MedChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/medchemcomm

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

REVIEW

Hydrogen Sulfide Donors in Research and Drug Development

² Zhi Jian Song,^{*a*} Mei Ying Ng,^{*d*} Zheng-Wei Lee, ^{*d*} Weilu Dai,^{*b*} Thilo Hagen, ^{*d*} Philip K. Moore, ^{*c*} Dejian ³ Huang, ^{*b*} Lih-Wen Deng^{**d*} and Choon-Hong Tan^{**a*}

4 Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX

5 DOI: 10.1039/c0xx00000x

⁶ Hydrogen sulfide (H_2S) has recently emerged as an important biological gasomediator as a result of ⁷ numerous insightful studies. The use of H_2S releasing compounds has attracted much attention as they ⁸ can exert crucial effects on a wide range of cellular signaling processes. Some of these effects are ⁹ potentially exploitable in terms of anti-inflammatory and anti-tumor effects, as well as precise ion-¹⁰ channel regulation, cardiovascular protection and oxidation resistance. Unfortunately, the potential ¹¹ therapeutic effects of H_2S are controversial due to conflicting published results regarding its effects on ¹² cellular activities arising, perhaps in part, from the use of different H_2S donors. Therefore it is essential to ¹³ review the most commonly used H_2S releasing compounds, some of which are currently in clinical trials ¹⁴ along with their associated *in vitro* and/or *in vivo* biological effects.

15 1 Introduction

¹⁶ Hydrogen sulfide (H_2S) is a colourless and poisonous gas which ¹⁷ can be considered an environmental hazard when released as a ¹⁸ by-product in industrial activities, as well as a metabolic hazard ¹⁹ when individuals are exposed to concentrations sufficient to ²⁰ trigger undesirable physiological responses.¹ Interestingly, in the ²¹ past decade, H_2S has been shown to have an important role as a ²² novel biologically active gas, termed a gasomediator. Like the ²³ predecessors in this group of gasomediators, including nitric ²⁴ oxide² and carbon monoxide,³ H_2S exerts fine regulatory roles to ²⁵ control a wide range of intracellular signaling processes.

26 H₂S is synthesized naturally in mammalian systems from L-27 cysteine (or 3-mercaptopyruvate) through four independent ²⁸ enzymatic pathways which are catalyzed directly or indirectly by 29 endogenous enzymes such as cystathionine-y-lyase (CSE), ³⁰ cystathionine-β-synthetase (CBS), cysteine aminotransferase ³¹ (CAT), 3-mercaptopyruvate (3-MST) and cysteine lyase (CL).⁴⁻⁶ 32 L-cysteine required for this synthesis is usually derived either 33 from dietary sources, through protein hydrolysis or from the L-³⁴ methionine trans-sulfuration pathway. Not surprisingly, H₂S in 35 mammalian systems is under tight dynamic regulation such that, 36 at steady state cellular concentrations, it can exert important 37 biological effects. As demonstrated in rat tissue homogenates by 38 Doeller et al., a trace amount of sulfide produced in the range of ³⁹ about 1-10 pmole per second per milligram protein is sufficient to ⁴⁰ execute fine roles in cellular functions.⁷ This physiological effect ⁴¹ was attributed to the key intermediate, H₂S.⁸⁻¹⁰

⁴² This paradigm shift in the therapeutic potential of H_2S was ⁴³ attributed to recent valuable work from the scientific community, ⁴⁴ shedding light on the desirable effects of the gasomediator on ⁴⁵ several physiological regulatory processes. For instance, a recent ⁴⁶ study revealed that H_2S may be very useful in the treatment of ⁴⁷ inflammation.¹¹ A large amount of evidence has shown that H₂S 48 can act as an anti-inflammatory agent.^{12,13} This effect relies on its 49 ability to inhibit leukocyte adherence at the leukocyte-50 endothelium interface, possibly by increasing the expression of ⁵¹ ICAM-1 (Intercellular Adhesion Molecule 1)¹⁴ or by inhibiting 52 the transcription of a cocktail of inflammatory genes through 53 regulation of the activity of NF-kB (Nuclear Factor kappa-light-54 chain-enhancer of activated B cells).^{12, 14} However, some studies 55 also found that H₂S has pro-inflammatory effects¹⁵ by raising ⁵⁶ plasma TNF-α (tumor necrosis factor-α) concentration and 57 reducing lung and liver MPO (myeloperoxidase) activity.¹⁶ With 58 respect to cell proliferation studies, H₂S was shown to regulate 59 protein kinases such as p38 mitogen-activated protein kinase and 60 trigger cell apoptosis.¹⁷ Some reports also pointed out H₂S donors 61 displays anti-tumour effects, although the relevant mechanism 62 remains uncertain at the moment.¹⁸ Therefore, more and more 63 H₂S donors have been developed for cancer research and therapy. 64 In the study of ion channels, Tang et al demonstrated that H₂S 65 can open vascular smooth muscle cell ATP sensitive K⁺ channels ⁶⁶ by regulating Ca^{2+} channel function.¹⁹ The ability of H₂S to 67 activate ion channels was extensively studied and H2S was found 68 to play a role as a gaseous signaling molecule in the central 69 nervous system.²⁰ Based on the effect of H₂S on neuro-70 inflammation and the Ca⁺ ion channel, more potential 71 applications such as Alzheimer's disease²¹ and Parkinson ⁷² disease²² therapy have been explored. Moreover, H₂S was also 73 found to be potentially useful in treating vascular diseases, 23-26 74 such as hypertension and myocardial infarction,⁵ as well as 75 thrombus formation.²⁷ Therefore, some H₂S donors were 76 developed as cardiovascular drugs and anti-thrombotic agents. On ⁷⁷ the other hand, H_2S can act as a radical and oxidant scavenger,²⁸,

This journal is © The Royal Society of Chemistry [year]

2

²⁹ which is crucial in healthcare and cardiovascular protection.

Donor	Experiment	Effect	Result/Comment	Ref
NaHS	Ovalbumin-treated rats	Anti-inflammatory	H ₂ S exhibits anti-inflammatory effects and inhibits asthma pathogenesis remodeling <i>via</i> the CSE/H ₂ S pathway.	30
NaHS	Ovalbumin-induced acute lung injury	Anti-inflammatory	NaHS decreases inflammatory cytokines such as IL-6 and IL-8 levels but increases anti-inflammatory cytokine IL-10 levels.	31
NaHS	Lipopolysaccharide-induced inflammation	Anti-inflammatory	NaHS inhibits p38 mitogen-ativated protein kinase and probably acts as a neuroinflammatory drug.	32
NaHS Na ₂ S	Air pouch inflammation model in rat	Anti-inflammatory	H_2S inhibits leukocyte adherence in mesenteric venules, as well as leukocyte infiltration and edema formation in animal models.	33
Na ₂ S	Acute arthritis	Anti-inflammatory	Na ₂ S exhibits anti-inflammatory properties in acute arthritis model, but no difference is observed in terms of pain sensation.	34
Na ₂ S	Burn and smoke inhalation induce acute lung injury model	Anti-inflammatory Antioxidant	Na ₂ S increases anti-inflammation cytokine IL-10, decreases cytokine IL-1 β and attenuates protein oxidation.	35
NaHS	Wistar rats total hepatic ischemia and reperfusion	Anti-inflammatory Antioxidant	NaHS have potential therapeutic functions in reducing myocardial and renal inflammation and oxidation in the THIR model.	36
NaHS	IFN-gamma-primed human monocytic cell line U937	Pro-inflammatory	H ₂ S may stimulate the generation of pro-inflammatory cytokines partially through the ERK-NF-k B signalling pathway.	37
NaHS	Lipopolysaccharide-induced inflammation in mouse	Pro-inflammatory	NaHS causes histological inflammation by increasing MPO activity and raising plasma TNF- α concentrations in the lung and liver.	16
NaHS	CLP-induced sepsis and sepsis-associated lung injury	Pro-inflammatory	H_2S upregulates substance P (SP) which contributes to lung inflammation and injuries. It can also regulate leukocyte activation and trafficking in response to inflamed tissues.	38, 39
NaHS	Acute pancreatitis and lung injury mice model	Pro-inflammatory	By measuring chemokines in pancreas and lung tissues, NaHS was found to potentiate inflammatory responses.	40
H_2S	Sprague-Dawley rats SMC	Ion channels regulation	H_2S is an endogenous vaso-relaxant factor that activates K_{ATP} channels and hyper-polarizes membrane potential of vascular SMCs.	41
NaHS	Rat Cerebral Arterioles	Ion channels regulation	NaHS can decrease the myogenic response in rat cerebral arterioles. This may be related to the endothelium and its relation to K_{ATP} channels.	42
NaHS	Type 1 cell isolate from neonatal rat pups	Ion channels regulation	H ₂ S can inhibit ion of background K channels depolarization and voltage- gated Ca ²⁺ entry and affect mitochondrial function in chemoreceptor cells.	43
NaHS	Stomatal closure in Arabidopsis thaliana	Ion channels regulation	NaHS regulates stomata opening in the light and closure in the dark.	44
NaHS	Astrocytes in vitro	Ion channels regulation	Increase in Ca^{2+} influx into cells by inducing Ca^{2+} waves and regulating Ca^{2+} storage in cells.	45
NaHS	Jejunal circular muscle strips	Ion channels regulation	Inhibition of contractile activity of jejunal circular muscle by NaHS and this is partly mediated by K_{ATP}^+ channels and MIC phosphatases.	46
NaHS	Tobacco suspension cells	Ion channels regulation	NaHS increases heat tolerance in tobacco suspension cell via Ca ²⁺ transfer into cells across the plasma membrane and mediation of intracellular calmodulin.	47
$H_2S\left(g\right)$	Partial cardiopulmonary bypass perfusion sheep	Cardiovascular effect	H ₂ S gas can cause pulmonary vasoconstriction and systemic vasodilation in cardiopulmonary bypass perfusion sheep.	48
NaHS	Hypertension mice	Cardiovascular effect	Mice lacking H_2S exhibited hypertension and diminished vasorelaxation while intravenous bolus injections of NaHS reduced this effect.	49
NaHS	Tissues isolated from adult rats	Cardiovascular effect	NaHS alone can relax smooth muscles. However, in the thoracic aorta, the effect was greatly enhanced by NO at low concentration of NaHS.	50
NaHS	Male Sprague-Dawley rats	Neurogenic regulation	Nanomolar levels of NaHS can inhibit corporal relaxation but endogenous H ₂ S has negative effects on neurogenic relaxation.	51
NaHS	Male Wistar rats	Tissue differentiation	NaHS can significantly induce osteoclast differentiation to TRAP-positive osteoclast combined with LPS through activation of the TLR4 pathway.	52

⁵ Having seen the various important functions of H₂S, different ⁶ types of compounds which can release H₂S were employed as a ⁷ tool to study the mode of action of H₂S in animal physiology. In ⁸ medical studies, some of the H₂S releasing kinetic information of ⁹ these compounds was determined,⁵³ such as the H₂S releasing ¹⁰ profile of ACS14 in plasma,⁵⁴ the H₂S releasing profile of ¹¹ NOSH-Aspirin in liver,⁵⁵ as well as the releasing profiles of ¹² dithiocarbamates,⁵⁶ NaHS, GYY4137,^{57,58} and some new H₂S ¹³ donors,⁵⁹⁻⁶² in solution. In respect to the stability of H₂S donors, ¹⁴ natural sulfur derivatives from derived garlic, allicin, were found ¹⁵ to be extremely unstable, rapidly decomposed into diallyl ¹⁶ polysulfides in human blood.⁶³ Over 80% of diallyl disulfides ¹⁷ (DADS) from the garlic consumption get metabolized into sulfate ¹⁸ within 90 min. No DADS was detected within the first 24 hr in ¹⁹ blood sample of individuals who consumed garlic, suggesting ²⁰ that the natural sulfur derivatives have a short half-life in human ²¹ body system. A better understanding of the precise mechanism of ²² action of H₂S-releasing compounds is required before these ²³ compounds can move forward into clinical trials. Many studies ²⁴ conducted to address this have generated much controversy due ²⁵ to the different properties of the compounds which were used in ²⁶ the experiments. Hence, in this review, we will focus on ²⁷ representative compounds and highlight the disparate biological ²⁸ effects of these compounds. The compounds are grouped into the ²⁹ following categories: inorganic molecules, naturally occurring ³⁰ molecules, anethole trithione derivatives and synthetic molecules. 2 releasing compounds are used in research and drug development.

³ 2 Activities of Inorganic H₂S releasing compounds

⁴ NaHS and Na₂S are two well-known inorganic H₂S releasing ⁵ compounds that are widely employed in the study of H₂S effects ⁶ on animal physiology (Table 1). Notably, Ikaria has developed a ⁷ sodium sulfide solution (Na₂S) (IK-1001) for intravenous ⁸ injection, which has successfully completed a Phase 1 clinical ⁹ trial.⁶⁴ Because of its ease of availability, many studies have been ¹⁰ conducted using NaHS which releases H₂S readily in the ¹¹ presence of water. However, due to the rapid onset of release, the ¹² lifetime of NaHS is short, making it difficult to maintain a ¹³ constant cellular concentration of H₂S over a prolonged period. ¹⁴ As such, there is a challenge in using NaHS to mimic the ¹⁵ endogenous rate of H₂S production in the body. Nevertheless, the ¹⁶ use of such inorganic H₂S releasing compounds has contributed ¹⁷ to several functional discoveries.

18 2.1 Anti- and pro-inflammatory activities

¹⁹ Despite the large number of studies carried out to date (Table 1), 20 the role of H₂S as a physiological mediator of inflammation 21 remains controversial.⁶⁵ Both the anti-inflammatory and pro-22 inflammatory effects of exogenous H₂S donors such as NaHS or 23 Na₂S have been documented. Chen et al. demonstrated that 24 exogenous administration of NaHS into the lungs in an asthmatic 25 rat model alleviated airway inflammation and remodelling.³⁰ In a 26 separate study using an acute lung injury model which was 27 induced by smoke and burn inhalation, the authors also found that ²⁸ clinical grade Na₂S protected against acute lung injury.³⁵ In 29 addition, Andruski et al. showed that intra-articular injection of 30 Na₂S inhibited leukocyte-mediated inflammation of the knee 31 joint.³⁴ In an oleic acid-induced acute lung injury model. NaHS 32 showed anti-inflammatory effects by decreasing the levels of pro-33 inflammatory cytokines IL-6 and IL-8, and simultaneously 34 increasing the level of anti-inflammatory cytokine IL-10 in the 35 plasma and lung.^{31,51} Taken together, H₂S potentially acts as an ³⁶ anti-inflammatory agent in a variety of inflammatory conditions.

37 However, some reports demonstrated contrasting conclusions. ³⁸ For example, H₂S was found to promote the synthesis of pro-39 inflammatory cytokines in the U937 monocyte cell line via the ⁴⁰ ERK-NF-κB cascade.³⁷ Furthermore, the pro-inflammatory 41 effects of H₂S were also observed using an array of inflammatory 42 models including acute pancreatitis,65 endotoxic shock16 and lung ⁴³ inflammation.⁴⁰ In particular, when mice were subjected to cecal 44 ligation and puncture (CLP)-induced sepsis, it was observed that 45 NaHS enhanced the expression of cell adhesion molecules such ⁴⁶ as ICAM-1, P-selectin and E-selectin, thus promoting neutrophil 47 infiltration.³⁹ This was further supported by studies which 48 showed that NaHS also increased the expression profile of pro-⁴⁹ inflammatory cytokines.^{31, 39} Similarly, in an acute pancreatitis 50 model induced by cerulein, H₂S exerted pro-inflammatory effects ⁵¹ through the pro-inflammatory mediator substance P.¹⁵ Under such 52 experimental conditions, H₂S seems to display pro-inflammatory 53 effects. As such, the role of NaHS or Na2S as an anti-54 inflammatory or pro-inflammatory agent depends largely on the 55 experimental setup: the experimental model of choice, the H₂S ⁵⁶ concentration used and the H₂S releasing rate.

This journal is © The Royal Society of Chemistry [year]

57 2.2 Ion channel activities

58 Both endogenous and exogenous gaseous H₂S are able to 59 stimulate the opening of vascular smooth muscle ATP-sensitive 60 K⁺ ion channels. The direct functional consequence of this is the ⁶¹ dilation of blood vessels.⁴¹ As evidenced by electrophysiological 62 studies using aortic and mesenteric smooth muscle cells in rats, 63 NaHS increased KATP channel currents and hyperpolarized the 64 membranes. This provided direct proof of the effect of H₂S on 65 KATP channels. In addition, Buckler demonstrated that H₂S in K⁺ 66 channels led to membrane depolarization and voltage-gated Ca2+ 67 entry, thereby exciting carotid body Type 1 cells.43 However, this 68 effect of H₂S on background K⁺ channel activity is a consequence 69 of the well-understood role of H₂S in the inhibition of electron 70 transport as well as of oxidative phosphorylation. Since H₂S is 71 the first identified gaseous molecule with the ability to regulate 72 vascular smooth muscle K⁺ channels, much attention and 73 excitement has been drawn into this area of research. 74 Interestingly, some groups discovered that H₂S also relaxes 75 colonic smooth muscle and inhibits contraction of isolated ⁷⁶ porcine irides *via* the activation and opening of K_{ATP} channels.⁶⁶ 77 However, the mechanisms of action underlying the relaxant effect $_{78}$ of H_2S on various other types of smooth muscles are unclear.⁶⁷ A 79 previous study confirmed that NaHS can induce relaxation of 80 vascular smooth muscle by a novel mechanism involving ⁸¹ activation of the myosin-light-chain phosphatase.⁵⁰ The precise 82 mechanism of how H₂S regulates these channels remains to be 83 defined.

84 2.3 Other activities

85 Cardiovascular protection is another important effect of H₂S. 86 NaHS was proved to counter the constriction of blood vessels that 87 results from an elevation in blood pressure by inducing 88 vasodilatation. It is the first evidence that H₂S can decrease such 89 myogenic responses in rat cerebral arterioles by just being a 90 vasodilator. This effect is achieved through activation of KATP 91 channels by H₂S.⁴² Derwall et al. demonstrated that H₂S gas 92 administration via extracorporeal membrane lung ventilation had 93 dual effects in an anesthetized sheep model.⁴⁸ It caused 94 pulmonary vasoconstriction while inducing systemic vasodilation. 95 The authors showed that high concentrations of H₂S in the 96 cardiopulmonary bypass circulation did not reduce metabolism 97 although it affected pulmonary and systemic vasomotor effects. ⁹⁸ In a separate study, inhibition of endogenous H₂S production by ⁹⁹ cystathionine γ -lyase deletion resulted in hypertension in mice.⁴⁹ 100 This provided direct evidence that H₂S functions as a 101 physiological vasodilator and regulator of blood pressure. 102 Similarly, exogenous H₂S application results in relaxation of ¹⁰³ vascular smooth muscles isolated from adult rats.⁵⁰ In particular, ¹⁰⁴ a low concentration of H₂S greatly improved NO-induced smooth 105 muscle relaxation in the thoracic aorta. In another study of the ¹⁰⁶ effect of H₂S on cardioprotection, Hu et al. found that H₂S 107 preconditioning results in a decrease in myocardial infarct size as 108 well as an improvement of heart contractile function in isolated ¹⁰⁹ rat hearts.⁶⁸ The authors showed that the mechanism underlying 110 the cardioprotective effects of H₂S involves activation of the 111 extracellular signal regulated kinase (ERK1/2) and 112 phosphatidylinositol-3-kinase (PI3K)/Akt pathways.

Medicinal Chemistry Communications Accepted Manuscrip

¹ H₂S has also been shown to alleviate spatial memory impairment ² in a β-amyloid rat model of Alzheimer's disease, thus shedding ³ light on the potential therapeutic advantage of H₂S in the ⁴ treatment of Alzheimer's disease.⁶⁹ Memory improvements were ⁵ also observed in a 6-OHDA-induced Parkinson's disease rat ⁶ model.²² Taken together, these findings show that H₂S can ⁷ potentially be exploited to confer neuroprotective effects to ⁸ counter neurodegenerative diseases.

 $_{9}$ H₂S can also act on the nervous system in a manner which 10 involves non-adrenergic and non-cholinergic neurotransmission. 11 Nanomolar concentrations of NaHS were shown to inhibit 12 relaxation of the rat corpus cavernosum *in vivo*.⁵¹ It is suggested 13 that this effect is a result of an interaction between endogenously 14 produced H₂S and nitroxyl.

¹⁵ Another report by Irie *et al.* revealed that NaHS exerts effects on ¹⁶ osteoclast differentiation.⁵² The authors showed that co-treatment ¹⁷ with H₂S and lipopolysaccharide resulted in an additive effect on ¹⁸ tartrate-resistant acid phosphate-positive osteoclasts formation. ¹⁹ This effect was attributed to the synergism between H₂S and ²⁰ lipopolysaccharide on toll-like receptor 4 pathway activation.

21 3 Activities of Natural H₂S releasing compounds

43 Table 2 Summary of natural H₂S releasing compounds

22 Besides cysteine and cystine, an array of sulfur-containing natural 23 products is also found in various plants, animals, fungi and 24 bacteria (Figure 1, Table 2). The most familiar sulfur-containing 25 natural products are allicin and ajoenes which are found in garlic. 26 Others are found in animals, for example, ovothiol from sea 27 urchin eggs and varacin from marine ascidiacea. An example of a 28 microbial source of a sulfur-containing natural H₂S releasing ²⁹ product is leinamycin,⁷⁰ which is synthesized by *Streptomyces*.⁷¹ 30 Others are found in fungi, such as ergothioneine and lenthionine. 31 These compounds have recently been investigated to determine 32 their therapeutic potential as H₂S can be produced from these ³³ natural products⁷², either *via* endogenous enzymatic and/or non-³⁴ enzymatic pathways.⁷³ For example, diallyl polysulfides which ³⁵ are present in garlic and onion can produce H₂S upon interaction ³⁶ with cysteine in the human body.⁷⁴ As such, these natural H₂S 37 releasing compounds represent a wealth of prospective 38 antioxidant, antibacterial, antifungal and anticancer properties ³⁹ that can potentially be exploited.⁷⁴ Indeed, some preliminary 40 studies using natural products as anti-oxidative, anti-thrombotic 41 and anti-cancer drugs have recently achieved satisfactory results 42 in vitro.

Donor	Experiment	Effect	Result/Comment	Ref
DAT	Phorbol ester induced tumor	Anti-tumor	DAT can activate AP-1 and enhance COX-2 expression by blocking JNK in mouse skin thus exhibiting anti-tumor effect on mouse skin carcinogenesis.	75
DATS and analogues	Hep G2 cell	Anti-cancer	DATS can induce H ₂ O ₂ formation, increase caspase-3 activity and lower the thiol level in Hep G2 cells.	76
Leinamycin	Defective mammalian cell line	Anti-tumor Antibiotic	Leinamycin can affect the NER (nucleotide excision repair) and BER (base excision repair) pathways, therefore helping to repair DNA damage.	77
Varacin	Human colon tumor	Anti-cancer	Varacin exhibits cytotoxicity towards the human colon cancer HCT 116 and toxicity towards the CHO cell line EM9 versus BR1.	78
Ajoene analogues	Different human cancer cell lines <i>in vitro</i>	Anti-cancer	Activity enhancement was observed, especially <i>p</i> -methoxybenzyl end group compound, which showed very good activity and a modest selectivity.	79
Z-ajoene	Human Cell line MCF- 7, KB, Bel7402, BGC 823	Anti-tumor	Z-Ajoene showed potent inhibition of tumor growth both <i>in vitro</i> and <i>in vivo</i> because of the interaction with microtubule and it exhibited antimitotic properties.	80
SAMC	<i>In vitro</i> and <i>in vivo</i> colorectal cancer cells	Anti-cancer	SAMC inhibited the proliferation and metastasis of CRC cells effectively under both <i>in vitro</i> and <i>in vivo</i> conditions.	81
Ergothioneine	Neuronal hybridoma cell (N-18-RE-105)	Antioxidant	EGT can reduce H_2O_2 and ONOO induced oxidative damage. Moreover, it can act as non-toxic antioxidant <i>in vivo</i> .	82
Ergothioneine	Human erythrocytes in vitro	Antioxidant	These results show that human erythrocytes do take up ergothioneine; however, the GSH results do not support an antioxidant role for ergothioneine in erythrocytes. It also used for to scavenge peroxynitrite.	83
Ovothiol/ Trypanothione	Trypanosomatids and Sprague–Dawley rats model	Antioxidant	Ovothiol A and trypanothione can act as a non-enzymatic scavenger of hydrogen peroxide.	84
Ovothiol	Strongylocentrotus purpuratus eggs	Antioxidant	Ovothiol is more effective at decomposing H ₂ O ₂ at the concentration produced during fertilization compared to catalase.	85
Ergothioneine	In vitro red blood cell	Antioxidant Anti-inflammatory	EGT was taken up by red blood cells and exhibited significant anti-oxidation and anti-inflammatory effects.	86
Ergothioneine	Acid induced Inflammatory	Antioxidant Anti-inflammatory	EGT has a protective role on palmitic acid-induced cell death due to oxygen radical scavenge and free fatty acids induced inflammation.	87
Ergothioneine	Resident skin cells	Antioxidant DNA repair	EGT can prevent DNA damage from oxidant of H_2O_2 and enable repair of UV- irradiated DNA damage in cells.	88,89
Lenthionine Varacin	Bacterial species and Candida albicans	Anti-bacterial	Lentinus edodes mycelium culture fluid exhibits anti-bacterial activities towards <i>Streptococcus pyogenes</i> , <i>Staphylococcus aureus</i> and <i>Bacillus megaterium</i> .	90, 9
Garlic extract	<i>In vitro</i> platelet aggregation model	Anti-thrombotic	Anti-thrombotic activity of a variety of structures related to ajoene was examined and results shed lights on the molecular basis for anti-thrombotic activity.	92

4

46

1 3.1 Anti-cancer and anti-tumor activities

2 Some natural products have shown interesting attributes such as 3 anti-microbial, hypolipidemic, anti-thrombotic and anti-tumor ⁴ properties.⁹³ For instance, some H₂S releasing compounds 5 isolated from garlic and durian such as diallyl sulfide (DAS), 6 diallyl disulfide (DADS) and diallyl trisulfide (DATS) exhibit 7 promising bioactivity. However, the role of H₂S in these 8 biological activities has not been conclusively proven. DATS was 9 shown to significantly suppress 12-O-tetradecanoylphorbol-13-10 acetate (TPA)-induced cyclooxygenase-2 (COX-2) expression 11 and tumor proliferation.⁷⁵ Iciek et al. studied the effects of DAS, 12 DADS and DATS on Hep G2 cell proliferation and the associated 13 sulfur metabolism. Comparing DATS with DAT and DADS, 14 DATS showed the highest activity in inhibiting Hep G2 cell ¹⁵ proliferation.⁷⁶ In further elucidating the mechanism of action of 16 these compounds, the authors found that these garlic-derived 17 sulfur compounds induced H₂O₂ formation, promoted caspase-3 18 activity and lowered thiol levels in Hep G2 cells, thereby 19 contributing to the inhibitory effects on cell proliferation. In a 20 separate study of leinamycin and its analogues, Szilagyi et al. 21 demonstrated that such analogues display cytotoxic activity 22 against HeLa tumor cells.⁹⁴ Another group showed that the 23 possible mechanism of this bioactivity is through interference 24 with DNA repair processes.⁷⁷ Specifically, leinamycin induces 25 DNA cleavage through nucleotide excision repair (NER) and 26 base excision repair (BER) pathways.

27 Varacin, a polysulfide natural product, was also shown to be cells.78 28 cytotoxic against human colon carcinoma 29 Epidemiological studies demonstrated that ajoene analogues also 30 have significant anti-cancer effects.⁷⁹ The Z-ajoene isomer 31 exhibits substantial anti-cancer and anti-tumor activities.⁸⁰ 32 Similarly, S-allylmercaptocysteine (SAMC) was shown to inhibit 33 the proliferation of colorectal cancer cells under both in vitro and 34 in vivo conditions. In particular, SAMC was found to inhibit 35 Caco-2, SW480 and SW620 cancer cell proliferation and ³⁶ xenograft tumor formation.⁸¹ It was proposed that the anti-cancer 37 effect of SAMC is attributed to enhanced apoptosis as well as ³⁸ necrosis of the cancer cells. Clearly, such natural H₂S releasing 39 compounds show immense opportunities for potential anti-cancer ⁴⁰ and anti-tumor effects to be exploited for therapeutic purposes.

41 3.2 Antioxidant activity

⁴² Ergothioneine (EGT) is widely distributed in fungi to higher ⁴³ organisms, but is known to be synthesized only by non-yeast ⁴⁴ fungi, mycobacteria and cyanobacteria. This natural sulfur-⁴⁵ containing product has long been studied as an antioxidant ⁴⁶ agent⁹⁵ as well as a radical scavenger⁹⁶ and it is known to release ⁴⁷ H₂S.⁹⁷ EGT was investigated as an antioxidant agent in a human ⁴⁸ neuronal hybridoma cell line (N-18-RE-105). In a study using ⁴⁹ hydrogen peroxide and peroxynitrite treated cells, EGT was ⁵⁰ shown to mediate the inhibitory effects on peroxynitrite-induced ⁵¹ oxidative damage.⁸² Numerous *in vitro* assays have also proven ⁵² the antioxidant and cytoprotective capabilities of EGT against a ⁵³ wide range of cellular oxidative stress. However, *in vitro* ⁵⁴ erythrocyte studies resulted in different conclusion. Mitsuyama ⁵⁵ and May's report did not support for an antioxidant role of EGT ⁵⁶ in erythrocytes despite the uptake of EGT by red blood cells.⁸³

and the associated 67 3.3 Other effects

66 fertilization.85

⁶⁸ Some of these aforementioned natural-occurring compounds were ⁶⁹ also investigated for their anti-bacterial activities. For instance, ⁷⁰ varacin and three of its derivatives were found to exhibit ⁷¹ substantial antimicrobial effects.⁹⁰ In a study of the mushroom ⁷² *Lentinus edodes* and its cultured extract, a marked antibacterial ⁷³ effect was also observed and this was attributed to lenthionine.⁹¹

57 However, a recent study showed that EGT can also function as a

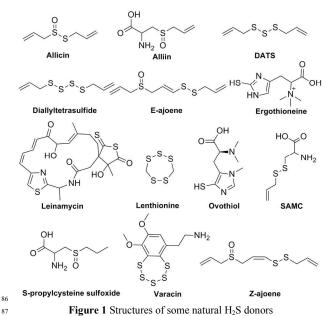
59 Ovothiol which is highly present in marine invertebrate eggs acts

60 as an effective hydrogen peroxide scavenger.^{74,84} The oxidized

61 ovothiol can react with GSH via thiol-disulfide exchange.98

62 Subsequent redox recycling of GSSG and GSH would then

63 produce H₂S.⁹⁹⁻¹⁰¹ In fact, it was found that this natural product


64 can scavenge hydrogen peroxide even more effective than

65 catalase at the physiological concentration produced during

58 very effective antioxidant in red blood cells.86

⁷⁴ In addition, Laurenza, Weijgand-Heller, *et al.* found that in ⁷⁵ palmitic acid-treated skeletal muscle cells, EGT can inhibit ⁷⁶ MAPK activities and interleukin-6 expression, thus also display ⁷⁷ anti-inflammatory effects.^{86,87} A study using aged garlic extract ⁷⁸ also showed anti-inflammatory effects and prevented coronary ⁷⁹ atherosclerosis in clinical trials.¹⁰²

⁸⁰ Ajoene is another well-known H₂S donor¹⁰³, and along with its ⁸¹ homologues were investigated for anti-thrombotic effects *in vitro*. ⁸² Based on a screen of an extensive library of ajoene homologues, ⁸³ it was found that various structures, such as sulfur oxidation state, ⁸⁴ double bond position, disulfide bond position, sulfide atom ⁸⁵ quantity as well as allyl groups can affect platelet aggregation.⁹²

88 4 Activities of Anethole trithione derivatives as 89 H₂S donors

⁹⁰ Anethole trithione (ADT-OH, Figure 2) is a known H₂S releasing ⁹¹ compound.¹⁰⁴ It is useful because it can be attached to various ⁹² well-known non-steroidal anti-inflammatory drugs (NSAIDs) 1 such as aspirin and diclofenac. Some of these modified drugs are

2 currently undergoing preclinical testing, namely: ACS-15 (CTG

3 Pharma) for arthritis therapy, ATB - 429 (Antibe) for anti-

⁴ inflammatory activity in bowel disease and ATB-284 (Antibe)⁵ for use in the therapy against bowel irritable syndrome.

Donor	Experiment Object	Effect	Result/Comment	Ref
ACS-15	lipopolysaccharide-induced Inflammation	Anti-inflammatory	H_2S -releasing diclofenac enhanced anti-inflammatory potency compared with parent drugs and greatly reduced the toxicity to gastropathy.	104
ATB-429	Colitis model of mouse	Anti-inflammatory	ATB-429 significant reduced granulocyte infiltration and reduced the expression of inflammatory cytokines/chemokines and showed enhance mesalamine activity.	105
NBS-1120	HT-29 human colon cancer cells xenograft model of tumor	Anti-cancer Anti-tumor	Suppressed the growth of cancer cells with 9000-fold more efficiency than the parts. A reduction of 85% the tumor volume was also observed.	55
HS-Sulindac HS-Ibuprofen HS-Naproxen HS-Aspirin	Colon, breast, pancreas, lung, prostate, and leukemia cancer cell lines	Anti-cancer	All of the HS-NSAIDs exhibited stronger suppression of cancer cell lines proliferation as compared with traditional NSAIDs. The IC50s were 28-3000 folds lower than the control.	106
HS-ASA	MDA-MB-231 cancer cell line and tumor xenografts in mice	Anti-cancer Anti-tumor	The HS-ASA regulated NF-kB and TrxR activity and induction of ROS thus suppressed the growth of cancer cells.	107
ACS 15	Cancer caused osteoclast <i>in vitro</i> , and osteolysis <i>in vitro</i>	Anti-cancer Anti-tumor	S-diclofenac derivatives suppressed breast cancer cell which provide supporting for osteoclastogenesis thus prevent osteolysis.	108
NOSH-1,2	Colon, breast, pancreas, lung, prostate, and leukemia cancer cell lines		NOSH-1 exhibited very efficiency anti-cancer effect but not caused any cellular toxicity, especially for HT-29 (IC50 = 48 ± 3 nM).	109
ACS14/ACS1	Glu and BSO injury RGC-5 cells	Antioxidant Ion channel regulation	ACS14 found to be an effective neuro-protectant partly by regulating oxidation stress, stimulating GSH and opening K^+ channels.	110
ACS14/ADT OH/ACS21	Sprague-Dawley rats and 3T3 cell	Anti-thrombosis Reduce toxicity	The ADTOH derives act as a new anti-thrombosis agent. They found the H_2S releasing property can reduce gastric mucosa by increasing H_2S/GSH formation and affecting redox imbalance.	54
ACS14	Human or murine whole blood and platelet rich plasma	Anti-thrombosis	Inhibition of thrombus formation <i>in vivo</i> in small arterioles as well as in larger arteries.	111
ATB429	Colorectal distension induced post-inflammatory hypersensitivity	Antinociception Anti-inflammatory	ATB-429 down-regulated Colonic COX2 and IL-1β mRNA and spinal c-FOS mRNA expression and inhibited hypersensitivity of pain.	112

6 Table 3 Summary of anethole trithione derivatives as H₂S releasing compounds

8 4.1 Anti-inflammatory activity

9 Some NSAIDs have been known to cause serious gastrointestinal 10 and renal side effects.¹¹³ Numerous strategies have been 11 employed to counter this problem. Based on previous studies of 12 NO, it is well-known that NO displays local gastric mucosal ¹³ defence properties¹¹⁴ and these properties have been exploited in 14 the development of NO-releasing NSAID compounds. Due to the 15 similar activities of H₂S and NO,¹¹⁵ several H₂S-releasing NSAID 16 derivatives were also developed in order to reduce damage to the 17 gastric mucosa.¹¹⁶ As expected, ACS-15 (S-diclofenac, ATB-337) 18 releases H₂S slowly in liver homogenates, thus maintaining the 19 plasma concentration of H₂S at a high level for a prolonged 20 period of time. In a lipopolysaccharide-induced inflammatory 21 model, ACS-15 causes gastric toxicity whilst reducing lung and 22 liver myeloperoxidase activity which is indicative of reduced 23 neutrophil infiltration in these organs.¹⁰⁴ Similar results were also 24 reported in another study with ATB-429 (S-mesalamine). 25 Fiorucci et al. emphasized that ATB-429 displays marked anti-26 inflammatory activity and in vivo potency as compared to 27 mesalamine.¹⁰⁵ Based on a study of the pharmacological profile 28 of S-aspirin (ACS-14 and ACS-21), the authors noted that it 29 could reduce side effects on the gastric mucosa by regulating 30 redox imbalance.⁵⁴ It also demonstrated high bioactivity and ³¹ therapeutic safety in amyloid β plaque-induced inflammation,¹¹⁷ 32 thus shedding light on the potential therapeutic value of these ³³ compounds in the treatment of Alzheimer's disease.¹¹⁷

34 4.2 Anti-cancer and anti-tumor activity

35 Due to the synergistic effect on the inhibition of 36 cyclooxygenases, some of the ADT-OH derivatives containing 37 both a H₂S releasing functional group and NSAID were also ³⁸ investigated for anti-cancer properties. For example, NBS-1120 39 (NOSH-ASA) was observed to suppress HT-29 colon cell ⁴⁰ proliferation with IC₅₀ values in the nanomolar range. In addition, 41 in in vitro experiments NBS-1120 was used in a tumor xenograft 42 model and an excellent anti-tumor effect was observed.55 In 43 addition, aspirin, sulindac, ibuprofen and naproxen coupled with ⁴⁴ ADT-OH were tested on various types of cancer cell lines.¹⁰⁶ The 45 results showed that HS-aspirin was the most effective drug for ⁴⁶ most of the cancer cell lines tested. Furthermore, HS-aspirin¹⁰⁷ 47 and ACS-15¹⁰⁸ suppressed cancer cell proliferation in vitro and ⁴⁸ significantly suppressed xenograft tumor growth. For compounds 49 such as NOSH-1 and NOSH-2 with both H₂S and NO releasing 50 properties, they were shown to exhibit anti-cancer effects in the 51 HT-29 cell line.¹⁰⁹

52 4.3 Anti-thrombotic activities

⁵³ In addition to anti-cancer and anti-inflammatory activities,
 ⁵⁴ anethole trithione derivatives were also investigated as anti ⁵⁵ thrombotic,
 ⁵⁴ antioxidant¹¹⁸ and neuroprotective¹¹⁰ agents.
 ⁵⁶ Pircher *et al.* reported that ACS14 inhibited human or murine

Page 6 of 13

- ¹ blood platelet aggregation¹¹¹ and thus could potentially be used as
- ² an effective thrombus formation inhibitor *in vivo*. Distrutti found

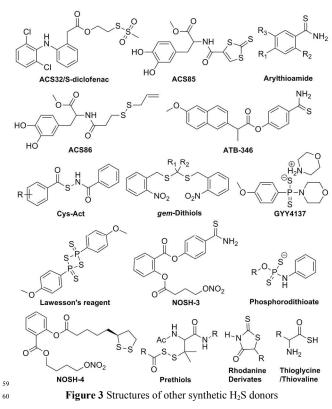
3 that ATB-429 acts as an anti-nociceptive agent due to activating

⁴ K_{ATP} channels.^{112,119}

7 5 Activities of Synthetic H₂S releasing compounds

8 In addition to the above-mentioned H₂S donors, there are a 9 number of compounds that have been specifically designed by ¹⁰ synthetic chemists to release H_2S (Figure 3). Compounds 11 containing active P-S bonds such as Lawesson's reagent¹²⁰ ¹² GYY4137⁵⁷ and Phosphorodithioate¹²¹ have been used as H₂S 13 donors. As reported in the 6th European Congress of ¹⁴ Pharmacology, thioamides can be hydrolyzed to release H₂S. To 15 exploit this characteristic, thioamide compounds such as NOSH-16 3¹⁰⁹ and ATB-346¹²² were investigated along with anethole 17 trithione for anti-cancer activities. Recently, some arylthioamides 18 emerged due to their remarkable vascular effects in vitro and in ¹⁹ vivo.⁶⁰ Similarly, rhodanine and its derivatives contain the same 20 dithiocarbamate ester. It releases H₂S with acids⁵⁶ or reducing ²¹ agents.¹²³ They were developed as scaffolds in drug discovery.¹²⁴ 22 For some other sulfide drugs like NOSH-4,¹⁰⁹ ACS86,¹²⁵ ²³ Perthiols⁶¹ and dithioperoxyanhydrides, ¹²⁶ the disulfide bond can 24 react with thiol and reductive molecules in organisms to release 25 H₂S. Cys-Act hydrogen sulfide donors are stable in the absence 26 of cysteine¹²⁷, but can react with cysteine via NCL (native 27 chemical ligation) to release H₂S.⁴⁴ Also, new controllable H₂S 28 donors have been reported, such as gem-dithiols,⁶² thioglycine 29 and thiovaline.⁵⁹ These synthetic H₂S donors have similar

This journal is © The Royal Society of Chemistry [year]


 $_{30}$ bioactivities such as anti-inflammatory effects, anti-cancer $_{31}$ effects, opening of Ca²⁺ and K⁺ ion channels and regulatory $_{32}$ effects on plants.

33 5.1 Smooth muscle relaxation

³⁴ H₂S-releasing drugs can potentially be used in the treatment of ³⁵ cardiovascular disease. For example, GYY4137 has been shown ³⁶ to cause a slow relaxation of rat aortic rings. ⁹⁸ It also functions as ³⁷ a vasodilator in perfused rat kidney. This compound has also ³⁸ been investigated as a myometrium regulatory agent to prevent ³⁹ preterm labour.¹²⁸ When myometrial tissues are exposed to a ⁴⁰ solution of GYY4137, relaxation of the uterus is observed. These ⁴¹ studies suggest that synthetic H₂S releasing compounds have ⁴² potential in the treatment of cardiovascular disease and the ⁴³ control of uterine contractility.

44 5.2 Anti-cancer activity

⁴⁵ A number of synthetic H₂S releasing compounds have been ⁴⁶ shown to have anti-cancer activities. For instance, ACS32 (see ⁴⁷ Figure 3) was found to inhibit breast cancer cell proliferation. It ⁴⁸ also exhibits anti-osteolytic effects by inhibiting osteoclast ⁴⁹ formation and activity.⁹⁰ Thus, ACS32 may be a good candidate ⁵⁰ for the treatment of osteolytic bone diseases. NOSH-3 and ⁵¹ NOSH-4, on the other hand, are aspirin derivatives that can also ⁵² suppress cancer cell proliferation, but are less effective compared ⁵³ to the anethole trithione derivatives of aspirin.¹⁰⁹ GYY4137 was ⁵⁴ also found to exhibit anti-cancer effects in HeLa, HCT-116, Hep ⁵⁵ G2, HL-60, MCF-7, MV4-11 and U2OS cells and to reduce ⁵⁶ tumor growth in a mouse xenograft model.⁵⁸ Importantly, ⁵⁷ GYY4137 displayed only limited toxicity in normal human lung ⁵⁸ fibroblasts (IMR90, WI-38).

1 5.3 Anti-inflammatory activity

² GYY4137 has been reported to have anti-inflammatory activities
³ in a number of studies. For instance, the H₂S releasing compound
⁴ was recently studied in an arthritis model¹²⁹ and an inflammatory
⁵ joint model.¹³⁰ The results revealed a significant reduction in the
⁶ levels of inflammatory mediators as well as oxidative stress.
⁷ Similar anti-inflammatory activities of GYY4137 were observed
⁸ on induction of endotoxic shock or inflammation by
⁹ lipopolysaccharide in rats.¹³¹ A separate study on the effect of
¹⁰ GYY4137 on lipopolysaccharide-induced release of

- ¹¹ inflammatory mediators from macrophages provided evidence ¹² that inflammatory processes depend on both the H_2S
- ¹³ concentration and its rate of release.¹³²

¹⁴ A further H₂S releasing compound, ATB-346, was found to be as ¹⁵ effective as naproxen and celecoxib in reducing inflammation and ¹⁶ inhibiting cyclooxygenase activity. Importantly, ATB-346 did not ¹⁷ cause significant gastric or intestinal damage in any of the models ¹⁸ studied¹³³ and was 100-fold safer compared to the use of ¹⁹ naproxen in healthy animals.¹³⁴

Donor	Experiment Object	Effect	Result/Comment	Re
GYY4137	Stomatal closure in Arabidopsis thaliana	Ion channels regulation	GYY4137 and NaHS can regulate stomatal opening and closure due to the effect of NO in guard cells.	44
GYY4137	Aortic rings and perfused rat kidney Anesthetized rat <i>in vivo</i>	Cardiovascular Protection	Low concentrations of H_2S acting on isolated rat heart did not have any direct effect on cardiac rate and contraction force but it can regulate vasorelaxation slowly and enduringly, thus resulting in a fall in blood pressure and reduce hypertension with no toxicity.	57
GYY4137	Human and rat myometrium	Ion channels regulation	GYY4137 can decrease myometrium contractions, reduce underlying Ca ²⁺ transport and reduce oxytocin induced and K ⁺ related myometrium contractions activities.	128
ACS32	Cancer caused osteoclast <i>in vitro</i> , and osteolysis <i>in vitro</i>	Anti-cancer	S-Diclofenac derivatives suppressed breast cancer cells proliferation, which provided supporting evidence for osteoclastogenesis that prevents osteolysis.	108
NOSH-3 NOSH-4	Colon, breast, pancreas, lung, prostate, and leukemia cancer cell lines	Anti-cancer	All of the analogues exhibited anti-cancer effects: NOSH-3 is about 20- 150 times less effective than NOSH-1, and NOSH-4 is about 1-17 times less effective than NOSH-1.	109
ATB346	Mouse model of colon cancer	Anti-cancer Reduce toxicity	The H_2S releasing NSAIDs suppressed colon cancer cells proliferation in a mouse model, and it also reduced gastro-intestinal toxicity.	122
GYY4137	Different human cancer cell lines <i>in vivo</i> and <i>in vitro</i>	Anti-cancer	GYY4137 significantly reduced HL-60 and MV4-11 tumor cells growth.	58
Rhodanine derivatives	Cellular DDX3 and HIV-1 replication	Anti-HIV	Rhodanine derivatives have inhibitory activities to cellular DDX3 (a valid anti-HIV target), thus exhibiting anti-HIV effects.	135
Rhodanine derivatives	In vitro antimicrobial	Antimicrobial	Rhodanine derivatives had strong antibacterial activity against the methicillin-resistant <i>Staphylococcus aureus</i> (MRSA).	136
Rhodanine derivatives	In vitro M. tuberculosis H ₃₇ Rv	Antimicrobial	A series of compounds exhibited good activity in inhibiting TB with MIC at µg levels. Rhodanmine derivatives may also be used as scaffolds for anti-TB agents.	137
GYY4137	Human articular chondrocytes and mesenchymal progenitor cells	Anti-inflammation	GYY4137 significantly prevents oxidative stress-induced cells from death and acts as a protector in inflammed joint by analysing the cell availability and the expression the CBS/CSE.	76
GYY4137	NCTC 2544 human keratinocytes	Anti-inflammation	H ₂ S can modulate endogenous NO and VEGF in human keratinocytes,	138
GYY4137	Human synoviocytes, articular chondrocytes and rat models	Anti-inflammation	GYY4137 reduces pro-inflammatory factors and inhibits the activity of related enzymes.	129, 131, 132
ATB346	Compromised mucosal defence rats and healthy rats	Reduce toxicity Anti-inflammatory	H ₂ S releasing naproxen decreases gastrointestinal damage in impaired mucosal defence model and showed anti-inflammatory effects.	133, 134
ATB346	Rats with knee joint synovitis	Anti-inflammatory Anti-nociceptive	ATB-346 reduces the side effects of gastric mucosa damage but does not reduce the inflammation and hyperalgesia in rats.	139
ACS85 ACS86	BV-2 cells treated with $A\beta_{1-40}$ and Neurons isolate from rats	Nervous protection Anti-inflammation	ACS 85 and ACS86 may protect microglial cells against injury <i>via</i> the anti-inflammatory and antioxidant activities; potential for use in the treatment of neurodegenerative diseases.	125, 140
Thioamide	In vivo and noradrenaline treated rat aortic rings	Cardiovascular protection	The selected thioamide could dilate NA-treated blood vessels and reduce the systolic blood pressure <i>in vivo</i> .	60
Perthiols	Ischemia-reperfusion myocardial	Cardiovascular protection	The perthoils, which could release H_2S by regulating of thiols, exhibited cardioprotective effect in the murine myocardial injury model.	61

20 Table 4 Summary of synthetic H₂S releasing compounds

2

22 5.4 Other effects

²³ H₂S releasing compounds have been shown to exert various other
 ²⁴ effects. For instance, a number of rhodanine derivatives were
 ²⁵ shown to have anti-bacterial activities against both Gram-positive
 ³⁰ 30

²⁶ and Gram-negative bacteria.¹³⁶ Rhodanine derivatives were also
²⁷ shown to exert anti-HIV activities by inhibiting the cellular
²⁸ ATPase DDX3.¹³⁵ They can also act as PDE4
²⁹ (phosphodiesterase-4, related to immune cells and central nervous
³⁰ system cells) inhibitors,¹⁴¹ anti-tubercular agents¹³⁷ and anti-

¹ inflammatory drugs.¹⁴² However, the wide variety of bioactivities ² observed may be non-specific to target many proteins.¹²⁴ In ³ particular, their analogues have been shown to have activities ⁴ against *Mycobacterium tuberculosis* at a very low minimum ⁵ inhibitory concentration (MIC).¹³⁷ The roles played by H₂S in the ⁶ above-mentioned reports need to be clarified. In addition, novel ⁷ hybrid compounds containing both L-DOPA and H₂S donors ⁸ inhibited the release of pro-inflammatory cytokines and nitric ⁹ oxide from stimulated microglia and lowered amyloid beta-¹⁰ induced cytotoxicity.^{118,119} Hence, these compounds have ¹¹ potential in the treatment of neurodegenerative diseases such as ¹² Alzheimer's disease²¹ and Parkinson disease^{22, 125}.

13 6 Conclusions and Outlook

¹⁴ H_2S releasing compounds exhibit complex biological activities ¹⁵ and exert multiple physiological effects. In addition to anti-¹⁶ inflammatory and anti-cancer activities, H_2S releasing ¹⁷ compounds also have anti-oxidant effects and can regulate some ¹⁸ cardiovascular functions through ion channels. However, H_2S ¹⁹ donor development is still at an early stage even though H_2S has ²⁰ been studied for a few decades. Most of the drugs were studied in ²¹ limited areas despite the wide regulatory functions of H_2S , so ²² there is scope to unfold the other potential applications of ²³ different H_2S donors.

²⁴ Inorganic salts of sulfide serve as easily accessible tools to study ²⁵ the biological roles of H₂S, but their acute release rate and low ²⁶ sustainability make them less ideal H₂S donors. Natural H₂S ²⁷ releasing compounds are useful as anti-tumor and antioxidant ²⁸ agents. On the other hand, anethole trithione is particularly ²⁹ interesting due to its ability to conjugate with NSAIDs to form ⁵⁹

60 References:

- ⁶¹ I. R. J. Reiffenstein, W. C. Hulbert and S. H. Roth, *Annu. Rev.* ⁶² *Pharmacol. Toxicol.*, 1992, **32**, 109.
- ⁶³ 2 A. L. Burnett, C. J. Lowenstein, D. S. Bredt, T. S. K. Chang and S. H.
 ⁶⁴ Snyder, *Science*, 1992, 257, 401.
- 65 3 M. D. Maines, Annu. Rev. Pharmacol. Toxicol., 1997, 37, 517.
- 66 4 M. H. Stipanuk and P. W. Beck, Biochem. J., 1982, 206, 267.
- ⁶⁷ 5 U. Sen, P. K. Mishra, N. Tyagi and S. C. Tyagi, *Cell Biochem.* ⁶⁸ *Biophys.*, 2010, **57**, 49.
- 69 6 E. A. Tolosa, N. K. Chepurnova, R. M. Khomutov and E. S. Severin,
 70 Biochim. Biophys. Acta., 1969, 171, 369.
- 71 7 J. E. Doeller, T. S. Isbell, G. Benavides, J. Koenitzer, H. Patel, R. P.
- Patel, J. R. Lancaster, Jr., V. M. Darley-Usmar and D. W. Kraus, *Anal. Biochem.*, 2005, **341**, 40.
- 74 8 E. Lowicka and J. Beltowski, *Pharmacol Rep.*, 2007, **59**, 4.
- 75 9 W. M. Zhao and R. Wang, *Am. J. Physiol-heart. C.*, 2002, **283**, H474.
- 7610 R. Wang, Faseb. J., 2002, 16, 1792.
- 7711 L. Li and P. K. Moore, Expert. Rev. Clin. Pharmacol, 2013, 6, 593.
- 7812 J. L. Wallace, Trends Pharmacol. Sci, 2007, 28, 501.
- 7913 M. Bhatia, Scientifica, 2012, 2012, 1.
- ⁸⁰14 R. Tamizhselvi, Y. H. Koh, J. Sun, H. Zhang and M. Bhatia, *Exp. Cell* ⁸¹ *Res.*, 2010, **316**, 1625.
- 8215 M. Bhatia, J. N. Sidhapuriwala, S. W. Ng, R. Tamizhselvi and S. M.
- 83 Moochhala, J. Cell Mol. Med., 2008, 12, 580.

³⁰ safer and potentially better anti-inflammatory and anti-cancer ³¹ drugs. Last but not least, a wide variety of new synthetic H_2S ³² compounds reflects the great potential of H_2S donors with ³³ different releasing properties for widespread applications. Based ³⁴ on the scope of H_2S donors in application, effective building ³⁵ blocks such as polysulfide, anethole trithione, thioamide, ³⁶ disulfide, P-S bonds and some other activated sulfides have been ³⁷ evaluated. These sulfide units can combine to specific scaffolds ³⁸ for targeted therapy.

³⁹ To fully harness the biological activities of H_2S , it is important to ⁴⁰ develop novel H_2S releasing drugs. Desirable H_2S donors should ⁴¹ release H_2S slowly and consistently. They should also not contain ⁴² any structures that have significant biological side effects or ⁴³ cause toxicity. In addition, the solubility of the H_2S donors needs ⁴⁴ to be carefully controlled to ensure a good pharmacokinetic ⁴⁵ profile. Finally, the donor should also have good stability in ⁴⁶ aqueous solution. The synthesis of H_2S releasing compounds with ⁴⁷ improved properties will help to move these donors towards ⁴⁸ clinical trials.

49 Notes and references

⁵⁰ We are grateful for financial support from the A*STAR-BMRC ⁵¹ SERC Nutrition and Food Science Grant (SERC Grant No: 112
 ⁵² 177 0036).

- 53
- 54 a Division of Chemistry & Biological Chemistry, School of Physical &
- 55 Mathematical Sciences, Nanyang Technological University, Singapore
- 56 b Department of Chemistry, National University of Singapore
- ⁵⁷ c Department of Pharmacology, National University of Singapore
 ⁵⁸ d Department of Biochemistry, National University of Singapore
- 8416 L. Li, M. Bhatia, Y. Z. Zhu, Y. C. Zhu, R. D. Ramnath, Z. J. Wang, F.
- B. M. Anuar, M. Whiteman, M. Salto-Tellez and P. K. Moore, *Faseb*. *J.*, 2005, **19**, 1196.
- 8717 G. D. Yang, X. F. Sun and R. Wang, Faseb. J., 2004, 18, 1782.
- 8818 R. Wang, Physiol. Rev., 2012, 92, 791.
- 8919 G. H. Tang, L. Y. Wu and R. Wang, *Clin. Exp. Pharmacol. P*, 2010,
 90 37, 753.
- 9120 B. H. Tan, P. T. H. Wong and J. S. Bian, Neurochem. Int., 2010, 56, 3.
- 9221 K. Eto, T. Asada, K. Arima, T. Makifuchi and H. Kimura, *Biochem.* 93 *Biophys. Res. Commun.*, 2002, 293, 1485.
- 9422 L. F. Hu, M. Lu, C. X. Tiong, G. S. Dawe, G. Hu and J. S. Bian, *Aging* 95 *Cell*, 2010, 9, 135.
- 9623 R. J. Pearson, T. Wilson and R. Wang, *Clin. Invest. Med.*, 2006, 29, 146.
- 9824 C. Tang, X. Li and J. Du., Curr. Vasc. Pharmacol., 2006, 4, 17.
- 9925 Y. H. Liu, M. Lu, L. F. Hu, P. T. H. Wong, G. D. Webb and J. S. Bian,
 Antioxid. Redox. Signal., 2012, 17, 141.
- 10126 D. Popov, Arch. Physi. Biochem., 2013, 119, 189.
- E. Grambow, F. Mueller-Graf, E. Delyagina, M. Frank, A. Kuhla and
 B. Vollmar, *Platelets*, 2013, 1, 1.
- W. A. Pryor, K. N. Houk, C. S. Foote, J. M. Fukuto, L. J. Ignarro, G.
 L. Squadrito and K. J. A. Davies, *Am. J. Physiol-reg. I.*, 2006, 291,
 R491.
- ¹⁰⁷29 J. W. Calvert, W. A. Coetzee and D. J. Lefer, *Antioxid. Redox. Signal.*,
 ¹⁰⁸2010, **12**, 1203.

- Y. H. Chen, R. Wu, B. Geng, Y. F. Qi, P. P. Wang, W. Z. Yao and C.
 S. Tang, *Cytokine*, 2009, 45, 117.
- ³31 T. S. Li, B. Zhao, C. Wang, H. Y. Wang, Z. W. Liu, W. Li, H. F. Jin,
 ⁴ C. S. Tang and J. B. Du, *Exp. Biol. Med.*, 2008, 233, 1081.
- 532 L. F. Hu, P. T. H. Wong, P. K. Moore and J. S. Bian, J. Neurochem.,
 6 2007, 100, 1121.
- 733 R. C. O. Zanardo, V. Brancaleone, E. Distrutti, S. Fiorucci, G. Cirino
 8 and J. L. Wallace, *Faseb. J.*, 2006, 20, 2118.
- 934 B. Andruski, D. M. McCafferty, T. Ignacy, B. Millen and J. J.
 ¹⁰ McDougall, *Am. J. Physiol-reg. I.*, 2008, **295**, R814.
- 1135 A. Esechie, L. Kiss, G. Olah, E. M. Horvath, H. Hawkins, C. Szabo12 and D. L. Traber, *Clin. Sci.*, 2008, 115, 91.
- 1336 Y. W. Chen, Z. H. Liu and X. H. Xie, J. Surg. Res., 2010, 164, E305.
- 1437 L. Zhi, A. D. Ang, H. L. Zhang, P. K. Moore and M. Bhatia, J.
 15 Leukocyte. Biol., 2007, 81, 1322.
- 1638 H. L. Zhang, L. Zhi, S. M. Moochhala, P. K. Moore and M. Bhatia, J. *Leukocyte. Biol.*, 2007, 82, 894.
- 1839 H. L. Zhang, A. Hegde, S. W. Ng, S. Adhikari, S. M. Moochhala and
 M. Bhatia, *J. Immunol.*, 2007, **179**, 4153.
- 2040 R. Tamizhselvi, P. K. Moore and M. Bhatia, Pancreas., 2008, 36, E24.
- 2141 W. M. Zhao, J. Zhang, Y. J. Lu and R. Wang, *Embo. J.*, 2001, 20, 22 6008.
- 2342 L. Liu, H. Liu, D. Sun, W. Qiao, Y. Qi, H. Sun and C. Yan, *Circ. J.*,
 24 2012, 76, 1012.
- 2543 K. J. Buckler, Pflug. Arch. Eur. J. Phy, 2012, 463, 743.
- ²⁶44 M. Lisjak, N. Srivastava, T. Teklic, L. Civale, K. Lewandowski, I.
 ²⁷ Wilson, M. E. Wood, M. Whiteman and J. T. Hancock, *Plant Physiol.*²⁸ *Bioch.*, 2010, **48**, 931.
- 2945 Y. Nagai, M. Tsugane, J. I. Oka and H. Kimura, *Faseb. J.*, 2004, 18, 30
 557.
- ³¹46 M. G. Sarr, M. S. Kasparek and D. R. Linden, *Gastroenterology.*,
 2008, **134**, A249.
- 3347 Z. G. Li, M. Gong, H. Xie, L. Yang and J. Li, *Plant Sci.*, 2012, 185186, 185.
- ³⁵⁴⁸ M. Derwall, R. C. E. Francis, K. Kida, M. Bougaki, E. Crimi, C.
 ³⁶ Adrie, W. M. Zapol and F. Ichinose, *Crit. Care*, 2011, 15, R51.
- 3749 G. Yang, L. Wu, B. Jiang, W. Yang, J. Qi, K. Cao, Q. Meng, A. K.
 Mustafa, W. Mu, S. Zhang, S. H. Snyder and R. Wang, *Science*, 2008,
- 39 322, 587.
 4050 R. Hosoki, N. Matsuki and H. Kimura, *Biochem. Biophys. Res.*41 Commun., 1997, 237, 527.
- ⁴²51 M. Ghasemi, A. R. Dehpour, K. P. Moore and A. R. Mani, *Biochem.*⁴³ *Pharmacol.*, 2012, **83**, 1261.
- ⁴⁴ 52 K. Irie, D. Ekuni, T. Tomofuji, Y. Endo, K. Kasuyama, K. Yaegaki
 ⁴⁵ and M. Morita, *J. Periodontol.*, 2012, **83**, 522.
- 4653 K. R. Olson, Antioxid. Redox. Signal., 2012, 17, 32.
- 4754 A. Sparatore, E. Perrino, V. Tazzari, D. Giustarini, R. Rossi, G.
 48 Rossoni, K. Erdmann, H. Schroder and P. Del Soldato, *Free Radic.*49 *Biol. Med.*, 2009, 46, 586.
- 5055 M. Chattopadhyay, R. Kodela, K. R. Olson and K. Kashfi, *Biochem.* 51 *Biophys. Res. Commun.*, 2012, 419, 523.
- ⁵² 56 S. J. Joris, K. I. Aspila and C. L. Chakrabarti, *Anal. Chem.*, 1970, 42,
 ⁵³ 647.
- 5457 L. Li, M. Whiteman, Y. Y. Guan, K. L. Neo, Y. Cheng, S. W. Lee, Y.
- 55 Zhao, R. Baskar, C. H. Tan and P. K. Moore, Circulation, 2008, 117,
- 56 2351.

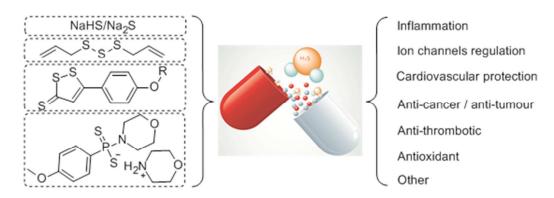
- 5758 Z. W. Lee, J. B. Zhou, C. S. Chen, Y. J. Zhao, C. H. Tan, L. Li, P. K.
 ⁵⁸ Moore and L. W. Deng, *Plos. One.*, 2011, 6, E21077.
- 5959 Z. Zhou, M. von Wantoch Rekowski, C. Coletta, C. Szabo, M. Bucci,
- G. Cirino, S. Topouzis, A. Papapetropoulos and A. Giannis, *Bioorg Med Chem*, 2012, 20, 2675.
- ⁶²60 A. Martelli, L. Testai, V. Citi, A. Marino, I. Pugliesi, E. Barresi, G.
 ⁶³ Nesi, S. Rapposelli, S. Taliani, F. Da Settimo, M. C. Breschi and V.
- 64 Calderone, *ACS Med. Chem. Lett.*, 2013, **4**, 904.
- ⁶⁵61 Y. Zhao, S. Bhushan, C. Yang, H. Otsuka, J. D. Stein, A. Pacheco, B.
 ⁶⁶ Peng, N. O. Devarie-Baez, H. C. Aguilar, D. J. Lefer and M. Xian,
 ⁶⁷ ACS Chem Biol, 2013, 8, 1283.
- 68 62 N. O. Devarie-Baez, P. E. Bagdon, B. Peng, Y. Zhao, C.-M. Park and
 M. Xian, *Org. Lett.*, 2013, 15, 2786.
- 7063 H. Amagase, B. L. Petesch, H. Matsuura, S. Kasuga and Y. Itakura, J.
 71 Nutr., 2001, 131, 951S.
- 7264 C. Szabo, Nature reviews. Drug discovery, 2007, 6, 917.
- 7365 M. Whiteman and P. G. Winyard, *Expert. Rev. Clin. Pharmacol*, 2011,
 74 4, 13.
- 7566 E. M. Monjok, K. H. Kulkarni, G. Kouamou, M. Mckoy, C. A. Opere,
- O. N. Bongmba, Y. F. Njie and S. E. Ohia, *Exp. Eye Res.*, 2008, 87,
 612.
- ⁷⁸67 L. Li, P. Rose and P. K. Moore, *Annu. Rev. Pharmacol. Toxicol.*, 2011,
 ⁷⁹51, 169.
- 8068 Y. Hu, X. Chen, T. T. Pan, K. L. Neo, S. W. Lee, E. S. W. Khin, P. K.
 81 Moore and J. S. Bian, *Pflug. Arch. Eur. J. Phy*, 2008, 455, 607.
- ⁸²69 A. G. Xuan, D. H. Long, J. H. Li, W. D. Ji, M. Zhang, L. P. Hong and
 ⁸³ J. H. Liu, *J. Neuroinflammation*, 2012, 9, 202.
- 8470 S. Sivaramakrishnan and K. S. Gates, *Bioorg. Med. Chem. Lett*, 2008,
 18, 3076.
- 8671 Y. Q. Cheng, G. L. Tang and B. Shen, J. Bacteriol., 2002, 184, 7013.
- 8772 C. Jacob, A. Anwar and T. Burkholz, *Planta Med.*, 2008, 74, 1580.
- 8873 E. G. Mueller, Nat. Chem. Biol., 2006, 2, 185.
- 8974 C. Jacob, Nat. Prod. Rep., 2006, 23, 851.
- 90 75 S. Shrotriya, J. K. Kundu, H. K. Na and Y. J. Surh, *Cancer Res.*, 2010,
 91 70, 1932.
- 9276 M. Iciek, I. Kwiecien, G. Chwatko, M. Sokolowska-Jezewicz, D.
 93 Kowalczyk-Pachel and H. Rokita, *Cell Biochem. Funct.*, 2012, 30,
 94 198.
- 9577 V. Viswesh, A. M. Hays, K. Gates and D. K. Sun, *Bioorgan. Med.* 96 Chem., 2012, 20, 4413.
- 9778 B. S. Davidson, T. F. Molinski, L. R. Barrows and C. M. Ireland, J.
 98 Am. Chem. Soc., 1991, 113, 4709.
- 9979 C. H. Kaschula, R. Hunter, H. T. Hassan, N. Stellenboom, J. Cotton,
 X. Q. Zhai and M. I. Parker, *Anti-Cancer Ag. Med. Chem.*, 2011, 11,
 260
- ¹⁰²80 M. Li, J. R. Ciu, Y. Ye, J. M. Min, L. H. Zhang, K. Wang, M. Gares, J.
 ¹⁰³Cros, M. Wright and J. Leung-Tack, *Carcinogenesis*, 2002, 23, 573.
- 10481 D. S. Liang, Y. Qin, W. R. Zhao, X. Zhai, Z. W. Guo, R. X. Wang, L.
- Tong, L. X. Lin, H. Chen, Y. C. Wong and Z. H. Zhong, *Cancer Lett.*,
 2011, **310**, 69.
- 10782 O. I. Aruoma, J. P. E. Spencer and N. Mahmood, *Food Chem. Toxicol.*, 1999, **37**, 1043.
- 10983 H. Mitsuyama and J. M. May, *Clin. Sci.*, 1999, 97, 407.
- 11084 M. R. Ariyanayagam and A. H. Fairlamb, *Mol. Biochem. Parasit.*,
 2001, 115, 189.
- 11285 E. Turner, L. J. Hager and B. M. Shapiro, Science, 1988, 242, 939.

88

Communications Accepted Manuscrip Medicinal Chemistry

- 186 A. J. Weigand-Heller, P. M. Kris-Etherton and R. B. Beelman, Prev. 2 Med., 2012, 54, S75.
- 387 I. Laurenza, R. Colognato, L. Migliore, S. Del Prato and L. Benzi, Biofactors, 2008, 33, 237.
- 588 N. G. Markova, N. Karaman-Jurukovska, K. K. Dong, N. Damaghi, K.
- 6 A. Smiles and D. B. Yarosh, Free. Radical. Bio. Med, 2009, 46, 1168.
- 789 S. J. Behroozi, W. Kim, J. Dannaldson and K. S. Gates, Biochemistryus., 1996, 35, 1768. 8
- 990 T. N. Makarieva, V. A. Stonik, A. S. Dmitrenok, B. B. Grebnev, V. V.
- Isakov, N. M. Rebachyk and Y. W. Rashkes, J. Nat. Prod., 1995, 58, 10 11 254.
- 1291 N. Hatvani, Int. J. Antimicrob. Ag., 2001, 17, 71.
- 1392 E. Block, S. Ahmad, J. L. Catalfamo, M. K. Jain and R. Apitzcastro, J. Am. Chem. Soc., 1986, 108, 7045. 14
- 1593 B. L. Predmore, D. J. Lefer and G. Gojon, Antioxid. Redox. Signal., 2012, 17, 119. 16
- 1794 A. Szilagyi, F. Fenyvesi, O. Majercsik, I. F. Pelyvas, I. Bacskay, P.
- Feher, J. Varadi, M. Vecsernyes and P. Herczegh, J. Med. Chem., 18
- 2006, 49, 5626. 19 2095 I. K. Cheah and B. Halliwell, Bba-mol. Basis. Dis., 2012, 1822, 784.
- 2196 D. Akanmu, R. Cecchini, O. I. Aruoma and B. Halliwell, Arch. Biochem. Biophys., 1991, 288, 10. 22
- 2397 J. S. Booth and M. D. Appleman, J. Bacteriol., 1963, 85, 654.
- 2498 K. H. Weaver and D. L. Rabenstein, J. Org. Chem., 1995, 60, 1904.
- 2599 L. Chu, Infect. Immun., 2002, 70, 1113.
- 2400 P. Kamoun, Amino Acids, 2004, 26, 243.
- 2101 C. A. Wagner, J. Nephrol., 2009, 22, 173.
- 2102 N. Ahmadi, V. N. Larijani, F. Hajsadeghi, M. Baskett, F. Flores, R.
- Ebrahimi, S. Tsimikas and M. Budoff, J. Am. Coll. Cardiol., 2012, 59, 29 E1347. 30
- 3103 H. Beppu, Y. Matsumoto, T. Fujino, Y. Itani, T.Sumitho, T.
- Higashiguchi, T. Chihara, I. Tamai, S. Sonoda and K. Shimpo, J. Anal. 32
- Bio-Sci., 2010, 33, 441. 33 3404 L. Li, G. Rossoni, A. Sparatore, L. C. Lee, P. Del Soldato and P. K.
- Moore, Free Radic. Biol. Med., 2007, 42, 706. 35 3105 S. Fiorucci, S. Orlandi, A. Mencarelli, G. Caliendo, V. Santagada, E.
- Distrutti, L. Santucci, G. Cirino and J. L. Wallace, Brit. J. Pharmacol., 37
- 2007, 150, 996. 38
- 3106 M. Chattopadhyay, R. Kodela, N. Nath, Y. M. Dastagirzada, C. A.
- Velazquez-Martinez, D. Boring and K. Kashfi, Biochem. Pharmacol., 40 2012, 83, 715. 41
- 4107 M. Chattopadhyay, R. Kodela, N. Nath, A. Barsegian, D. Boring and K. Kashfi, Biochem. Pharmacol., 2012, 83, 723. 43
- 4108 J. Frantzias, J. G. Logan, P. Mollat, A. Sparatore, P. Del Soldato, S. H.
- Ralston and A. I. Idris, Brit. J. Pharmacol., 2012, 165, 1914. 45
- 4109 R. Kodela, M. Chattopadhyay and K. Kashfi, ACS Med. Chem. Lett., 2012, 3, 257. 47
- 4110 N. N. Osborne, D. Ji, A. S. Majid, P. Del Soldata and A. Sparatore, Neurochem. Int., 2012, 60, 365. 49
- 5111 J. Pircher, F. Fochler, H. Mannell, P. del Soldato, U. Pohl and F. Krotz, J. Vasc. Res., 2011, 48, 260. 51
- s112 E. Distrutti, L. Sediari, A. Mencarelli, B. Renga, S. Orlandi, E.
- Antonelli, F. Roviezzo, A. Morelli, G. Cirino, J. L. Wallace and S. 53 Fiorucci, J. Pharmacol. Exp. Ther, 2006, 316, 325. 54
- 5113 S. Fiorucci and E. Distrutti, Curr. Med. Chem., 2011, 18, 3494.
- 5114 J. L. Wallace and M. J. S. Miller, Gastroenterology., 2000, 119, 512.

- st15 H. O. Pae, Y. C. Lee, E. K. Jo and H. T. Chung, Arch. Pharm. Res., 58 2009, 32, 1155.
- s116 M. V. Chan and J. L. Wallace, Am J Physiol Gastrointest Liver Physiol, 2013, 305, G467. 60
- 6117 Y. Y. Liu, A. Sparatore, P. Del Soldato and J. S. Bian, Neuroscience, 62 2011, 193, 80.
- 6118 S. Muzaffar, J. Y. Jeremy, A. Sparatore, P. Del Soldato, G. D. Angelini and N. Shukla, Brit. J. Pharmacol., 2008, 155, 984. 64
- 6119 D. Giustarini, D. P. Soldato, A. Sparatore and R. Rossi, Free Radic. Biol. Med., 2010, 48, 1263. 66
- 6120 J. L. Wallace, M. Dicay, W. McKnight and G. R. Martin, Faseb. J., 68 2007, 21, 4070.
- 6121 C. M. Park, Y. Zhao, Z. Zhu, A. Pacheco, B. Peng, N. O. Devarie-Baez, P. Bagdon, H. Zhang and M. Xian, Mol Biosyst, 2013, 9, 2430. 70
- 7122 W. Elsheikh and J. Wallace, Nitric Oxide-biol. Ch, 2012, 27, S14.
- 7123 A. Madan, T. D. Williams and M. D. Faiman, Mol. Pharmacol., 1994, 46, 1217. 73
- 7124 T. Tomasic and L. P. Masic, Expert. Opin. Drug. Discov., 2012, 7, 75 549
- 7125 M. Lee, V. Tazzari, D. Giustarini, R. Rossi, A. Sparatore, P. Del Soldato, E. McGeer and P. L. McGeer, J. Biol. Chem., 2010, 285, 77 17318. 78
- 7126 T. Roger, F. Raynaud, F. Bouillaud, C. Ransy, S. Simonet, C. Crespo,
- M. P. Bourguignon, N. Villeneuve, J. P. Vilaine, I. Artaud and E. 80 Galardon, Chembiochem., 2013, 14, 2268. 81
- 8127 Y. Zhao, H. Wang and M. Xian, J. Am. Chem. Soc., 2011, 133, 15.
- 8128 H. Robinson and S. Wray, Plos. One., 2012, 7, E46278.
- s129 B. Fox, L. Li, J. Keeble, P. Winyard, M. Wood, P. Moore and M. Whiteman, Nitric Oxide-biol. Ch, 2012, 27, S16. 85
- 8430 B. Fox, J. T. Schantz, R. Haigh, M. E. Wood, P. K. Moore, N. Viner, J. P. E. Spencer, P. G. Winyard and M. Whiteman, J. Cell Mol. Med., 87 2012, 16, 896.
- s#31 L. Li, M. Salto-Tellez, C. H. Tan, M. Whiteman and P. K. Moore, Free. Radical. Bio. Med, 2009, 47, 103. 90
- 9132 M. Whiteman, L. Li, P. Rose, C. H. Tan, D. B. Parkinson and P. K. Moore, Antioxid. Redox. Signal., 2010, 12, 1147. 92
- 9133 R. Blackler, S. Syer, M. Bolla, E. Ongini and J. L. Wallace, Plos. One., 2012, 7, E35196. 94
- 9134 J. L. Wallace, G. Caliendo, V. Santagada and G. Cirino, Brit. J. Pharmacol., 2010, 159, 1236. 96
- 9135 G. Maga, F. Falchi, M. Radi, L. Botta, G. Casaluce, M. Bernardini, H. Irannejad, F. Manetti, A. Garbelli, A. Samuele, S. Zanoli, J. A. Este, E. 98
- Gonzalez, E. Zucca, S. Paolucci, F. Baldanti, J. De Rijck, Z. Debyser 99
- and M. Botta, ChemMedChem, 2011, 6, 1371. 100
- 10136 L. L. Xu, C. J. Zheng, L. P. Sun, J. Miao and H. R. Piao, Eur. J. Med. Chem., 2012, 48, 174. 102
- 10137 S. G. Alegaon, K. R. Alagawadi, P. V. Sonkusare, S. M. Chaudhary, D. H. Dadwe and A. S. Shah, Bioorg. Med. Chem. Lett, 2012, 22, 104 1917. 105
- 10138 S. Merighi, S. Gessi, K. Varani, D. Fazzi and P. A. Borea, Pharmacol. Res., 2012, 66, 428. 107
- 10139 E. Ekundi-Valentim, L. Rodrigues, K. Santos, S. Teixeira, J. Wallace, S. Costa and M. Muscara, Nitric Oxide-biol. Ch, 2012, 27, S13. 109
- 11440 Y. Y. Liu, A. Sparatore, P. Del Soldato and J. S. Bian, Neurochem. Int., 2011, 58, 591. 111


141 M. W. Irvine, G. L. Patrick, J. Kewney, S. F. Hastings and S. J.

- 2 MacKenzie, Bioorg. Med. Chem. Lett, 2008, 18, 2032.
- 142 R. S. Bhatti, S. Shah, Suresh, P. Krishan and J. S. Sandhu, Int. J. Med.
- 4 *Chem.*, 2013, **2013**, 1.
- 5

12 | Journal Name, [year], [vol], 00-00

Hydrogen Sulfide Donors in Research and Drug Development

Zhijian Song,^{*a*} Mei Ying Ng,^{*d*} Weilu Dai,^{*b*} Thilo Hagen,^{*d*} Philip K. Moore,^{*c*} Dejian Huang,^{*b*} Lih-Wen Deng^{**d*} and Choon-Hong Tan^{**a*}

Abstract: This review summarized most of H_2S donors such as inorganic compounds, natural products, anethole trithione derivatives and synthetic compounds used in research and drug development. There special bioactivities provided us some effective strategies for antiphlogosis, cancer therapy, cardiovascular protection and so on.