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Abstract 

Dozens of previous studies in the field have dealt with the relations between transcript features and 

their expression. Indeed, understanding the way gene expression is encoded in transcripts should 

not only contribute to disciplines, such as functional genomics and molecular evolution, but also to 

biotechnology and human health. Previous studies in the field mainly aimed at predicting protein 

levels of genes based on their transcript features. Most of the models employed in this context 

assume that the effect of each transcript feature on gene expression is monotonic.     

In the current study we aim to understand, for the first time, if indeed the relations between 

transcript features (i.e., the UTRs and ORF) and measurements related to the different stages of 

gene expression are monotonic. To this end, we analyze 5,432 transcript features and gene 

expression measurements (mRNA levels, ribosomal densities, protein levels, etc.) of 4,367 S. 

cerevisiae genes. We use the Maximal Information Coefficient (MIC) in order to identify potential 

relations that are not necessarily linear or monotonic.  

Our analyses demonstrate that the relation between most transcript features and the examined 

gene expression measurements is monotonic (only up to 1%-5% of the variables, with significance 

levels of 0.001, are non-monotonic); in addition, in the cases of deviation from monotonicity the 

relation/deviation is very weak.  

These results should help in guiding the development of computational gene expression modeling 

and engineering, and improve the understating of this process. Furthermore, the relatively simple 

relations between a transcript’s nucleotide composition and its expression should contribute 

towards better understanding of transcript evolution at the molecular level. 

 

Introduction 
The association between various features of the transcript and its expression levels has been the topic of 

dozens of studies in recent years
1–7

. Earlier studies were mainly based on the codon composition of the 

coding sequence (ORF), and demonstrated that simple features based on the codon usage of the ORF 

highly correlate with the expression levels of the corresponding transcript 
8–10

. Later studies exploited a 

much larger number of transcript features for predicting gene expression (mainly at the protein level)
1–7,11

. 
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Among others, these features include GC content and folding in different parts of the transcript, length of 

the UTRs and ORFs, and more.  Some examples of previous studies in the field include Lithwick and 

Margalit who measured several transcript features association to protein abundance in prokaryotes
12

, and 

Kawaguchi and Bailey-Serres which analyzed the relation between transcript features and ribosomal 

loading in A. thaliana
13

. Ghaemmaghami et al. performed large scale measurements of protein levels in S. 

cerevisiae and showed that mRNA levels or codon usage measurements exhibit relatively limited 

correlation with protein levels
14

. Nie et al. examined several initiation, elongation and termination related 

features and found that the mRNA–protein correlation was affected the most by the features at elongation 

stages
15

. Transcript features have also been used for predicting protein levels and measurements of gene 

expression; for example, Tuller et al. used large scale data to obtain a predictor of translation efficiency in 

S. cerevisiae
3
; Vogel et al. used around 200 transcript features to explain 67% of protein abundance in 

human cell lines
1
;  more recently, Zur and Tuller used 5,432 features to predict several expression levels 

variables
11

. 

All the previous studies in the field employ models that are based on a monotonic association assumption 

(e.g., correlations and regressors) between transcript features and gene expression. However, the 

association of  two variables may be very significant and yet non-monotonic. Some examples of non-

monotonic associations include convex, concave, having multiple maxima, mutually exclusive, a 

combination of several associations, or even too complex to describe. If such associations between 

transcript features and gene expression exist, previous (and future approaches) focusing on monotonic 

relations may miss important transcript features. Thus, a fundamental open question in the field is related 

to the nature (monotonic or non-monotonic) of the relation between transcript features and their 

expression levels.  

In the current study, we aimed to provide an initial answer to this question. To this end, we employ a 

recent novel statistical approach named the Maximal Information coefficient (MIC)
16

. MIC is a rank order 

statistic that discovers associations between variable pairs without any prior knowledge regarding the 

type of association. Previous studies already used MIC for various purposes, including biological 

research
17–20

. Unlike regular correlation, which is limited to specific types of associations (such as linear 

or monotonic), MIC is not built for specific association types and can detect data associations much more 

complex than simple correlation. Therefore, MIC fits well with our main goal. This approach has been 

employed on a dataset of 5,432 transcriptional features of S. cerevisiae endogenous genes
11

 .We analyzed 

their association with various gene expression measurements in this organism: Protein Abundance 

(PA)
14,21,22

, Ribosomal Density (RD)
23,24

, mRNA levels
25

, and Proteins per mRNA molecule (PPR).   

 

Results  

Analyzing large scale expression data using MIC 

Briefly, MIC is based on the mutual information of binned values of an analyzed pair of variables
16

. The 

mutual information of a pair of variables (       ) measures the statistical dependency of the variables by 

computing the average over     
      

        
 26

; where        corresponds to the common distribution of the 

two variables, and               correspond to the marginal/independent distributions of the variables   

and   respectively. If the two variables are independent then                ; and therefore 
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  would be zero.  Conversely, if there is high dependence between the variables we would 

expect this value to be high. 

Practically, to generate distributions (                     ) for the two analyzed variables the scatter 

plot is divided to a grid, and a value        is computed for each cell in the grid (see illustration in 

Figure 1 A.) 

This is essentially part of the calculation of mutual information and therefore the strategy in MIC is to 

calculate the mutual information of all the possible grids, normalize the values to be between 0 and 1, and 

return the maximum normalized value that was found. Low MIC values suggest low dependence between 

the variables and high values suggest high dependence. MIC should be able to detect any type of relation 

between pairs of variables
16

. 

A central question in this study is related to the monotonicity of the relation between transcript features 

and gene expression. To this end, we study the deviation between MIC and Spearman correlation (   , 

by subtracting the result of Spearman correlation from the MIC result (       ). This is expected to be 

close to zero for monotonic relations (illustration in Figure 1B; more explanations in the Methods section 

and in Reshef et al.
16

) 

 
Figure 1 – A. An example of a simple association between 2 variables with 315 data points and calculated probability using a 

grid. In this case the y-axis is divided into 3 (equal) groups of data points while the x-axis is divided into 5 (non-equal) parts 

giving us a total of 15 bins. In each bin, we count the number of points that lie within it. Thus, for example, in bin 1, the 

probability to see a data point is              . Using this method one can calculate the resulting mutual information for 

every grid. MIC searches for the grid that maximizes the mutual information for a given variable pair. B. An example of a 

monotonic association with its MIC and Spearman (  ) for 50 different levels of (uniform) random noise. Both MIC and 

Spearman (  ) can be used to detect this association type and output similar scores. The red line is a linear regression between 

the MIC scores and Spearman (  ) scores with           and a slope close to one (1.15 in this case). Note that for totally 

random data Spearman would be zero, but MIC will not; thus, in this study we verify whether MIC is significantly higher than 

random by performing a permutation test (see Methods for more details). The inset includes the monotonic association we used to 

perform the analysis for this graph. 

In practice, in order to detect relations between transcript-features and gene expression measurements that 

are not monotonic we performed the following steps (more details in the Methods section):  First, for each 

expression data and feature pair we calculated its MIC (detects any statistical relation) and Spearman 

correlation (detects monotonic relations). We performed permutation tests (details in the Methods section) 

to estimate: 1) which MIC results are significant; 2) if the difference between MIC and Spearman is 
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significant (i.e., significant deviation from monotonicity). Based on these tests we discovered two 

possible relations (monotonic and non-monotonic):  

1. If the difference between MIC and Spearman    is significantly low (for example, in at least 95% 

of the permutations the difference is equal or higher), and the Spearman p-value related to the 

association is significant, we say that the relationship of the transcript feature and expression is 

significant monotonic. 

2. If the MIC score is significant and the difference between MIC and Spearman is significant (for 

example, in less than 5% of the permutations the difference is equal or higher), we say that the 

relationship of the transcript feature and expression is significant non-monotonic. Spearman 

correlation, in this case, is not enough to fully describe the association of the two variables. 

We also considered stricter thresholds than the example above (e.g., 99% and 1%; or 99.9% and 

0.1%).  

It is important to emphasize that according to our definition the meaning of a ‘non-monotonic’ 

relation is that the association cannot be fully explained via a monotonic (Spearman) relation. 

However, it does not mean that it cannot have a monotonic component and thus a significant 

Spearman correlation.  In addition, we would like to mention that a relation can have low spearman 

correlation but still be significant if the number of points is high (the p-value is a function of the 

correlation but also the number of points). 

As mentioned in the introduction, we analyzed 5,432 transcriptional features of S. cerevisiae endogenous 

genes and various gene expression measurements (PA, RD, mRNA, PPR); these data were downloaded 

from
11

. 

See Figure 2 for an illustration of the process described above and a few examples of the results MIC and 

Spearman return for monotonic and non-monotonic functions. 
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Figure 2 – A-E: Examples of associations with some random noise and their corresponding Spearman and MIC scores. A. 

Monotonic association, Spearman is 0.993 and MIC is 1.0. B. Non-monotonic association, Spearman is 0.0061 while MIC is 

0.923. MIC can detect many different types of non-monotonic associations whereas Spearman is more limited to monotonic 

associations. C. Mutually exclusive relationship, MIC is 0.7993, Spearman is 0.5075. D. Sinus (2 cycles), MIC is 0.9686, 

Spearman is 0.1391. E. Combination of two monotonic relations. MIC is 0.8930, Spearman is          F.-O.: General 

framework of the analysis: F. Large scale gene expression measurements are collected and normalized; beyond mRNA, RD and 

PA, we also calculate PPR by dividing PA by mRNA. G. Transcription (UTRs and ORFs) features are obtained for each gene. H. 

We calculate Spearman and MIC for each expression and feature pair. I. Empirical p-values based on permutation tests have been 

performed to estimate MIC significance. J. If the p-value is significant, then we filter default or zero values where applicable in 

order to be able to compare MIC and Spearman for monotonicity. K. We calculate the new MIC empirical p-value to verify result 

is still significant L. If the MIC is significant, then we calculate the p-value of the difference of        and classify each 

feature and expression pair to monotonic or non-monotonic (i.e., whether the difference between MIC and Spearman is 

significant; details in the main text). M. If the p-value is below 0.05, then the relation is classified as non-monotonic since the 

significant relationship can be explained by MIC but not by Spearman. N. If the p-value is above 0.95, we verify the Spearman p-

value is significant. O. If the p-value is significant then we say the feature is monotonic since the relationship can be equally 

explained by both MIC and Spearman. In all other cases we cannot say with high significance whether the relation is monotonic 

or non-monotonic. 
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The features with strongest associations to expression levels measurements  

At the first stage, we compared each feature to the four different measurements of expression levels: 

protein abundance (PA), mRNA levels, ribosomal density (RD) and proteins per mRNA molecule (PPR), 

using both MIC and Spearman correlation. The list of features and explanations about them appear in the 

Methods section; some of the features can be divided to large subsets (e.g., the frequency of all codon 

pairs; see also Tables S1-S5).   

Figure 3 includes the features per gene expression measurement with the corresponding MIC and 

Spearman values. Features of interest (with emphasis on those with highest significance) are labeled in 

the graph. The definitions of all the features appear in the Methods section. This figure shows that the 

strongest associations have relatively high    Spearman correlation scores. Hence, in case one would like 

to predict expression levels using transcript features, most of the attention could be focused on the 

features with high    Spearman. The figure also shows that the features with non-monotonic relations 

tend to have low MIC levels (i.e., to have weak relations) close to the non-significant relations. 

Furthermore, the regression line indicates there is a significant linear relation between MIC scores and 

Spearman (  ) scores both when considering only the monotonic significant relations and when 

considering all the MIC significant relations. See more details in the next subsection.  

 
Figure 3 – Comparison between MIC and Spearman      per feature. Blue indicates non-significant MIC (empirical p-value > 

0.05). For significant MIC, orange indicates        is significantly high (a non-monotonic relation) and green indicates that 

the difference is not significant (some overlap causes some points not to be shown in the graph). The purple line is linear 

regression for the significant monotonic associations and the light blue line shows the linear regression for all significant MIC 

features. Features with top MIC scores and comparison to Spearman correlation are also presented (Ordering was done by 
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selecting the lower p-value and, in case it’s the same, by the Z-score). Results are presented for A. mRNA, B. RD, C. PPR, and 

D. PA. 

Comparison of the MIC rankings of features for mRNA, RD, PA, and PPR using Spearman correlation is 

available in Table 1. As can be seen, there is significant correlation among the MIC ranking of features 

for mRNA, RD, and PA. On the other hand, the MIC ranking of features based on PPR is less correlative 

with the MIC ranking based on mRNA, RD, and PA The results suggest that the effect of transcript 

features on protein per mRNA (or the relation between transcript features and PPR) is relatively different 

than their effect on mRNA levels and ribosomal densities.  

  

Page 7 of 26 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 mRNA PA RD PPR 

mRNA ---    

PA 0.2855 (             ---   

RD 0.5604 (           ) 0.2664 (           ) ---  

PPR 0.1570 (         ) 0.0082 (      ) 0.1480 (       ) --- 

Table 1 – Spearman correlation (ρ2) between the rankings of features per expression level, the p-value is provided in parenthesis. 

The ranking was calculated by first sorting according to the MIC p-value and if equal the Z-score is used. As evident, mRNA, 

RD and PA have stronger similarity in ranking, while PPR MIC ranking has weaker correlation or non-significant correlation 

with the other rankings. 

Since the features with top MIC scores have high spearman correlation, most (but not all) of them have 

been reported in previous studies
1,3–5,7–9,11,12,27

. This result supports the previous conclusions and also the 

MIC method.  In most gene expression databases, the tRNA adaptation index (tAI)
8
 and Codon 

Adaptation Index (CAI)
9
 rank high; these features depict the association of codon usage bias with the 

expression levels. The strong relation between codon usage bias and expression levels has been reported 

in many previous papers
3,12,25,28

; as was suggested in previous studies, it can be a result of causal/direct 

relation (codon usage bias improves various aspects of gene expression), non-causal relation (the relation 

between codon usage bias and expression is not direct and or with opposite direction: expression levels 

contribute to higher codon usage bias and not vice versa), or a superposition of both explanations
5,29

.   

Various features that are based on Parallel Analysis of RNA Structure (PARS)
30

, which are related to the 

experimental measurements of the strength of the folding of the mRNA sequence in various regions 

(Methods), are also in the top ranks; the strong relation between PARS and expression levels has been 

reported in the past
27

. Predictions of the translation rate by a model based on the Totally Asymmetric 

Simple Exclusion Process (TASEP) of ribosomal movement (see details in the Methods section) has a 

very high score in the case of mRNA for both MIC and Spearman; this may be explained by 

global/indirect selection for translation in highly expressed genes to improve ribosomal allocation
31

; 

TASEP is also evident in RD and PA. PPR gives different results, it is calculated by dividing PA by 

mRNA which reduces the score of features that have similar correlation for PA and mRNA, and 

emphasizes features that have strong association with PA (a super position of translation and protein 

degradation), but weak association with mRNA (a super position of transcription and mRNA 

degradation). 

Specific top ranked features in the case of mRNA are as follows (Figure 3 A.) – TASEP has the strongest 

association followed by mean PARS exponent on: 1. 5’UTR and ORF, 2. ORF, 3. Entire transcript; tAI 

and CAI are next in rank. Subsequently, mean PARS exponent of the last 40nt in the 5’UTR and the first 

40nt in the ORF as well as mean PARS exponent of the 5’UTR and the first 40nt in the ORF, although 

their MIC and Spearman scores are somewhat higher than some of the previously mentioned features. 

In the case of RD (Figure 3 B.), tAI has the strongest association followed by CAI. The next features are: 

the frequency of the codon TGT, the frequency of the codon CAT, the TASEP, and the mean PARS score 

on various parts of the transcript (Methods). The next feature is the frequency of the codon ACG.   

In the case of PPR (Figure 3 C.), the highest rank is the entire transcript length followed by the mean 

metabolic cost for frame shifted ORF in the main ORF (sORF); the metabolic cost (‘cost’ in Figure 3) of 

the main ORF, short ORF that appears in the UTR (uORF), or sORF is the sum of the metabolic/energetic 

cost for biosynthesis of all the amino acids encoded in these ORFs/uORFs/sORFs in S. cerevisiae (see 
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details in the Methods section). There are overall 32 features related to the mean and maximum length 

and metabolic cost of the sORF that are ranked high; finally, aside from the transcript length, the ORF 

length is also highly ranked.  

In the case of PA (Figure 3 D.), both tAI and CAI present the strongest association with similar scores 

followed by features related to the PARS score for various parts of the transcript. We then have a diverse 

group of features with strong association which includes: the frequency (codon usage) of codon TGT, the 

mean PARS of ORF, TASEP, the mean PARS of 5’UTR and ORF, the frequency of codon ACG, and the 

mean PARS of the entire transcript.  

Most MIC significant features have monotonic relations with expression levels  

At the next step, we compared the MIC value and spearman correlation of the features (Figure 3). Since 

MIC performs an exhaustive search its value is not absolute zero for pairs of variables with no 

association. However, by calculating p-values based on a permutation test (Methods) we can find all the 

associations that are significant. Figure 3 includes the features per gene expression measurement, marked 

as monotonic, non-monotonic and those that did not have significant association with the gene expression 

measurement (see explanations in the previous section and the Methods section). This figure shows that 

the strongest associations are monotonic; the non-monotonic features have lower statistical significance 

and lower scores. 

We then performed linear regression for monotonic features with significant MIC between their MIC 

score and their corresponding Spearman correlation     . The results are presented in Figure 3 and in 

Table 2. Very similar results were obtained when considering all features with significant MIC (R
2 
> 0.71 

in all cases).  
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 mRNA RD PPR PA 

Total features 4773  4733 3646 3681 

Significant MIC 1891 1033 1178 404 

Significant non-monotonic 48 115 32 69 

Significant monotonic 1289 434 951 195 

Significant monotonic linear regression (R
2
) 0.9391 0.9301 0.755 0.9807 

Significant MIC linear regression (R
2
) 0.9175 0.9004 0.7196 0.9678 

Significant MIC that pass FDR (q=0.05) 1537 645 840 227 

Significant non-monotonic that pass FDR (q=0.05) 8 9 0 7 

Significant monotonic that pass FDR (q=0.05) 1051 313 687 168 

Z score-based Significant MIC that pass FDR 

(q=0.05) 
1657 758 939 269 

Z score-based Significant non- monotonic that pass 

FDR (q=0.05) 
8 17 1 12 

Z score Significant monotonic that pass FDR 

(q=0.05) 
1067 405 741 170 

Table 2 – MIC and Spearman comparison for empirical p-value < 0.05. For each expression level, the vast majority of the 

features are monotonic. As can be seen, the    of the linear regression between the features marked as monotonic or MIC 

significant is relatively high. For detailed results see tables S1-4. 

 

As evident, in all gene expression measurements there is a very high correlation between the MIC score 

and Spearman correlation (R
2 
> 0.71 in all cases; Table 2). Thus, high Spearman correlation is usually an 

indication of high MIC scores and a high MIC score is usually an indication for a strong monotonic 

relation.  

Furthermore, there are very few features with significant        which have relatively high MIC 

values and relatively low Spearman values; these features are depicted by an orange color in Figure 3. 

The opposite does not exist – relatively high Spearman values with relatively low MIC values; this is 

expected, as MIC should be able to report non-monotonic relationships that can be detected via Spearman 

correlation. 

Moreover, most of the non-monotonic associations are associated with less significant p-values: 

According to Table 2, for a p-value cutoff of 0.05 2%-18% of the features are non-monotonic. However, 

for a stricter p-value cutoff of 0.01 (Figure 4) 1%-8% of the features are non-monotonic, and for a p-

value cutoff of 0.001 (Figure 4) only 0%-5% of the features are non-monotonic.  
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Figure 4 – Measurements per p-value of monotonic and non-monotonic features for each expression type. The graphs show that 

the more strict the p-value the higher the percentage of monotonic features as opposed to non-monotonic features. This result 

demonstrates that the more significant features are monotonic. A. Using an empirical p-value, the percentage of monotonic and 

non-monotonic features out of all the significant features. B. Using a Z score p-value, the percentage of monotonic and non-

monotonic features out of all the significant features. 

 

The number of features after running False Discovery Rate is also available in Table 2. This result agrees 

with all the data presented above where the portion of the monotonic features is much greater than the 

portion of the non-monotonic features. For an empirical p-value only 0%-3% of the MIC significant 

features that pass FDR filtering are non-monotonic, and when using a Z score p-value (Methods) only 

0.1%-5% of the MIC significant features that pass FDR filtering are non-monotonic.  

Some selected results of statistically significant monotonic features are presented in Figure 5. These 

features have been discussed in the previous section, the figure illustrates the monotonicity of the 

relations.  
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Figure 5 – Some examples of several relations found to be significantly monotonic (all presented results have MIC empirical p-

value      , very low Z-score p-value and difference Z-score p-value ≈ 1). Results are presented for A. TASEP and mRNA. 

B. RD and mean PARS exponent of ORF. C. PPR and Transcript length. D. PA and tAI. 

 

Examining some significant non-monotonic features 

As mentioned above, the vast majority of the analyzed features/gene-expression measurements do not 

exhibit significant non-monotonic relations.   

There are a few features that have significant non-monotonic association with the expression level; in the 

remainder of this subsection we report a number of them. All results presented here are with empirical p-

value <        and pass Z score p-value FDR < 0.03. For example, the relation of PARS (measurements 

of mRNA folding strength) of the first 40nt in the ORF vs. mRNA levels has MIC of 0.1864, which is 

very significant (Z-score p-value is          ). RD also has significant associations with several PARS-

related features that are non-monotonic, and the maximum metabolic cost of the sORF (small ORFs that 

appear in the coding region frame shifted relatively to the main ORF) across all frames for the first 30 

codons is not monotonic (a MIC score of  0.1133 and the deviation from monotonicity Z-score based p-

value is          ). See the Methods section for more details on the aforementioned features. 

PPR has fewer relations that are highly significant non-monotonic; the feature with the highest non-

monotonic ranking is the CAI of 40nt in the ORF starting from nt 33 (with MIC score 0.1592 and Z-score 

p-value of          ). PA also has several non-monotonic relations with PARS-related features and with 

CAI of 40nt in the ORF starting from nt 47 (which has MIC of 0.148 and Z-score p-value         ). For 

a complete list of the results – see tables S1-4. 
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Some select results of statistically significant non-monotonic features are displayed in Figure 6. The few 

features that are significant non-monotonic usually exhibit relatively low MIC scores (in all these cases 

the MIC scores < 0.19); nevertheless here we will briefly review some of the significant non-monotonic 

features (Figure 6 A-D).  

The non-monotonic relation between PARS (Parallel Analysis of RNA Structure), an experimental 

measure of the tendency of a nucleotide to be base paired when the mRNA sequence fold, near the 

beginning of the ORF and mRNA measurement (Figure 6 A.) may be explained by the fact that, in these 

regions, mRNA folding plays an important role in gene translation regulation and more generally its 

expression levels. However, the exact direction of the relation between the mRNA folding and the 

translation efficiency in this region is strongly related to the position within the ORF. In addition, the 

strength of the selection positively correlates with the expression levels of the gene. It is important to 

emphasize that since there is strong correlation between mRNA levels and protein levels (genes undergo 

in parallel selection for transcription and translation efficiency), some of the reported signal may be 

related to translation and not only to transcription. Specifically, it was observed that the very first codons 

of  the ORF (less than the first 10 codons) and the 5’ end of the 5’UTR are under selection for weak 

mRNA folding (low PARS score), probably for improving the recognition of the START codon by the 

pre-initiation complex
29,31,32

.Thus, in this region, PARS score should have negative correlation with 

expression levels. However, it was shown that subsequent codons (codons ~10-25) are under selection for 

strong folding of the mRNA, presumably to prevent for the pre-initiation complex from continuing 

scanning after the start codon and from initiating translation from wrong alternative start codons 

downstream from the START codon
33–35

. Thus, in this region, the PARS score should have positive 

correlation with expression levels. In addition, strong folding was shown to be negatively correlated with 

translation elongation speed
33

 (it may also affect transcription elongation in a similar manner), negatively 

contributing to protein levels and mRNA levels. 

 It was also suggested that strong folding over the entire transcript is generally positively correlated with 

mRNA levels and translation efficiency, presumably to prevent aggregation of mRNA molecules
27

, and it 

may also be related to mRNA half life
36

. Thus, while folding at the beginning of the ORF is clearly 

related to the expression levels of the gene, the direction of the relation may vary among genes as the 

exact boundaries between the regions mentioned above are probably gene/context depended, resulting in a 

significant but non-monotonic relation.   

Glutamine is the most abundant amino acid and one of the 2/5 amino acids with lowest metabolic cost in 

respiratory/fermentative conditions respectively
37

, thus we expect a negative relation between the 

expression levels of a gene and the frequency of Glutamine in the protein it encodes. However, the fact 

that the relation between Glutamine frequency and ribosomal density is not monotonic (Figure 6 B.) may 

suggest that there are additional interactions between Glutamine and ribosomal density, translation 

efficiency, and protein functionality. For example, it is possible that the ribosomes tend to translate 

transcripts that encode more Glutamine efficiently since this amino acid has no charge and hence does not 

interact with its exit tunnel 
33,38,39

; it is also possible that certain groups of highly/lowly expressed genes 

tend to have high frequency of Glutamine due to its effect on their function
40

. 

 

Page 13 of 26 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



The non-monotonicity of the CAI near the beginning of the ORF (Figure 6 C.) may be explained by the 

fact that this region undergoes selection to include codons with relatively lower CAI in comparison to the 

codons downstream of this region 
41

. Specifically, it was shown that when compared to the subsequent 

codons, the first 30-50 codons in S. cerevisiae tend to be relatively less adapted to the tRNA pool, and 

that this signal is under stronger selection in highly translated genes
41

. The fact that genes with high PPR 

tend to have higher CAI in general, but also a strong signal of relatively lower CAI at the beginning, 

probably contributes to this non-monotonic relation.   

Moreover, it was reported that additional signals related to gene expression tend to be encoded near the 

beginning of the ORF and undergo stronger selection in highly expressed genes, thereby affecting the 

codon usage bias and the CAI in this region 
5,29,31–33,35

. It is possible that these signals also contribute to 

the non-monotonic relation between CAI at the beginning of the ORF and PPR 

Furthermore, it is important to mention that the relation between the CAI of the entire coding region and 

PPR is monotonic (see supplementary table 3); this is not surprising since it was suggested that highly 

expressed genes tend to undergo selection for specific (presumably “optimal”) codons (see, for example, 

Plotkin and Kudla
5
).   

Finally, the non-monotonic relation between the CAI at the beginning of the ORF and other measurement 

of expression levels (e.g., PA and mRNA) were less significant than in the case of PPR. This fact 

supports the conjecture that the effect of CAI in this region on translation (and not, for example, 

transcription and/or mRNA degradation) mostly contributes to the evolution of this region; specifically, 

translation is related to PPR, and transcription/mRNA degradation, which are related to mRNA are also 

partially related to PA (since PA is a result of both transcription and mRNA levels). See Figure S2 for 

comparison of the CAI in the same window per different gene expression measurements. 

The non-monotonic relation between the PARS of the 3’ UTR and PA (Figure 6 D.) can be explained by 

the various (positive and negative) relations between folding strength and expression levels mentioned 

above
27,29,31–33

. In addition, it was suggested that signals related to mRNA transport and degradation are 

encoded in this region and thus may be affected by its folding
42

. 
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Figure 6 – Some examples of relations found to be significantly non-monotonic (all presented results have MIC p-value ≤    ). 

Results are presented for A. PARS calculation of the first 40nt of the ORF with its relation to mRNA; in this case, the MIC score 

is 0.1864 and Spearman (  ) is 0.0595; the difference p-value is low suggesting a non-monotonic association (empirical p-value 

     , Z-score p-value          ). B. Glutamine amino acid usage (defined as the percentage of Glutamine in the protein) 

vs. RD. has a MIC score of 0.1 and Spearman (  ) of only        (the difference empirical p-value         and Z-score p-

value          ). C. CAI of a windows size of 40nt in the ORF starting from nt 33 compared to PPR; in this case, the MIC is 

0.1592 and the Spearman (  ) is 0.009 (the difference empirical p-value is       , Z-score p-value         ). D. Average 

PARS across entire 3’UTR compared to PA; in this case, the MIC is 0.1679 and the Spearman 0.0082 (the non-monotonic 

empirical p-value           , Z-score p-value        ). 

Discussion 
The results reported in current study support the conjecture that in S. cerevisiae the strong relation 

between transcript features and various steps of gene expression are monotonic: i.e., increase/decrease in 

the value of the transcript feature corresponds to higher/lower levels of gene expression.  It is important to 

emphasize that in the current study we focused on S. cerevisiae, the organism with most abundant large 

scale measurements of all gene expression stages. It is possible that in other organisms (e.g., prokaryotes 

and/or multi-cellular organisms) the associations between transcript features and gene expression are 

more complex. In addition, S. cerevisiae is known to undergo translational selection
8,43

. Thus, it is 

possible that the results reported here will be different for organisms with weaker selection for translation 

and non-synonymous aspects of the transcript
43

. Further studies on the topic for other organisms, such as 

mammals, will help understanding if the reported results are unique to S. cerevisiae. The answer to this 

question is deferred to future studies. 

In addition, here we analyzed a large set of 5,432 features; some of these features were based on prior 

knowledge of this topic and have been suggested in previous studies, and others were not based on 

specific prior knowledge (details in the Methods section). It is possible that there are simple, yet to be 
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discovered, transcript features with non-monotonic relations with gene expression. We would like to 

emphasize that in many of the features default values and/or the zero value are over-represented. This 

may bring about a Spearman    score that is not significant, to relations that are actually monotonic, if 

these values were not included. We also want to mention the possibility that some non-monotonic 

relations are more sensitive to noise, contributing to lower number of detected non-monotonic 

associations. 

The results reported here have important applications to various disciplines:  

For example, they should aid in understanding the way transcript features interact with the intracellular 

machinery to affect the expression of the transcript. Our results support the conjecture that for S. 

cerevisiae, in most cases, each transcript feature tends to affect expression in the same direction no 

matters what the expression levels of the transcript, and what is the level and the direction of the effect of 

the feature on expression.  

In addition, the reported results should help developing computational predictive models of gene 

expression aspects based on transcript features. Specifically, our results suggest that relatively ‘simple’ 

monotonic machine learning models (e.g., regressors) that can be inferred in a computationally efficient 

manner may achieve similar performances as more ‘complicated’ models.  

Furthermore, in relation to the previous point, the reported results should help developing efficient 

synthetic biology based approaches for engineering gene expression based on manipulation of transcripts’ 

nucleotide composition; if we know that the relations between features of the transcript and their protein 

levels are usually monotonic, then one can reduce the search space of the transcript sequences that 

optimize a certain gene expression objective function.  

Finally, it was suggested that various types of mutations (point mutations, deletions/duplications of genes, 

etc.) affect transcript evolution via their effect on its gene expression
5,44–48

. The analyzed features include 

both discrete features (that obtain a value from a small set of possible values; e.g. GC content) that can 

measure the effect of point mutations, and also features that are continuous and may be related to the 

accumulation of many mutations. Thus, our result should contribute towards developing novel models of 

molecular evolution and population genetics that connect mutations to fitness via their effect on 

expression. Specifically, the reported results support the conjecture that at least when considering 

mutations that affect gene expression, a monotonic relation between mutations and fitness can usually be 

assumed.     

 

Methods 

Gene expressions data sources 

All gene expression levels are taken from 
11

, the data sources used to obtain these expression levels are 

available here to provide complete description. 

mRNA levels: Large scale measurements for S. cerevisiae are available from Ingolia et al.
23

. There are 

measurements for 5,295 genes, and included values for 4,176 /4,367 genes participating in the study. 
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Ribosomal densities: Large scale Ribosomal Densities (RD), defined as the number of ribosomes 

occupying the transcript divided by its length, were taken from two datasets, each generated by a different 

technology. The first dataset was generated more recently by Ingolia et al.
23

 (4,648 genes, and included 

values for 3,954 /4,367 genes participating in the study), and the second by Arava
24

 (5,181 genes, and 

included values for 4,015/4,367 genes participating in the study). The two RD datasets were averaged 

(after normalizing each dataset by its mean), in order to minimize experimental noise (resulting with 4316 

genes, which included values for 3,682/4,367 genes participating in the study). 

Protein Abundance: Four large scale datasets were used to calculate Protein Abundance (PA): 

Ghaemmaghami et al.
14

 (3,839 genes, and included values for 3,263/4,367 genes participating in the 

study), two large scale measurements in two conditions from Newman et al.
21

 (2,508/2,433 genes, and 

included values for 2,250 and 2,187/4,367 genes participating in the study respectively), and large scale 

protein abundance from Lee et al.
22

 (2,360 genes, and included values for 2,117/4,367 genes participating 

in the study). Similarly to the RD, the four datasets were averaged to reduce experimental noise (resulting 

with 1,448 genes, which included values for 1,343/4,367 genes participating in the study). 

Proteins per mRNA molecule (PPR), (Protein Abundance)/(mRNA levels): is the number of proteins 

produced on average from an mRNA molecule and termed proteins per mRNA molecule, or PPR for 

short. We added this feature as it is directly related to the translation stage, unlike PA which is related to 

both mRNA levels (transcription and mRNA degradation) and translation. The final number of proteins 

(PA) is related to mRNA levels the output of the transcription stage (and also related to mRNA 

degradation rate), and the post-transcriptional regulatory stages related to generating proteins from the 

mRNA sequence (e.g., gene translation and protein degradation). 

Transcript features 

All the features analyzed in this study, a total of 5,432, were taken from
11

, below is a brief summary of 

the features for which we presented results herein. Additional features that were not mentioned in the 

Results section are available in the supplementary material  

Measured folding energy: Recently, a new technology for measuring folding strength of RNA sequences 

at single nucleotide resolution was developed by Kertesz et al.
49

. The product of this method, named the 

Parallel Analysis of RNA Structure (PARS) score, includes the estimated ratio between the probability 

that each nucleotide in the transcript is in a double-stranded conformation and the probability that it is in a 

single-stranded conformation. The PARS score was computed in vitro for transcripts devoid of any 

ribosomes. The PARS is a global feature and thus relevant only to the combined predictor, and includes 

the mean PARS over each respective segment and over the entire transcript, first 40nt of the ORF, last 

40nt of 5'UTR, last 40nt of 5'UTR and first 40nt of ORF, entire 5'UTR and first 40nt of ORF, entire 

5'UTR and entire ORF, first 40nt of 3'UTR, first 40nt of ORF and first 40nt of 3'UTR, first 40nt of ORF 

entire 3'UTR, entire ORF and entire 3'UTR. Additionally the exponent of each of these features was used, 

in which the ratio of probabilities is used (instead of the original log ratio) of each nucleotide. For each 

transcript, The PARS score of its nucleotides is average, and the result represents the PARS (mF strength) 

exponent score. 

The number, mean and maximum length and metabolic cost of uORFs in the UTRs: An Upstream 

Open Reading Frame (uORF) is a very short Open Reading Frame (ORF) within the UTR. The 5’UTR 

predictor includes the number, mean and maximum length and metabolic cost of uORFs across the entire 
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and last 30 codons of the 5'UTR. The 3’UTR predictor includes the number, mean and maximum length 

and metabolic cost of uORFs across the entire and first 30 codons of the 3'UTR. The features are 

calculated for each of the 3 frame shifts and across all frames. We also considered the following features:  

the number, mean and maximum length and metabolic cost of uORFs across the entire and last 30 codons 

of the 5'UTR allowing ending in the ORF. The total metabolic  energy costs of amino acids in S. 

cerevisiae under respiratory conditions were taken from Wagner
37

, and the metabolic cost of a peptide 

was calculated as the sum of the energy cost of the amino acids composing it. Peptide length was 

measured as the number of nucleotides composing it. 

The number mean and maximum length and metabolic cost of shifted ORFs (sORFs) in the coding 

sequence: An sORF is a frame shifted truncated ORF, starting with an alternative ATG (START codon) 

in the ORF and terminating with a stop codon (all are frame shifted relatively to the main ORF). We 

considered features such as the number, mean and maximum length and metabolic cost of sORFs across 

the entire first 200 codons and first 30 codons ORF. In addition, the number, mean and maximum length 

and metabolic cost of sORFs across the entire and first 200 codons of the ORF allowing ending in the 

3’UTR. The features are calculated for each of the 3 frame shifts and across all frames. 

The Codon Adaptation Index (CAI): a technique for analyzing codon usage bias. The CAI
9
 measures 

the deviation of a given protein coding gene sequence with respect to a reference set of genes. Ideally, the 

reference set in CAI is composed of highly expressed genes, so that CAI provides an indication of gene 

expression levels under the assumption that there is translational selection to optimize gene sequences 

according to their expression levels. The CAI is simply defined as the geometric mean of the weight 

associated to each codon over the length of the gene sequence (measured in codons): 

        
 

 
          

 

   

  

For each amino acid, the weight of each of its codons, in CAI, is computed as the ratio between the 

observed frequency of the codon (fi) and the frequency of the synonymous codon (fj) for that amino acid: 

   
  

       
                                       

The ORF predictor includes the mean CAI across the entire ORF, and the first 100 sliding windows of 

length 40nt of the ORF. The combined predictor includes these features. 

Coding sequence tRNA Adaptation Index (tAI): a statistical model for measuring adaptation of codons 

to the tRNA pool.   It assumes that the relative concentrations of the tRNA molecules that recognize a 

codon have a strong effect on the codon translation efficiency. This measure is determined by combining 

thermodynamic properties of the codon-anticodon interaction, taking into account that due to wobble 

interactions, several anti-codons can recognize the same codon, with different efficiency weights. The 

tAI
8
 gauges the availability of the different tRNA molecules for each codon along an mRNA. 

To calculate tAI we define the absolute adaptiveness,    , for each codon   as 
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where        the copy number of the j
th
 tRNA that recognizes the i

th
 codon, and let     be a parameter 

corresponding to the efficiency of the codon-anticodon coupling between codon i and tRNA  j. The     

are inferred optimizing the correlation between the tAI and gene expression measurements. 

From    we obtain   , which is the relative adaptiveness value of codon  , by normalizing the   's values 

(dividing them by the maximal of all the 61   ). 

The final tAI of a gene,  , is the following geometric mean: 

           

  

   

 

    

 

Where     is the codon defined by the k
th
  triplet on gene  ; and    is the length of the gene (excluding 

stop codons). Thus, the tAI of a gene is a number between 0 (extremely non-efficient codons) and 1 

(utmost efficiency). 

The ORF predictor includes them mean tAI across the entire ORF, and the first 100 sliding windows of 

length 40nt of the ORF. The combined predictor includes these features. 

Totally Asymmetric Exclusion Process (TASEP): The TASEP is a stochastic flow model of translation 

elongation, whose output is the predicted translation rate
50–52

. In the TASEP, initiation time as well as the 

time a ribosome spends translating each codon are exponentially distributed with a codon dependent rate. 

In addition, ribosomes span over several codons and if two ribosomes are adjacent, the trailing one is 

delayed until the ribosome in front of it has proceeded onwards. 

Codon Usage: in this context is the frequency of each codon per gene. These 64 features are related to the 

ORF.  

Codon Usage Pairs: in this context, is the frequency of pair of codons in a gene. These 4096 features 

(since there are 64*64 possible pairs of codons) are related to the ORF. 

Amino Acid Usage: in this context is the frequency of each amino acid per gene. These 20 features are 

related to the ORF.   

Amino Acid Usage Pairs: in this context is the frequency of each amino acid pair per gene. These 400 

features are related to the ORF.  

General description of the calculations of MIC scores  

As mentioned, we took from Zur & Tuller
11

 the 5,432 transcriptional features of 4,367 S. cerevisiae 

endogenous genes, as well as measurements of Protein Abundance (PA), Ribosomal Density (RD), 

mRNA levels and Proteins per mRNA molecule (PPR). 

For each pair of expression type and feature we calculated the maximal information coefficient (MIC) 

statistic
16

. This coefficient enables detecting non-trivial relationships between variable pairs. One 

advantage of MIC is that it can detect relationships without prior knowledge of the type of relationship. 
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For example, MIC can detect linear, mutually exclusive, cubic and sinusoidal relations, and will generally 

have a greater score for these relations than just random data. 

For each expression and feature pair, we first discarded the measurements that had missing values 

(denoted by NaN) in either the expression or the feature, leaving us with a fully defined pair. 

Furthermore, we discarded features that had less than 40 genes with a value that is either non-zero or not 

default. For each pair we recorded the resultant number of variables along with the MIC score. 

Using p-values and Z-scores to rank results via permutation tests 

 

A MIC score that corresponds to no signal has a score which is slightly above zero. This value greatly 

depends on the number of data points (number of genes with measurements in our case). For example, in 

the case of RD with 3,682 measurements, we see the non-significant MIC values (     ) range between 

0.068 and 0.0926 and the minimal value for which MIC is significant (     ) is 0.079. Thus, in order to 

find which MIC results are significant we calculated an empirical p-value based on a permutation test of 

the results. For each feature-expression pair we calculate the empirical p-value by choosing random 

permutations of the feature and expression data (we permute the actual values and not the transcript 

sequences). Choosing a permutation preserved many characteristics of the data while still allowing us to 

verify if the MIC results are significantly higher than random. Besides the MIC calculation, we also 

calculated Spearman correlations for the same permutation, and the difference between MIC and 

Spearman (      ). We then referred to the MIC as significant if its value was higher for more than 

95% of the permutations, and we referred to the results as non-monotonic if the        value was 

higher for more than 95% of the permutations.  

The task of calculating many random permutations and calculating MIC for each permutation is CPU 

intensive and therefore we divide the task to smaller sub-tasks and performed the calculations using 

parallel computing. To obtain random independent values we used the Mersenne Twister random number 

generator and for each sub-task we choose a randomly generated seed. 

The empirical p-value is then calculated by counting the number of cases the MIC score of the random 

permutation is greater or equal to the MIC score of the real data (without permutation). By dividing this 

value by the number of total permutations we performed, we obtain a likelihood ratio for a MIC value to 

appear in random data. The same process is also performed on the difference between the MIC score and 

the Spearman    value, thus obtaining the        empirical p-value. 

The empirical p-values were computed as follows: First, we estimated a p-value based on 1,000 

permutations. In the cases that this initial p-value did not give high enough resolution (i.e., the MIC p-

value was 0; or the        p-value was 0 or 1) we performed additional permutations until we 

obtained enough permutations for determining if the feature passed FDR filtering; for example, in the 

case of PA we have 3681 features, thus if the MIC p-value is still 0 or the        p-value is 0 or 1, the 

number of permutations required is                  . 

In case a p-value remained 0 after completing all the permutations, we continue to randomly permute the 

data and calculate the MIC until we reach at least 100,000 permutations. If the p-value is still 0 we 

consider it to be       and if the p-value of        is 1 we consider it to be         . 
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In many instances the real values were higher than all the values obtained in the permutation, only 

allowing us to give an upper bound for the p-value, but not being able to rank it. Increasing the number of 

permutations helped slightly, but we still got a large portion of the associations in the top ranks without 

the ability to actually rank them. We therefore calculated the standard score (Z-score) of the same random 

data by calculating the results average and standard deviation where 

  
   

 
 

Where x is the value obtained for the real data, and    is the estimator for the mean obtained by 

calculating the average of all the sampled randomized data. For given   measurements it is calculated by: 

  
 

 
   

 

   

 

  is the estimator for the standard deviation of all the sampled randomized data. Its calculation is: 

   
 

   
       

 

 

   

 

We then verified that we can indeed use Z-score (that is, randomization by calculating the normal 

cumulative distribution value for each Z-score and comparing it to the empirical p-value). To better 

compare the Z-score to the empirical p-value we first transformed the Z-score to a p-value (a value 

between 0 and 1 instead of an unbounded Z-score). This is done by calculating the probability that an 

observed value is above the Z-score using the standard cumulative distribution function. In practice, this 

is done in Matlab.  

We will denote this value as Z-score p-value and the p-value we obtained through permutation as 

empirical p-value. 

Results showed a clear linear relation between the two p-values, after excluding cases where the feature 

had less than 40 non-zero or default values (which we deemed features that do not contain enough 

information to be useful to evaluate the association with the expression level). An example of this 

relationship is presented in Figure 7. 
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Figure 7 – Results comparing the empirical permutation p-value to the Z-score p-value for mRNA. In both cases there is a strong 

linear association of the two (         ). A. MIC empirical p-value compared to Z-score p-value. B. Empirical p-value of 

       compared to its Z-score p-value. The figure does not include features with less than 40 non-zero/non-default values. 

Controlling the false discovery rate 

We calculated FDR using Matlab with the procedure introduced by Benjamini and Hochberg
53

. Prior to 

calculating FDR, we first ignore the features that have less than 40 non-zero/non-default values. To 

control the FDR of        we run FDR twice. The first time we run with the difference (non-

monotonic) p-value (      ), and in the second we calculate it for         . The first calculation is 

used to determine non-monotonic features that pass the FDR, the second is to determine monotonic 

features that pass the FDR.  

Counting the features that pass FDR is done by checking which features have result values of less than 

0.05. Just as with the p-value, a feature is significant if both the data MIC FDR and the filtered data (data 

without zero/default values) MIC FDR are      . We then consider only features that are MIC 

significant when examining whether they are monotonic or non-monotonic, and calculating only those p-

value FDRs. A feature is considered non-monotonic if its MIC FDR is significant and if the        

FDR is      . A feature is considered monotonic if its MIC FDR is significant and the        FDR 

for          is       . In all other cases we consider the feature to be non-significant monotonic/non-

monotonic. 

Detecting non-monotonic features and ranking features 

We first check whether the MIC p-value is       to determine if it is significant or not. To determine 

monotonicity, we first note that in many cases the feature data includes many data points which have a 

zero value or given a default value when the feature was devised. For example, if several genes do not 

have a specific codon, then, for those genes, the feature that measures the incidence of that codon would 

be zero. However, although the feature value was constant and equal to zero, the expression level was 

different for these genes. This sometimes creates visually 2 types of relations – the first for non-default or 

non-zero values and a second distinct vertical line for cases where there was no relevant measurement for 

the feature; see an example in Figure S1. In order to convincingly compare MIC to Spearman we 

performed a two-phase approach. The first phase was to compare MIC without any change to random 

permutations and we calculated the p-value. In the second phase we removed from the features the default 

value (and if no default value was defined, we remove the zero value if it is applicable). We then 

recalculate MIC and Spearman, recalculate the p-value and also calculate the p-value of the difference 

between MIC and Spearman (      ). 

This last comparison of        is a similar approach to Reshef et al.
16

, who used Pearson correlation 

to check whether the association is linear or non-linear. Spearman is calculated with Pearson on the 

ranked data, and MIC is invariant to order preserving transformation
16

, such as ranking. We can therefore 

compare MIC of the data (which is equal to MIC of the ranked data) to Spearman (which is Pearson of the 

ranked data) and obtain a measurement of monotonicity. We also observed that MIC is roughly equal to 

   when the only association is monotonic (see, for example, Figure 1 B.). However, when the 

association exists and it is non-monotonic MIC remains high while Spearman is low, making        a 

very useful measurement. 
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Since MIC should be robust to such changes we consider only results that have a significant MIC p-value 

(where p-value < 0.05) in both cases. We use the p-value of the comparison after the manipulation 

because we expect Spearman to give us more accurate results whether the relationship is monotonic or 

non-monotonic. In the case where the difference p-value < 0.05, we classify the relationship as non-

monotonic since we found a significant difference. In the case where the difference p-value > 0.95, we 

verify the Spearman p-value is also significant. Therefore, if the difference p-value >0.95 and the 

Spearman p-value <0.05 we classify the relationship as monotonic since we did not find a significant 

difference. In all other cases we would say the relationship is non-significant monotonic/non-monotonic. 

MIC implementation details 

MIC is a rank order statistic that enables exploration of variable pair relationship out of thousands of 

variable pairs. MIC ranges between 0 and 1, but it’s important to emphasize that MIC doesn’t return an 

absolute zero value for random data. Instead, it will return a lower value for random data compared to 

data of the same size that has a real association. We therefore need to be certain a MIC value is significant 

compared to random permutations before declaring two variables are related. It is also worth noting that 

MIC is more computationally intensive than simpler statistic measurements, such as Spearman. This is 

necessary because it allows MIC to detect more complex associations than simpler statistics. 

All the code was written and executed in Matlab, two specific helper functions were written in C++ since 

the pure Matlab execution time was inadequate. To verify the calculation yields correct results, we took 

the PA MIC results of the first 100 features and compared it to the results provided by the implementation 

presented by Reshef et al.
16

. All results used the default values of n=0.6 and clumpFactor=15. 

Conclusion 

Most of the selected features and expression levels have a monotonic relationship. Only a few of the 

features exhibit potential complex associations and in this case the associations are relatively weak. 

Therefore, in most cases, research and models related to expression levels can focus on examining 

monotonic associations, and may have little benefit in considering more computationally intensive 

methods.  
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Supplementary material  
For each expression type we provide per relevant features the MIC score and Spearman score, the 

empirical p-value for MIC and for       , as well as the Z-score p-value. Results are calculated before 

any manipulation to the data and after removal of zero/default values. Data that is calculated after 

removal of zero or default value is marked as “filtered” in the supplementary tables. See the Methods 

section for more details on these calculations. Specifically: 

Table S1 includes all the mRNA features. 
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Table S2 includes all the RD features. 

Table S3 includes all the PPR features. 

Table S4 includes all the PA features. 

Table S5 summarizes the number of features for each category (category definition is also available in the 

same file) 
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