. Humphreys, J. Med. Chem., 2004, 47, 4339–51.
- E. A. Weinstein, T. Yano, L.-S. Li, D. Avarbock, A. Avarbock, D. Helm, A. a McColm, K. Duncan, J. T. Lonsdale, and H. Rubin, *Proc. Natl. Acad. Sci. U. S. A.*, 2005, **102**, 4548–53.
- 20 14. L. Amaral, M. Viveiros, and J. E. Kristiansen, *Trop. Med. Int. Health*, 2001, 6, 1016–22.
 - 15. L. Amaral, J. E. Kristiansen, M. Viveiros, and J. Atouguia, J. Antimicrob. Chemother., 2001, 47, 505–11.
- D. Ordway, M. Viveiros, C. Leandro, R. Bettencourt, J.
 Almeida, M. Martins, J. E. Kristiansen, J. Molnar, and L.
 Amaral, Antimicrob. Agents Chemother., 2003, 47, 917–22.
- 17. H. K. R. Thanacoody, Br. J. Clin. Pharmacol., 2007, 64, 566– 74.
- L. Rodrigues, D. Wagner, M. Viveiros, D. Sampaio, I. Couto,
 M. Vavra, W. V Kern, and L. Amaral, J. Antimicrob. Chemother., 2008, 61, 1076–82.
- L. Amaral, A. Martins, J. Molnar, J. E. Kristiansen, M. Martins, M. Viveiros, L. Rodrigues, G. Spengler, I. Couto, J. Ramos, S. Dastidar, S. Fanning, M. McCusker, and J.-M. Pages, *In Vivo*, 2010, 24, 409–24.
- L. Amaral and M. Viveiros, *Int. J. Antimicrob. Agents*, 2012, 39, 376–80.
- M. Thorsing, J. K. Klitgaard, M. L. Atilano, M. N. Skov, H. J. Kolmos, S. R. Filipe, and B. H. Kallipolitis, *PLoS One*, 2013, 8, e64518.
- 22. A. J. Crowle, G. S. Douvas, and M. H. May, *Chemotherapy*, 1992, 38, 410–9.
- N. Lounis, T. Gevers, J. Van Den Berg, T. Verhaeghe, R. van Heeswijk, and K. Andries, J. Clin. Microbiol., 2008, 46, 2212– 5.

- C. L. Boehme and H. W. Strobel, J. Chromatogr. B. Biomed. Sci. Appl., 1998, 718, 259–66.
- 25. T. J. Jaworski, E. M. Hawes, G. McKay, and K. K. Midha, *Xenobiotica.*, 1988, **18**, 1439–47.
- 50 26. T. J. Jaworski, E. M. Hawes, G. McKay, and K. K. Midha, *Xenobiotica.*, 1990, **20**, 107–15.
 - G. Singh, T. B. Koerner, S. B. Godefroy, and C. Armand, *Bioorg. Med. Chem. Lett.*, 2012, 22, 2160–2.
- 28. R. Panchagnula, a Sood, N. Sharda, K. Kaur, and C. L. Kaul, *J. Pharm. Biomed. Anal.*, 1999, **18**, 1013–20.
 - 29. S. G. Dahl and R. E. Strandjord, *Clin. Pharmacol. Ther.*, 1977, **21**, 437–48.
 - M. Viveiros and L. Amaral, *Int. J. Antimicrob. Agents*, 2001, 17, 225–8.
- 60 31. S. B. Vakulenko and S. Mobashery, 2003, 16, 430–450.