MedChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/medchemcomm

MedChemComm

RSCPublishing

COMMUNICATION

Cite this: DOI: 10.1039/xoxx00000x

Received ooth January 2012, Accepted ooth January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Design, Synthesis and Evaluation of N^6 -Substituted 2-Aminoadenosine-5'-N-methylcarboxamides as A_3 Adenosine Receptor Agonists

Shane M. Devine,^a Lauren T. May,^b Peter J. Scammells,^{*a}

A series of N^6 -substituted 2-aminoadenosine-5'-*N*-methylcarboxamides were synthesized from the versatile intermediate, O^6 -(benzotriazol-1-yl)-2-amino-2',3'-*O*-isopropylideneinosine-5'-*N*-methylcarboxamide (1). These compounds were evaluated as A₃ adenosine receptor agonists in terms of their potency and receptor subtype selectivity in a cAMP accumulation assay and a number of potent and selective compounds were identified. One such compound, 2-amino- N^6 -(3-chlorobenzyl)adenosine-5'-*N*-methylcarboxamide (**3i**), was over 500-fold selective for the A₃AR over the other three adenosine receptor subtypes. This represents a significantly greater selectivity profile compared with the prototypical IB-MECA.

Introduction

Nitrogen-containing heterocycles are ubiquitous in nature, including purine nucleosides such as adenosine and guanosine. Adenosine is involved in a host of physiological processes through interaction with adenosine receptors, of which there are four distinct receptor subtypes, namely A₁, A_{2A}, A_{2B} and A₃ adenosine receptors (ARs).^{1,2} This family A or rhodopsin-like purinergic G protein-coupled receptor (GPCR) mediates a number of important biological functions and agonists acting specifically at the A₃AR have been shown to be involved in cancer, inflammation and cardioprotection.³ Many pharmacologically relevant A3AR agonists are known and have a diverse range of potential therapeutic applications. Selected examples are shown in Figure 1. IB-MECA is currently in clinical trials for psoriasis, rheumatoid arthritis, dry eye disease and glaucoma. The structurally related Cl-IB-MECA has potential indications for hepatitis and liver cancer.⁴ Meanwhile, CP-532,903 has anti-inflammatory effects and is involved in myocardial ischemia⁵ and reducing superoxide production in damaged tissues.⁶

With the recent emergence of GPCR crystal structure determination and the realisation that the seven transmembrane (7TM) topology is common throughout many family A GPCRs, such as the CXCR4 chemokine,⁷ D3 dopamine,⁸ and β 1 and β 2 adrenergic receptors,^{9,10} a new frontier has opened up in GPCR drug discovery. Highlighting this paradigm shift, the A_{2A}AR crystal structure with a bound antagonist (ZM241385) has been reported.¹¹

Increasingly, this has resulted in greater insights aimed at exploiting this information through chemical modulation of putative small molecules targeting this receptor, by the identification of selective A_{2A}AR agonists, such as UK-432097 (Fig. 1).^{12,13} A common feature of these molecules is the incorporation of bulky groups substituted through the 2-position, typically with retention of the N^6 amino group present in the parent molecule, adenosine, as seen by CGS-21680.¹⁴ However, retention of a 2-amino group, such as that present in guanosine, has not been explored to determine the selectivity profile and affinity for this series of molecules at the four distinct adenosine receptor subtypes. We envisaged retaining an N^6 bulky substituent known to give rise to A₃AR selectivity, whilst the added 2-amino group present could potentially lead to the identification of an A₃AR selective molecule. Another modification tolerated in known $A_{2A}AR$ agonists is that of the incorporation of an 5'-ethylcarboxamido group,^{12,13} whereas tuning the selectivity towards the A3AR might be achieved by adaptation of the 5'position. From these scaffolds and other known A3AR agonists, a few key qualities demonstrate improvements in A₃AR selectivity over the other subtypes. A significant feature that imparts selectivity towards A3AR specificity is the inclusion of a 5'-Nmethylcarboxamido moiety, as demonstrated in Figure 1. Incorporation of an N^{6} -substitution comprising benzyl functionality imbued with a 3-halo moiety gives enhanced A3AR selectivity as well. The addition of a 2-substituted halogen, typically a chloro group engenders even greater activity at the A₃AR, however anything bulkier such as pyrazolo or alkyne linked groups as demonstrated by Regadenoson and Apadenoson impart A2AAR selectivity.¹⁵⁻¹⁷ Whilst the effect of a range of 2-substituents on adenosine receptor affinity has been studied,¹⁸ there is a paucity of information on the influence of 2-amino and substituted 2-amino groups. Our study addresses this shortfall in understanding.

^aMedicinal Chemistry and ^bDrug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.

Electronic Supplementary Information (ESI) available: Experimental methods, adenosine receptor agonist synthesis, cAMP assay. See DOI: 10.1039/c000000x/

Fig. 1 Pharmacologically relevant AR agonists

Chemistry

As part of our ongoing program to develop potent and selective adenosine agonists, we recently described the synthesis of O^6 -(benzotriazol-1-yl)-2-amino-2',3'-O-isopropylideneinsoine-5'-*N*-methylcarboxamide (1) using a phosphonium-mediated coupling approach via C–OH activation of guanosine over 5 steps.^{19,20}

Firstly, the 2',3'-diol moiety present in guanosine was protected as the corresponding 2',3'-isopropylidene group with acetone, *p*tosic acid and dimethoxypropane, greatly improving solubility for further chemical manipulation (Scheme 1). Oxidation using TEMPO and BAIB afforded the corresponding 5'-carboxylic acid. The 5'-methylcarboxamide was subsequently achieved via esterification with thionyl chloride in methanol followed by nucleophilic displacement with MeNH₂. Finally, reaction with BOP, in the presence of DBU introduced the desired O^6 -benzotriazol-1-yl moiety (compound 1). This versatile intermediate retains the highly A₃AR selective 5'-*N*-methylcarboxamido functionality and is set up for nucleophilic attack at the 6-position with its incorporation of a labile O^{6} -(bentriazol-1-yl) motif.

A host of nitrogen-bearing nucleophiles were selected to demonstrate the pharmacological character of this class of N^6 substituted, 2-aminoadenosine-5'-*N*-methylcarboxamides. Firstly, N^6 -substitution occurred by reaction of **1** with various amines in the presence of a non-nucleophilic organic tertiary amine base (DIPEA) in *t*-BuOH to give the 2',3'-*O*-isopropylidene protected N^6 substituted adenosine-5'-*N*-methylcarboxamides (**2a–1**). Secondly, deprotection of the diol took place under hot aqueous acidic conditions; aided by the inclusion of MeCN, to facilitate solubilisation of the reagents. This generated N^6 -substituted 2aminoadenosine-5'-*N*-methylcarboxamides (**3a–1**) in moderate to good yields (ranging from 58–78% over 2 steps). These compounds were subsequently evaluated in a cAMP functional assay (Table 1).

Scheme 1. $(CH_3)_2C(OCH_3)_2$, 25 °C, 16 h; 94%;¹⁹ (ii) TEMPO, BAIB MeCN/H₂O (1:1), 25 °C, 16 h, 72%;¹⁹ (iii) SOCl₂, MeOH 0 °C \rightarrow 25 °C, 16 h, 61 %;¹⁹ (iv) 2.0 M MeNH₂ in THF, MeOH/DMF (9:1), 100 °C, MW, 2 h, 100%;²⁰ (v) BOP, DBU, MeCN, 25 °C, 16 h, 92%;²⁰ (vi) R–NH₂, *t*-BuOH, DIPEA, 80 °C, 2 h; (vii) MeCN/1M HCI (4:1), 60 °C, 1 h, 58–78%.

A small series of *N*-alkyl and *N*,*N*-dialkylamino analogs were prepared in order to assess the influence of these substituents on AR potency and receptor subtype selectivity. These compounds were prepared from O^6 -(benzotriazol-1yl)-2-fluoroinosine derivative **4** (Scheme 2). Installation of the N^6 -cyclopentyl group was achieved by reaction of O^6 -(benzotriazol-1-yl)-2-fluoro-2',3'-*O*-isopropylideneinosine-5'-*N*-methylcarboxamide (**4**) with cyclopentyl amine in *t*-BuOH with DIPEA. A second substitution at the 2-position was introduced by heating the required amine at 150 °C under microwave conditions, displacing the fluorine. Deprotection of the 2',3'-*O*-isopropylidene was achieved with 1M HCl and MeCN to give N^6 -(cyclopentyl), 2-*N*substituted adenosine-5'-*N*-methylcarboxamides (**7**).

Pharmacology

COMMUNICATION

In general the N^6 -substituted 2-aminoadenosine-5'-*N*methylcarboxamides demonstrated A₃AR selectivity (Table 1). In some cases, large selectivity increases were seen, with four compounds showing more than 100-fold selectivity for the A₃AR over all of the other receptor subtypes (namely compounds **3a**, **3b**, **3i** and **3j**). The 2-aminoadenosine-5'-*N*methylcarboxamides with alkyl groups in the N⁶-position (compounds **3a–d**) had relatively similar potencies with pEC₅₀'s ranging from 7.4–8.3.

Scheme 2. Reagents and conditions: (i) CyclopentylNH₂, *t*-BuOH, DIPEA, 80 °C; (ii) R₂NH or RNH₂, *t*-BuOH, 150 °C (iii) MeCN/1M HCl (4:1), 60 °C, 48–72%.

Table 1.	pEC_{50}	data (cAMP	accumulation	assay) of	compounds	3a-l at all A	AR subtypes
----------	------------	------------	--------------	-----------	-----------	---------------	-------------

		ŗ	MeHN O	NHR N N N N NH ₂							
	HO OH 3										
	R	pEC ₅₀	pEC ₅₀	pEC ₅₀	pEC ₅₀	A_3/A_1	A_3/A_{2A}	A_3/A_{2B}			
		A ₁ AR	A _{2A} AR	A _{2B} AR	A ₃ AR						
NECA	_	8.9 ± 0.2	7.9 ± 0.2	8.5 ± 0.3	8.5 ± 0.2	0	4	1			
IB-MECA	-	7.5 ± 0.2	7.1 ± 0.1	7.5 ± 0.2	9.3 ± 0.2	63	158	63			
CGS21680	-	6.3 ± 0.2	7.9 ± 0.1	7.4 ± 0.2	8.0 ± 0.3	50	1	4			
3a	-Me	5.4 ± 0.3	< 5	5.8 ± 0.4	8.3 ± 0.2	794	> 1995	316			
3b	–Et	5.6 ± 0.2	< 5	5.8 ± 0.3	8.0 ± 0.2	251	> 1000	158			
3c	–Pr	6.5 ± 0.1	< 5	5.3 ± 0.1	8.0 ± 0.2	32	> 1000	501			
3d	–Bu	6.1 ± 0.2	< 5	5.9 ± 0.3	7.4 ± 0.2	20	> 251	32			
3e	\rightarrow	7.2 ± 0.1	5.6 ± 0.3	6.7 ± 0.3	8.3 ± 0.2	13	501	40			
3f		7.4 ± 0.1	5.9 ± 0.2	6.1 ± 0.3	7.8 ± 0.4	3	79	50			
3g	-	7.2 ± 0.1	6.1 ± 0.2	5.6 ± 0.2	6.9 ± 0.2	1	6	20			
3h	-C-	5.2 ± 0.2	5.5 ± 0.2	6.9 ± 0.2	7.5 ± 0.4	200	100	4			
3i		6.5 ± 0.1	6.4 ± 0.2	6.4 ± 0.3	9.2 ± 0.4	501	631	631			
3ј		6.6 ± 0.2	6.6 ± 0.3	6.8 ± 0.3	8.8 ± 0.3	158	158	100			
3k	-CH ₂ CH ₂ Ph	6.5 ± 0.2	7.1 ± 0.1	6.8 ± 0.3	8.4 ± 0.3	79	20	40			
31	-CH ₂ CHPh ₂	6.4 ± 0.2	6.1 ± 0.2	6.7 ± 0.2	8.3 ± 0.3	79	158	40			

Page 4 of 6

MedChemComm

 N^6 -methyl containing **3a**, exhibited ~800 fold selectivity for A₃AR over the A₁AR and 300-fold selectivity over A_{2B}AR, exhibiting the highest potency of the alkyl chain derivatives with a pEC_{50} of 8.3. Increasing the carbon chain from methyl to butyl (3a-d), maintained activity, but decreased the A₃AR character of these molecules resulting in a reduction in selectivity. In terms of the saturated cycloalkyl N° -substituents (3e-g), the cyclobutyl (3e), had a marked effect in terms of A₃AR over A_{2A}AR selectivity, with a 500fold increase and a pEC₅₀ of 8.3, comparable with the best of the *n*-alkyl derivatives, namely 3a. As ring size increased from cyclobutyl to cyclohexyl, A3AR potency decreased (pEC₅₀ for 3e, 3f and 3g = 8.3, 7.8 and 6.9, respectively). A corresponding reduction in A3AR selectivity versus all other receptor subtypes was generally observed with increasing ring size. Unsurprisingly, the N^6 -cyclopentyl group in **3f** did not display great selectivity between A₃AR and A₁AR, as N^6 -cyclopentyladenosine (CPA) is a potent A₁AR selective molecule. However, 3f did show a striking difference in A_{2A}AR and A_{2B}AR affinity, with 79-fold and 50-fold A₃AR selectivity, respectively. The inclusion of N^6 -benzyl (3h) demonstrated the typical increased A3AR selectivity profile expected, known when benzyl moieties are incorporated into adenosine compounds at the N^6 -position. This however, was coupled with relatively modest activity with a measured pEC₅₀ of 7.5. 2-amino-N⁶-(3-chlorobenzyl)adenosine-5'-Nmethylcarboxamide (3i) showed a substantial increase in pEC₅₀ to 9.2, which is commensurate with IB-MECA's activity.

Interestingly, the A_3AR selectivity escalated significantly with 501-, 631- and 631-fold selectivity over the A_1 , A_{2A} and $A_{2B}AR$ respectively. This also equates to an 8-, 4- and 10-fold increase at the A_1 , A_{2A} and $A_{2B}AR$, respectively, over IB-MECA, thus representing a highly selective molecule. The 3-iodobenzyl derivative (**3j**), was

also highly A3AR selective and more selective than IB-MECA with a slight reduction in potency ($pEC_{50} = 8.8$). Bulkier substituents attached at the N^6 -position, as exhibited by the phenethyl (3k) and diphenylethyl (3l) compounds had similar potency to NECA ($pEC_{50} = 8.4$, for **3k** and $pEC_{50} =$ 8.3, for **3I**, compared with NECA, $pEC_{50} = 8.5$). Unlike NECA however, 3k and 3l were 40-fold and 79-fold selective over A_1 and $A_{2B}AR$ for the A_3AR . $A_{2A}AR$ selectivity was even greater for 31, demonstrating a ~150fold selectivity profile, compared with 20-fold for 3k. This series of N⁶-substituted, 2-aminoadenosine-5'-Nmethylcarboxamides, personified by 3i are highly efficacious A3AR selective molecules, worthy of further study.

To determine the effect of the 2-amino group on potency and selectivity a small series of N^2 -substitued molecules were prepared (Scheme 2). Installation of a substituent at the N^2 -position greatly reduced activity in comparison to the parent **3f**, indicating the absolute necessity for retention of the 2-amino group for A₃AR selectivity. The *N*-methyl (**7a**) and *N*-ethyl (**7c**) had very similar affinities at the A₁AR and the A₃AR, but only modest A₃AR selectivity. The *N*,*N*dimethyl (**7b**) and *N*,*N*-diethyl (**7d**) had further reduced activity.

Table 2. pEC_{50} (cAMP accumulation assay) of 2-*N*-substituted N^6 -(cyclopentyl)adenosine-5'-*N*-methylcarboxamides at all AR subtypes

			HN	\langle
MeHN、				NR ¹ R ²
	\ но	-/ OH	3f. 1	7a-d

	\mathbf{R}^1	R^2	pEC ₅₀	pEC ₅₀	pEC ₅₀	pEC ₅₀	A_3/A_1	A_3/A_{2A}	A_3/A_{2B}
			A ₁ AR	A _{2A} AR	A _{2B} AR	A ₃ AR			
NECA	_	-	8.9 ± 0.2	7.9 ± 0.2	8.5 ± 0.3	8.5 ± 0.2	0	4	1
IB-MECA	_	_	7.5 ± 0.2	7.1 ± 0.1	7.5 ± 0.2	9.3 ± 0.2	63	158	63
CGS21680	_	_	6.3 ± 0.2	7.9 ± 0.1	7.4 ± 0.2	8.0 ± 0.3	50	1	4
3f	Н	Н	7.4 ± 0.1	5.9 ± 0.2	6.1 ± 0.3	7.8 ± 0.4	3	79	50
7a	Н	Me	6.4 ± 0.1	5.4 ± 0.2	< 5	7.0 ± 0.2	4	40	> 100
7b	Me	Me	< 5	5.3 ± 0.4	< 5	6.2 ± 0.3	> 16	8	> 16
7c	Н	Et	6.3 ± 0.2	6.3 ± 0.1	< 5	7.4 ± 0.2	8	8	> 251
7d	Et	Et	< 5	< 5	< 5	5.6 ± 0.3	> 4	>4	>4

Conclusion

A series of N^6 -substituted 2-aminoadenosine-5'-Nmethylcarboxamides were designed and synthesised and their pharmacological properties were evaluated in a cAMP accumulation assay. A number of these compounds proved to be potent, selective A₃AR agonists and in particular 2amino- N^6 -(3-chlorobenzyl)adenosine-5'-N-

methylcarboxamide (**3i**) and 2-amino- N^6 -(3-iodobenzyl)adenosine-5'-N-methylcarboxamide (**3j**) showed massive selectivity increases over the other three receptor subtypes. These compounds also had similar potency, but much greater selectivity over IB-MECA, the classic selective A₃AR agonist.

Acknowledgments

This work was partially funded by the ARC Centre of Excellence for Free Radical Chemistry and Biotechnology. LTM is an Australian Research Council DECRA Fellow.

Notes and references

- J.-F. Chen, H. K. Eltzschig, and B. B. Fredholm, *Nat. Rev. Drug Discov.*, 2013, **12**, 265–286.
- S. A. Hutchinson and P. J. Scammells, *Curr. Pharm. Des.*, 2004, 10, 2021–2039.
- S. L. Cheong, S. Federico, G. Venkatesan, A. L. Mandel, Y.-M. Shao, S. Moro, G. Spalluto, and G. Pastorin, *Med. Res. Rev.*, 2011, 33, 235–335.
- Z.-G. Gao and K. A. Jacobson, *Expert Opin. Emerg. Drugs*, 2011, 16, 597–602.
- T. C. Wan, Z. D. Ge, A. Tampo, Y. Mio, M. W. Bienengraeber, W. R. Tracey, G. J. Gross, W. M. Kwok, and J. A. Auchampach, *J. Pharmacol. Exp. Ther.*, 2007, **324**, 234–243.
- D. van der Hoeven, T. C. Wan, and J. A. Auchampach, *Mol. Pharmacol.*, 2008, 74, 685–696.
- B. Wu, E. Y. T. Chien, C. D. Mol, G. Fenalti, W. Liu, V. Katritch, R. Abagyan, A. Brooun, P. Wells, F. C. Bi, D. J. Hamel, P. Kuhn, T. M.

Handel, V. Cherezov, and R. C. Stevens, *Science*, 2010, **330**, 1066–1071.

- E. Y. T. Chien, W. Liu, Q. Zhao, V. Katritch, G. W. Han, M. A. Hanson, L. Shi, A. H. Newman, J. A. Javitch, V. Cherezov, and R. C. Stevens, *Science*, 2010, **330**, 1091–1095.
- T. Warne, M. J. Serrano-Vega, J. G. Baker, R. Moukhametzianov, P. C. Edwards, R. Henderson, A. G. W. Leslie, C. G. Tate, and G. F. X. Schertler, *Nature*, 2008, **454**, 486–491.
- V. Cherezov, D. M. Rosenbaum, M. A. Hanson, S. G. F. Rasmussen, F. S. Thian, T. S. Kobilka, H.-J. Choi, P. Kuhn, W. I. Weis, B. K. Kobilka, and R. C. Stevens, *Science*, 2007, **318**, 1258–1265.
- V.-P. Jaakola, M. T. Griffith, M. A. Hanson, V. Cherezov, E. Y. T. Chien, J. R. Lane, A. P. Ijzerman, and R. C. Stevens, *Science*, 2008, 322, 1211–1217.
- N. E. Hausler, S. M. Devine, F. M. McRobb, L. Warfe, C. W. Pouton, J. M. Haynes, S. E. Bottle, P. J. White, and P. J. Scammells, *J. Med. Chem.*, 2012, **55**, 3521–3534.
- F. Xu, H. Wu, V. Katritch, G. W. Han, K. A. Jacobson, Z.-G. Gao, V. Cherezov, and R. C. Stevens, *Science*, 2011, **332**, 322–327.
- A. J. Hutchison, M. Williams, R. de Jesus, R. Yokoyama, H. H. Oei, G. R. Ghai, R. L. Webb, H. C. Zoganas, G. A. Stone, and M. F. Jarvis, *J. Med. Chem.*, 1990, **33**, 1919–1924.
- K. P. Garnock-Jones and M. P. Curran, *Am. J. Cardiovasc. Drugs*, 2010, **10**, 65–71.
- C. E. Müller and K. A. Jacobson, *Biochim. Biophys. Acta*, 2011, 1808, 1290–1308.
- 17. M. de Lera Ruiz, Y.-H. Lim, and J. Zheng, *J. Med. Chem.*, 2013, **56**, published ASAP online.
- M. Ohno, Z-G. Gao, P. Van Rompaey, S. Tchilibon, S-K. Kim, B. A. Harris, A. S. Gross, H. T. Duong, S. Van Calenbergh and K. A. Jacobson, *Bioorg. Med. Chem.* 2004, **12**, 2995–3007.
- R. C. Foitzik, S. M. Devine, N. E. Hausler, and P. J. Scammells, *Tetrahedron*, 2009, **65**, 8851–8857.
- S. M. Devine and P. J. Scammells, *Eur. J. Org. Chem*, 2011, 1092– 1098.

RSC MedChemComm

RSC Publishing

Design, Synthesis and Evaluation of N⁶-Substituted 2-Aminoadenosine-5'-N-methylcarboxamides as A₃ Adenosine Receptor Agonists

Shane M. Devine,^a Lauren T. May,^b Peter J. Scammells,*^a

Graphical Abstract

